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This paper investigates the detection of a bearing defect in an asynchronous machine by analysing the electric signals. For this
purpose, it is considered that the voltage is imposed and independent of mechanical aspect and that the mechanical defect appears
only in the current thanks to the variation of impedance. Wiener filtering is used to extract mechanical information contained in
the electrical current; this will then enable the use of statistical indicators such as kurtosis which identify the presence of a defect.
Initially, the small fluctuation in electric current around the electric cycle (50Hz) is reduced in order to reinforce cyclostationarity.
Then, a filter between the voltage and current is estimated, usingWiener’s technique. Since the voltage is decorrelated ofmechanical
elements, the residual signal (current− predicted current) contains the mechanical part. This study is corroborated by an envelope
analysis of the vibration signal. Experimentation on a faulty outer raceway bearing has shown the excellent performance of the
proposed method. This method is easier to implement since the sensors’ position does not influence the measure the way it does
when using accelerometer sensors. This diagnosis could be embedded into a fed converter. However, it is less sensitive than a direct
measure of the defect (accelerometer).

1. Introduction

Asynchronous machines are used a lot in industry because
of their advantages over other electric machines: standardis-
ation, robustness, and low purchase and maintenance cost. It
is widely used in the metallurgical and chemical industries,
in energy production, and in the propulsion of vehicles and
ships.

Asynchronous machine failures are due to stator, rotor,
and bearing faults. More than 40% of all motor failures
are bearing related [1–3]. Sometimes, bearing faults might
manifest themselves as rotor asymmetry faults [4] (usually
listed under the category of eccentricity-related faults). The
breakdown of one part of a machine can stop the complete
process and cause losses in terms of time and money.
Therefore, it led to the implementation of monitoring
systems [5–8], so as to be able, at any time, to provide
information on the operating condition of the various parts
of the production process, such as asynchronous machines
and their load. In most situations, diagnosis is based on

the analysis of mechanical signals (acceleration, speeds, etc.)
which have proven their effectiveness [9–11].

However, the use of mechanical signals cannot always
be used (underwater pumps, hostile environment, etc.). In
such conditions, it is better to move the data acquisition
to a more suitable environment. In this paper, we suggest
to use the motor’s current and voltage as they are available
anywhere via the electric cables. This type of measurement
(current and/or voltage) is a noninvasive method to extract
the information needed to provide system diagnosis and thus
ensure an effective monitoring [12–16].

Stator current monitoring has been widely developed in
order to diagnose bearing faults, but the major problem with
the previous method is that the mechanical defects are often
drowned in noise. It does not allow a good diagnosis based
on the electric current. In this paper, the nonsynchronism
(i.e., different cyclic frequencies) between the electrical and
mechanical phenomena is used to dissociate mechanical
information. It also enables us to improve the detection of
mechanical defects while the fault is still at an early stage.
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2. Cyclostationarity

2.1. Origin of Cyclostationarity. Rotating machines produce
cyclic signals. Three kinds of cycles can be found in electric
current: electrical cycles (50Hz and harmonics), mechanical
cycles, and their combination (modulation). With slight
speed fluctuation, cycles linked to mechanical phenomena
are periodic versus the mechanical angle, and cycles linked
to electrical events are periodic with the electrical “angle”
(phase).

Unfortunately, the angle is not strictly proportional to
time due to speed or electrical power fluctuations. In order
to take advantage of the electrical cycle, the signal is synch-
ronised with the electrical period, making the statistics asso-
ciated with electrical events become periodic (cyclostation-
ary signal [17]).

This periodicity may be an important characteristic that
should be reflected in an appropriate probabilistic model.
Stationary processes, with their time-invariant probabilistic
parameters, are in general inadequate for the study of such
phenomena. Nonstationary models take care of parameters
variations, but, do not take advantage of their periodic
nature. Between these two models, cyclostationarity deals
with periodically varying random processes and enables us
to take advantage of the electric cycle.

Cyclostationarity results from a coupling between a
periodic phenomenon and another stationary, but random,
phenomenon. There is an example:

x(t) = A(t) sin
(
2π f0t

)
, (1)

where A(t) is random, stationary, and zero average (white
noise).

This signal x(t) cannot be characterised by a traditional
Fourier analysis because it is not stationary. But a spectral
correlation with a zero delay makes it possible to detect its
cyclic frequency.

2.2. Definition of Cyclostationarity. Let T be a cyclic period,
α = k/T , kth is cyclic frequency harmonic (k = 0, 1, 2, . . .),
and τ the time delay.

A process, x(t), is said to be cyclostationary at order 1 if
its mean valuemX(t) is periodic with the same period T [17]:

mX(t) = E[x(t)] = E[x(t + T)] = mX(t + T)

=
∑

α

Mα
X · exp

(
2 jπαt

)
,

(2)

whereMα
X are the Fourier coefficients

Mα
X � lim

T→∞
1
T

∫ T/2

−T/2
mX(t) · exp

(−2 jπαt)dt. (3)

The typical example of order-1 cyclostationarity is a
gearbox signal which contains a periodic part associated with
gears and a random part associated with noise and other
mechanical elements. Another example could be a sine wave
at 50Hz with an additive noise.

A process, x(t), is said to be cyclostationary at order 2 if
its autocorrelation RX(t, τ) is periodic with the same period
T :

RX(t, τ) = E[x(t)x∗(t − τ)] = RX(t + T , τ + T)

=
∑

α

Rα
X(τ) · exp

(
2 jπαt

)
,

(4)

where the Fourier coefficients Rα
X(τ) are known as the cyclic

autocorrelation functions:

Rα
X(τ) � lim

T→∞
1
T

∫ T/2

−T/2
RX(t, τ) · exp

(−2 jπαt)dt. (5)

For τ = 0, the autocorrelation is the signal energy. There-
fore, a cyclostationary signal at order 2 has a periodic power.

If no cyclic frequencies are present in the signal, Rα
X(τ) =

0 for k /= 0, then we have a stationary process.
In practice, only one realisation is available. Therefore,

the set average is replaced by cycle average. The estimations
of cyclic averages mX(t) and cyclic autocorrelations RX(t, τ)
are given by

mX(t) = 1
k

k−1∑

n=0
x(t + nT),

RX(t, τ) = 1
k

k−1∑

n=0
x(t + nT)x∗(t + nT − τ).

(6)

The cyclic power spectrum (CPS), at a given cyclic frequency
αi, is defined by the Fourier transform of the cyclic autocor-
relation function, SαiX ( f ) = TF{Rαi

X (τ)}. The CPS measures
for a given cyclic frequency, αi, the interaction between two
shifted spectra of x(t): X( f − (α/2)) and X( f + (α/2)). If
these two quantities are linked (side bands spaced at a rolling
element characteristic frequency froll), the result is nonzero
for each αi = k · froll (k is an integer).

2.3. Example of Cyclostationarity

2.3.1. Impacts with Random Amplitude. Let x(t) be a series
of periodic impacts with a random amplitude (average
amplitude of 1 with a standard deviation of 0.1). Let the sign
of the impact also be random.

Figure 1 presents the signal and a cyclostationary anal-
ysis. Figure 1(b) shows the superposition of each impact
and reveals the periodic nature of the process. Nevertheless,
since the impact sign is random, the synchronous average
displayed in Figure 1(c) is zero. The process cycle can only
be revealed by studying its power (i.e., cyclostationarity at
order 2). Figure 1(d) shows RX(t, 0) which is simply the syn-
chronous average of the squared signal. The autocorrelation
at lag τ = 0 reveals the periodicity of the process.

2.3.2. Impact with a Random Phase. Let us consider the
response impacts of period T = 0.1 s with a random phase ϕi:

x(t) =
∑

i

e−α(t−i·T) · sin[2π f (t − i · T) + ϕi
]
+ n(t), (7)
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Figure 1: Analysis of a series of impulses.
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Figure 2: Impacts with no phase variation for sine waves.

where the damping α = 50, f = 120Hz, i corresponds to the
impact number, ϕi is the random phase associated with the
ith impact, and n(t) is a random Gaussian noise.

Figure 2 shows the signal with ϕi = 0. In this case, the
signal period of 10Hz can be seen on the signal spectrum

Figure 2(b). Figure 2(c) shows the spectrum of a squared
signal (i.e., spectrum of the power). The cyclic frequency
10Hz also appears in this spectrum.

Figure 3 shows a signal in the case of a random phase
ϕi (uniform law between 0 and 2π radians). The classical
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Figure 3: Impacts with random initial phase for sine waves.

spectrum (Figure 3(b)) does not reveal the signal period
because of the random phase. Therefore, the cycle is only
visible when working with the squared signal (in order to
study cyclostationarity of order-2). It is important to notice
that a shift of 2π radians in the sine wave only represents a
shift of 1/12 of the signal cycle T.

2.3.3. Bearings. A typical example of cyclostationarity at
order-2 process is faulty rolling elements of the bearing.
The position of the faulty ball impacts slightly fluctuates
against time. Figure 4 shows a bearing signal split into slices
of 1 cycle. Each slice could be considered as a realisation.
The cyclostationary at order-1 term is reduced even though
a periodic power distributed around the impact position
remains cyclostationary at order 2.

2.4. Application of Cyclostationarity to Bearing Diagnosis. In
[18], it has been proved that a close relationship exists
between the cyclic power spectrum and the squared envelope
spectrum. Equation (8) illustrates this relation:

∫ f2

f1
SαiX
(
f
)
df = lim

T→∞
1
T

∫ T/2

−(T/2)

∣
∣x̂(t)

∣
∣2 exp

(− j2παit
)
dt,

(8)

where: x̂(t) is the filtered version of signal x(t), obtained
by band-pass filtering in the frequency band [ f1; f2] around
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Figure 4: Slices of bearing signal.

a high-frequency resonance (where the signal-to-noise ratio
is maximised). As stated in [19], this relationship is valid
provided that αi � f2 − f1. This condition is always met
when dealing with bearings in rolling element.

This relationship simply means that the envelope Fourier
transform frequency gives a cumulative cyclic power versus
the cyclic frequency (i.e., indicates what the signal cycles
and their “power” are). The Fourier transform envelope is
easier to compute, however, the information about the two
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frequencies f1 and f2, which interact in order to produce a
cycle α, is lost.

Envelope analysis is a widely used technique to identify
periodic impacts from a vibration signal even if those
impacts have very low energy level or even if they are hidden
by other vibration signals (the high bandwidth of bearing
signal makes it possible to work in a frequency not excited
by any other mechanical parts). Bearing failures are one
of the most common industrial machines faults, and the
envelope analysis is primarily used to detect and diagnose
the defects of bearing’s rolling elements. When a damage
develops, the vibration becomes amplitudemodulated due to
periodic changes in the forces. The low-frequency vibrations,
including the fault symptoms of the bearing rolling element,
are filtered away in order to extract only the modulated
periodic information from the more sensitive and pure
envelope signal [20].

Processing Algorithm. The study of the envelope makes it
possible to analyse the shape of the signal, in particular,
when the required defect excites a mode of resonance of
the structure. It consists of filtering the signal around a
frequency of identifiable resonance in the spectrum and
seeking the modulation caused by the repetition of the
forces generated by the required defect. The determination
of modulation frequencies (shock repetition rates, associated
with the knowledge of the kinematics of the installation)
makes it possible to locate the origin of a defect early and
quickly, even when the effect of the defect is drowned in
background noise. This technique is widely used in the
diagnosis of defects with shock characteristics, even at low
speed, since the defects are not found in the low frequency
band, but around carrier frequencies, which are usually in
the high-frequency domain.

The numerical steps of envelope detection are as follows
[21].

(1) Apply Fourier transform to the temporal signal.

(2) The spectrum thus defined makes it possible to
isolate resonances from the system.

(3) The temporal signal is band-pass filtered in order
to obtain a reduced spectrum around the main
frequency of the system.

(4) Then analytic signal is extracted (see the appendix).

(5) The temporal envelope signal is then obtained by
inverse Fourier transform and taking the modulus.

This signal is seldom employed as a tool for analysis. The
spectrum of the envelope or squared envelope are generally
used.

Envelope analysis filters away the low rotational frequen-
cies of the complex signal. The repetitive components at high
frequencies are amplified and converted into spectrum while
the noise of the machine is reduced with a significant signal-
to-noise ratio. If vibrations appear in the spectrum envelope
which are related to the frequencies of a bearing defect, one
can deduce that a defect is developing.
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Figure 5: Acceleration measured during 5-shaft revolutions.
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Figure 6: Power spectrum density of vibratory signal.

Envelope analysis purifies the vibratory signal. The total
temporal signal is difficult to interpret, the components with
low energy being drowned among the components of high
energy and the noise. The temporal envelope signal can show
the impulses caused by a defect on the external race of a
bearing.

Figure 5 shows the acceleration produced by a bearing
during 5 shaft revolutions. The bearing defect does not
clearly appear. In order to do an envelope analysis, the
spectrum is computed in Figure 6 (enlargement in Figure 7).
A resonance located between 8 kHz and 10 kHz is extracted
by band-pass filtering. At such high frequency, the gearbox
contribution becomes low. The envelope spectrum is after-
wards computed in Figure 8.

The cyclic power spectrum of a vibratory signal is
presented in Figure 9. We can note some frequency lines at
k × 63Hz (k = 0, 1, 2, . . .) due to bearing fault.

The power spectrum density of the squared envelope
(Figure 8) corresponds to a bearing turning at 24.7Hz where
the defect is localised on the external race. The first peak
at 63Hz corresponds to the BPFO frequency and the other
peaks are the harmonics. A peak at 24.71Hz associated with
the bearing rotation frequency is also present.

Envelope analysis is very effective on the vibratory signals
but it does not function on the electric signals because they
are not cyclostationary at order 2. The present application
is interesting within the framework of the diagnosis of
induction machines based only on electrical measurements,
hence the interest in finding a filter which will enable the
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Figure 7: Power spectrum density of vibratory signal (low frequen-
cies).

extraction of the maximum amount of information about
mechanical phenomena from the electrical current.

2.5. Enhancement of Cyclostationarity in Our Application.
The power supply frequency fluctuates around 50Hz; this
fact influences the cyclic characteristics (cyclostationarity)
of the electric signals. This fluctuation produces a nonde-
terministic cyclic period which dispels the energy around
the mean cycle. For this, we propose to resynchronise these
signals depending on their cyclic frequency. Therefore, the
cyclic period becomes constant and the energy is concen-
trated on the cyclic frequencies. The cyclostationarity retains
linear relation between signals, which is really significant for
the correct operation of the Wiener filter.

The process of synchronization is as follows. Firstly,
we cut each signal in slices corresponding to the cycles,
an integer number of points per cycle, that is, 512 points
if the sampling frequency is 25.6 kHz. The result, which
consists of a superposition of sine wave slices, is displayed in
Figure 10(a). Since it is not easy to visually distinguish the
sine waves, a “∗” indicates the position of the maximum
for each slice. This marker enables us to easily locate the
start of each period. During the observation time, the main
period is slightly higher than 20ms, therefore, the position
of the maximum is shifted right. Since this period variation
is random, the shift is also random: markers cannot be linked
with a line.

By analysing precisely the fluctuation (i.e., studying
the distance between two maximum locations), it appears
that the maximum shift between two consecutive periods
represent +/− 0.6% of 0.2ms.

Secondly, we calculate the delay between the first cycle,
taken as a reference, and the other cycles. The shift is
simply calculated by using the maxima of two sinusoids
positions. After synchronisation, the signal is rebuilt by
assembling synchronized slices. There are other ways to
estimate the delay between the sections, such as correlation
and zero passage. The current is synchronised in the same
manner as the voltage [15]. Figure 10 represents various
cycles of the current; these cycles are acquired during 40
seconds, approximately, to highlight the fluctuations of the
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Figure 9: Cyclic power spectrum of vibratory signal.

frequency (Figure 10(a)), which will be eliminated by using
the cyclostationarity as is shown in Figure 10(b). “∗” locates
the maximum of the sinusoids.

Surprisingly, it is easier to deal with converter fed; since
the electrical frequency is electronically controlled, it is no
longer necessary to compensate the electrical fluctuation.

3. Bearing Fault Signature

3.1. Effect on Vibration. Bearings, in general, consist of
two concentric rings, outer and inner, with balls or rollers
between them. Balls are bound by a cage which ensures a
uniform distance between them and prevents any contact.
Bearing defects can occur as a result of fatigue of the
materials under normal operational conditions. First, cracks
will appear on the tracks and on the balls. Then, chipping
and scuffing-off of material can quickly accelerate the wear of
a bearing, and intensive vibrations are generated as a result
of the repetitive impacts of the moving components on the
defect. Then, it will produce one of the four characteristic
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Figure 10: Plot of 1950 cycles of current.

fault frequencies in the machine vibration depending on
which bearing surface contains the fault; each bearing defect
has its own signature [22], and it is characterized by a
frequency (9)–(12) which can be calculated starting from the
structure and dimensions of the bearing (Figure 11), where:

FR : rotor frequency,

FTF: cage fault frequency,

BPFI: inner raceway fault frequency,

BPFO: outer raceway fault frequency,

BSF: ball fault frequency,

Bd: ball diameter,

Pd: pitch diameter,

NB: number of rolling elements, and

β: ball contact angle;

FTF = 1
2
FR

(

1− Bd cosβ
Pd

)

, (9)

BPFO = NB

2
FR

(

1− Bd cosβ
Pd

)

, (10)

BPFI = NB

2
FR

(

1 +
Bd cosβ

Pd

)

, (11)

BSF = Pd
2 · Bd

FR

⎡

⎣1−
(
Bd cosβ

Pd

)2
⎤

⎦. (12)

However, these characteristic race frequencies (10) and
(11) can be approximated for most bearings with between
six and twelve balls by [23]

BPFO = 0.4 ·NB · FR,
BPFI = 0.6 ·NB · FR.

(13)

Single-point defects begin as localised defects on the
raceways (or rolling elements). As the rolling elements pass
over these defect areas, small collisions occur producing
mechanical shock waves. These shock waves then excite the
natural frequencies of the machine. This process occurs every
time a defect impacts on another part of the bearing, and
its rate of occurrence is equal to one of the previously
defined characteristic fault frequencies. Restated, inserting
familiar terminology, the mechanical resonance frequencies
(carriers) are modulated by the characteristic fault frequency
(baseband signal) [24].

3.2. FromVibration to Current. The asynchronousmotor can
be partly modelled according to Figure 12, where:

i1(t): stator current of phase 1,

u1(t): stator voltage of phase 1,

Rs: stator resistance,

Ls: stator leakage inductance,

Lm: magnetizing inductance,

Rr : rotor resistance, and

Lr : rotor leakage inductance.

This model made of passive component shows that there
is a linear relation between the current and the voltage.

There are a number of papers giving evidence of the
detection and diagnosis of faults in rolling element bearings,
based on the analysis of the current of the induction motor
driving the machine [4, 25–28]. The reason given for the
effect of the faults on the current has so far been that the
fault in the bearing causes the rotor to become displaced
radially in the stator field. It slightly changes the intrinsic
parameters of the machine (L,R, . . .) which are no longer
constant. Therefore, the filter between current and voltage
changes at the defect period. These cyclic changes of filter
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parameters create an amplitude modulation of the current
[26].

From the above explanation, we retain the fact that the
stator current contains an electrical part se(t) modulated by
a mechanical partm(t). It can be written as follows:

i1(t) = se(t)[1 +m(t)] + b(t), (14)

where b(t) is a random noise decorrelated with the other
signals.

The “purely” electrical part se(t) is correlated with the
voltage u1(t) and decorrelated with themechanical partm(t).
It should be noted that decorrelation (order 2) is different
from independence which concerns all orders;

(i) let FE be the power supply frequency, and

(ii) let FV be one of the characteristic vibration frequen-
cies (FTF, BPFO, BPFI, BSF,. . .).

The electrical signal contains

(i) a cyclostationary electrical component (in an electri-
cal axis) at frequency FE and its harmonics (where FE
is the power supply frequency)

(ii) a cyclostationary mechanical component (in a mixed
electrical and mechanical axis due to modulation) at
frequency:

FBE = |FE ± k · FV | for (k = 1, 2, 3, . . .). (15)

h(τ)
predict the electrical
contribution inside

the current

Voltage

(electrical reference)

−
+

Current (electrical component at 50Hz +

mechanical components)

Mechanical

components

Figure 13: Our Wiener filter approach.

4. Exploitation of the Electric Signals

4.1. Problem Statement. The detection of the mechanical
defects in electric signals is difficult because of the strong
dynamics of the 50Hz component, which can mask the
presence of other sources carrying information.

A typical current signal is shown on Figure 18. Its
spectrum can be seen on Figure 17. Each figure reveals the
high dynamics of the 50Hz component.

Some methods based on a high-resolution frequency
estimation [27, 29] are used to overcome this problem
and to assist the fault detection and diagnosis of induction
machines. Instead of separate closed peaks, it is proposed
here to adapt noise-cancellation techniques on the resyn-
chronised signal in order to reduce the 50Hz component
(Figure 13).

Here, the noise (our reference) is no longer an unknown
signal, but the electrical peak at FE = 50Hz which masks
the other peaks at FBE. The noisy signal is the current that
contains a mixture of electrical andmechanical contribution.
The denoised signal (i.e., signal without contribution of the
reference) is the current without the electrical contribution
at 50Hz.

4.1.1. Estimation of Wiener Filter. In the presence of a fault,
the current is impaired by various forms of distortion.
Wiener filtering is a method used to recover the original
signal as close as possible to the measured signal. Our task
is to find the optimal filter h(t) which when applied to the
voltage u1(t) produces a signal î(t) that is as close as possible
to the current i1(t) in terms of least mean squares. In other
words, we want to estimate the true signal i1(t),

J = E
[∣
∣
∣i1(t)− î(t)

∣
∣
∣
2
]
. (16)

By minimising J , the frequency response of the Wiener filter
will be

H
(
f
) = Si1u1

(
f
)

Su1u1
(
f
) , (17)

where S is the cross-spectral density.

Sx,y
(
f
) = lim

T→∞
1
T
E
{
XT
(
f
) · Y∗T

(
f
)}
, (18)

where XT( f ) is the Fourier transform of x(t) windowed in
[−T/2,T/2].
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Figure 16: Test rig.

In order to estimate this quantity as shown in Figure 14,

(i) the signal is split into blocks of one cycle,

(ii) a local cross-spectrum is computed, and

(iii) all the local cross-spectra are averaged (the ensemble
expectation is substituted with a block expectation).
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The filter H( f ) is, therefore, computed by using (17).
Next, î(t) is retrieved by using

î(t) = TF−1
[
U1
(
f
)
H
(
f
)]
, (19)

where TF−1 is the inverse Fourier transform and U1( f ) is the
Fourier transform of u1(t).

To summarise, Figure 15 is the flowchart of the proposed
method where the first step is the acquisition of voltage
u(t) and current signals i(t). The test rig is described in
Section 5. The next step is to resynchronise the signals
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to eliminate the power supply fluctuating frequency, the
synchronization process being detailed in Section 2.5. The
third step is detailed in Section 4, where the Wiener filter
is applied to the synchronised signals to estimate the “true”
current î(t) and, consequently, to estimate the noise b(t) that
is related to mechanical information.

4.1.2. Detection of Defect with Kurtosis. Finally, the Kurtosis
function is used as an indicator to detect the presence of
faults.

The kurtosis could be defined as a measure of peakedness
of the probability function. Here, the main advantage of
kurtosis is its availability to quantify the impulsive nature of
the signal.

Generally, faulty bearings produce an impulsive signal.
Therefore, we have chosen the Kurtosis function which is a
sensitive indicator used in detecting the presence of periodic
impulse signals [30].

The Kurtosis function describes the shape of a random
variable’s probability density function:

kurt(X) =
E
[(
X − μ

)4]

σ4
, (20)

where μ and σ are the mean value and standard deviation of
X .

A normal random variable has a Kurtosis of 3, and a sine
wave has a kurtosis of 1.5 [31].

For vibration analysis, the Kurtosis value should be close
to 3 for new bearings. The introduction of a defect onto any
contacting surface would generate impulses, thus, changing
the distribution of the vibration signal and increasing the
Kurtosis value.
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The advantage of the Kurtosis is to resume the Wiener
output signal into a scalar. Therefore, in a predictive main-
tenance approach, the kurtosis can be monitored against
time. If the Kurtosis increased, a sharper (but longer and not
automatic) analysis could be made by looking at the signal.

Other classical bearing defect indicators could be used
like crest factor, RMS value and so forth.

The results are presented in Sections 5 and 6.

4.2. Other Approach with Wiener Filter. Another approach
based on the Wiener filtering for noise cancellation is
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proposed in [32], but there are major differences with our
work presented in Figure 13. To reduce the 50Hz, we use
a spectrofilter which exploits the supply voltage like an
electrical reference of the Wiener filter.

Moreover, the signal is made cyclostationary (by com-
pensating the current fluctuations) before other analyses
(spectral, statistical, etc.). It enables a better estimation of the
spectrofilter [33, 34] and a better rejection of 50Hz.

The authors in [28] also use a Wiener filter; however,
they use the current in a healthy case as reference, and
they suppose that the signals are stationary. In addition, our
approach can identify exactly the type of defect.

5. Experimental Test Results

The test bench (Figure 16) is composed of an asynchronous
machine (1.1 kW, 4 pole motor) and a double-reduction
speed reducer coupled to the rotor shaft which is carried by
two bearings, where one of them is defective.

This machine is supplied directly by the power supply
network of the laboratory and actuates a DC machine which
outputs to a rheostat to apply a load. The mechanical
vibrations are measured by an accelerometer attached to
the machine above the defective bearing; three hook-on
ammeters and three differential voltmeters are used for
electrical measurements (voltages and currents). The optical
encoder fixed at the free end of the shaft gives the angular
position of the rotor shaft, it delivers a square signal whose
frequency is a multiple of the rotational frequency. This
enables the study of the speed fluctuations. For this part
of the study, the accelerometer signal and only one phase’s
current and voltage signals are treated. Table 1 shows the
parameters of the bearing taken from the data sheet, and
cos(β) is deducted from various measurements. The motor
operates at an average shaft speed of 1488 rpm (FR =
24.6Hz). A real defect in the outer raceway is located at
62.89Hz in the vibration spectrum (Figure 7), and, using
the parameters shown in Table 1, the presence of an outer
raceway defect at these frequencies is confirmed by (10).
The spectrum is very rich because certain frequencies are
related to the kinematics of the machine and the gear system.

Table 1: Bearing parameters.

Type
Outside
diameter

Inside
diameter

NB Pd Bd cos(β)

SKF
6303-2Z

47mm 17mm 7 32mm 8.735 1

For this study, we are only interested in what is related to
the bearing defect, and studies of other events are envisaged
later. Equation (15), predicts the frequencies of interest in
the current spectrum to be |FE ± k ∗ BPFO|. These current
components are indicated on the spectral plots (Figure 17),
where FE = 50Hz and BPFO = 62.89Hz.

It is important to note that the frequency components
produced by the bearing defect are relatively small when
compared to the rest of the current spectrum. The largest
components present in the current spectrum occur at mul-
tiples of the supply frequency and are caused by saturation,
winding distribution, and the supply voltage. This large
difference in magnitude (Figure 17) can make the detection
of the current spectrum bearing harmonics a significant
problem, which can be solved by using our method.

Figure 18 is a comparison between the “classical” Wiener
filter without synchronisation in Figure 18(b) and our
approach with synchronization on Figure 18(a). Figure 18(a)
highlights the contribution of the cyclostationarity and
consequently the synchronization on the estimation of
current. The estimated and resynchronised currents are very
close, which proves that the estimated filter was the best. It
is not the case for Figure 18(b) where the Wiener filter is
applied directly to the measured current.

In fact, there were fluctuations relating to mechanical
information (vibration and noise) in the measured current
hidden by the 50Hz frequency and its harmonics. Figure 17
shows a large difference in magnitude between the 50Hz and
the 112.89Hz components equal to 77.47 dB. It should be
noticed that, due to synchronization, the estimated current
only carries electrical information. Figure 19 is a zooming
of Figure 17 between 100 and 200Hz showing the good
estimation of the current. This enables the subtraction of two
currents (measured and estimated) to extract mechanical
information as shown in Figure 20. Then, it will be possible
to highlight the fluctuations, which have the shape of a
vibratory signal and then exploit them better. Figure 21(a) is
the power spectral analysis of the estimated noise in a faulty
case, it shows that the dynamics of 50Hz were eliminated
and the difference in magnitude is reduced to 27.6 dB
between 50Hz and 112.89Hz. Moreover, a gain of 1.55 dB
for 112.89Hz enables to distinguish it from other very close
frequencies. Figure 21(b) is added to help understanding and
to compare with the healthy case, where the signature of the
outer raceway bearing fault is not present.

A question may be asked: why is there a spectral
component at 150Hz? The presence of 150Hz is noticed,
although the 50Hz has disappeared. This is explained by the
fact that the fluctuations of 150Hz do not exactly follow the
fluctuations of 50Hz, so the synchronised current and the
estimated one are not aligned in phase at 150Hz. We are
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currently working on the synchronization process so that it
can synchronise according to 50Hz and its harmonics.

Figure 22 shows the power spectrum before and after
Wiener filtering is applied on a fed-driven machine (mains
at 45Hz). A reduction of more than 20 dB can be seen on
electrical relative component. It should be noticed that the
synchronisation step was not necessary since the electrical
frequency generated by the fed converter is very stable.

6. Application of the Kurtosis Function

In this application, the Kurtosis function is combined with a
Wiener filter to detect bearing faults using electrical signals.
It was applied to different signals acquired in different
operating conditions; the results are classified in Table 2.
For the electrical signal, the Kurtosis value is close to 1.5.

Table 2: Kurtosis values.

Signal Healthy Defect

Stator current 1.46 1.57

Accelerometer 2.83 3.51

Residual 2.16 8

Envelope of vibration signal 12.33 66

We cannot detect the bearing fault because of the strong
dynamics of 50Hz which hide the bearing fault. After
cancelation of 50Hz harmonics by Wiener filtering, the
Kurtosis value increases from 2 to 8 and allows detection
of the presence of a fault. We note also that the Kurtosis
function is more sensitive on the envelope signal than on the
electrical signal.

7. Conclusion

This paper discusses the use of signal processing to provide
features based on electrical analysis to be used for bearing
fault diagnosis. The influence of a bearing damage on
the stator current depends on the type of defect and the
operating conditions of the machine. Thus, it is difficult to
simply detect a bearing fault by observing the stator current,
since the mechanical information contained in the electrical
current is masked by the strong dynamics of the 50Hz. The
contribution of cyclostationarity to estimate the frequency
response of a Wiener filter and the joint resynchronisation
of voltage and current make it possible to separate the
mechanical part of the electric signal. It means that the
50Hz peaks are strongly reduced. Therefore, the mechanical
component clearly appears. The use of the Kurtosis function
gives an evaluation of the damage and highlights the presence
of an anomaly in the machine.
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Appendix

The analytic part xa(t) of a signal x(t) is produced by passing
x(t) in a filter H( f ) that sets to zero the negative frequencies
and keeps the positive frequencies;

H
(
f
) =

⎧
⎨

⎩

1 if f ≥ 0,

0 elsewhere.
(A.1)

For example, the analytic signal of a sine wave

x(t) = k sin
[
ϕ(t)

]
(A.2)

is an exponential

xa(t) = ke jϕ(t). (A.3)

In the case of a sine wave, it is easy to perform phase
demodulation by computing the angle of the analytical
signal. Amplitude demodulation is made by extracting the
modulus of the analytical signal.

Disclosure

Parts of this work were presented at the International
Conference on Industrial Electronics, IECON2006, Paris,
France, in November 2006.
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