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In the design of capsule endoscope, the trade-offs between battery-life and video-quality is imperative. Typically, the resolution of
capsule gastrointestinal (GI) image is limited for the power consumption and bandwidth of RF transmitter. Many fast compression
algorithms for reducing computation load; however, they may result in a distortion of the original image, which is not suitable
for the use of medical care. This paper presents a novel image compression for capsule gastrointestinal endoscopy, called GICam-
II, motivated by the reddish feature of GI image. The reddish feature makes the luminance or sharpness of GI image sensitive
to the red component as well as the green component. We focus on a series of mathematical statistics to systematically analyze
the color sensitivity in GI images from the RGB color space domain to the two-dimensional discrete-cosine-transform spatial
frequency domain. To reduce the compressed image size, GICam-II downsamples the blue component without essential loss of
image detail and also subsamples the green component from the Bayer-patterned image. From experimental results, the GICam-II
can significantly save the power consumption by 38.5% when compared with previous one and 98.95% when compared with JPEG
compression, while the average peak signal-to-noise ratio of luminance (PSNRY) is 40.73 dB.

1. Introduction

Gastrointestinal (GI) endoscopy has been popularly applied
for the diagnosis of diseases of the alimentary canal including
Crohn’s Disease, celiac disease, and other malabsorption
disorders, benign and malignant tumors of the small intes-
tine, vascular disorders, and medication-related small bowel
injury. There are two classes of GI endoscopy: wired active
endoscopy and wireless passive capsule endoscopy. The wired
active endoscopy can enable efficient diagnosis based on real
images and biopsy samples; however, it causes discomfort
for the patients to push flexible, relatively bulky cables into
the digestive tube. To relief the patients’ discomfort, wireless
passive capsule endoscopes are being developed worldwide
[1–6].

The capsule moves passively through the internal GI
tract with the aid of peristalsis and transmits images of the
intestine wirelessly. Developed by Given Imaging Ltd., the
PillCam capsule is a state-of-the-art commercial wireless

capsule endoscope product. The PillCam capsule transmits
the GI images at a resolution of 256-by-256 8-bit pixels and
the frame rate of 2 frames/sec (or fps). Because of its high
mobility, it has been successfully utilized to diagnose diseases
of the small intestine and alleviate the discomfort and pain of
patients. However, based on clinical experience; the PillCam
still has some drawbacks. First, the PillCam cannot control
its heading and moving direction itself. This drawback may
cause image oversights and overlook a disease. Second,
the resolution of demosaiced image is still low, and some
interesting spots may be unintentionally omitted. Therefore,
the images will be severely distorted when physicians zoom
images in for detailed diagnosis. The first drawback is the
nature of passive endoscopy. Some papers have presented
approaches for the autonomous moving function [7–11].
Very few papers address solutions for the second drawback.
Increasing resolution may alleviate the second problem;
however, it will result in significant power consumption
in RF transmitter. Hence, applying image compression is
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necessary for saving the power dissipation of RF transmitter
[12–20].

Our previous work [14] has presented an ultralow-power
image compressor for wireless capsule endoscope. It helps
the endoscope to deliver a compressed 512-by-512 image,
while the RF transmission rate is at 1 megabit ((256× 256×
2×8)/10242) per second. No any references can clearly define
how much compression is allowed in capsule endoscope
application. We define that the minimum compression rate
is 75% according to two considerations for our capsule
endoscope project. The first consideration is that the new
image resolution (512-by-512) that is four times the one
(256-by-256) of the PillCam can be an assistant to promote
the diagnosis of diseases for doctors. The other one is that
we do not significantly increase the power consumption
for the RF circuit after increasing the image resolution
from the sensor. Instead of applying state-of-the-art video
compression techniques, we proposed a simplified image
compression algorithm, called GICam, in which the memory
size and computational load can be significantly reduced.
The experimental results show that the GICam image
compressor only costs 31 K gates at 2 frames per second, con-
sumes 14.92 mW, and reduces the image size by at least 75%.

In applications of capsule endoscopy, it is imperative to
consider the tradeoffs between battery life and performance.
To further extend the battery life of a capsule endoscope, we
herein present a subsample-based GICam image compressor,
called GICam-II. The proposed compression technique is
motivated by the reddish feature of GI image. We have
previously proposed the GICam-II image compressor in
paper [21]. However, the color importance of primary colors
in GI images has no quantitative analysis in detail because
of limited pages. Therefore, in this paper, we completely
propose a series of mathematical statistics to systematically
analyze the color sensitivity in GI images from the RGB color
space domain to the 2D DCT spatial frequency domain in
order to make up for a deficiency in our previous work [21].
This paper also refines the experimental results to analyze
the performance about the compression rate, the quality
degradation, and the ability of power saving individually.

As per the analysis of color sensitivity, the sensitivity of GI
image sharpness to red component is at the same level as the
sensitivity to green component. This result shows that the GI
image is cardinal and different from the general image, whose
sharpness sensitivity to the green component is much higher
than the sharpness sensitivity to the red component. Because
the GICam-II starts compressing the GI image from the
Bayer-patterned image, the GICam-II technique subsamples
the green component to make the weighting of red and green
components the same. Besides, since the sharpness sensitivity
to the blue component is as low as 7%, the blue component
is downsampled by four. As shown in experimental results,
with the compression ratio as high as 4 : 1, the GICam-II
can significantly save the power dissipation by 38.5% when
compared with previous GICam work [14] and 98.95% when
compared with JPEG compression, while the average PSNRY
is 40.73 dB. The rest of the paper is organized as follows.
Section 2 introduces fundamentals of GICam compression
and briefs the previous GICam work. Section 3 presents

the sensitivity analysis of GICam image and shows the
importance of red component in GI image. In Section 4,
the GICam-II compression will be described in detail. Then,
Section 5 illustrates the experimental results in terms of
compression ratio, image quality, and power consumption.
Finally, Section 6 concludes our contribution and merits of
this work.

2. The Review of GICam Image
Compression Algorithm

Instead of applying state-of-the-art video compression tech-
niques, we proposed a simplified image compression algo-
rithm, called GICam. Traditional compression algorithms
employ the YCbCr quantization to earn a good compression
ratio while the visual distortion is minimized, based on
the factors related to the sensitivity of the human visual
system (HVS). However, for the sake of power saving, our
compression rather uses the RGB quantization [22] to save
the computation of demosaicing and color space transfor-
mation. As mentioned above, the advantage of applying
RGB quantization is twofold: saving the power dissipation
on preprocessing steps and reducing the computing load
of 2D DCT and quantization. Moreover, to reduce the
hardware cost and quantization power dissipation, we have
modified the RGB quantization tables, and the quantization
multipliers are the power of two. In GICam, the Lempel-
Ziv (LZ) coding [23] is employed for the entropy coding.
The reason we adopted LZ coding as the entropy coding is
because the LZ encoding does not need look-up tables and
complex computation. Thus, the LZ encoding consumes less
power and uses smaller silicon size than the other candidates,
such as the Huffman encoding and the arithmetic coding.
The target compression performance of the GICam image
compression is to reduce image size by at least 75%. To
meet the specification, given the quantization tables, we
exploited the cost-optimal LZ coding parameters to meet
the compression ratio requirement by simulating with twelve
tested endoscopic pictures shown in Figure 4.

When comparing the proposed image compression with
the traditional one in [14], the power consumption of
GICam image compressor can save 98.2% because of the
reduction of memory requirement. However, extending the
utilization of battery life for a capsule endoscope remains
an important issue. The memory access dissipates the most
power in GICam image compression. Therefore, in order to
achieve the target of extending the battery life, it is necessary
to consider how to efficiently reduce the memory access.

3. Analysis of Sharpness Sensitivity in
Gastrointestinal Images

3.1. The Distributions of Primary Colors in the RGB Color
Space. In the modern color theory [24, 25], most color
spaces in use today are oriented either toward hardware
design or toward product applications. Among these color
spaces, the RGB (red, green, blue) space is the most
commonly used in the category of digital image processing,
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Figure 1: The RGB color space.

especially, broad class of color video cameras, and we conse-
quently adopt the RGB color space to analyze the importance
of primary colors in the GI images. In the RGB color space,
each color appears in its primary spectral components of
red, green, and blue. The RGB color space is based on
a Cartesian coordinate system and is the cube shown in
Figure 1 in which, the differ colors of pixels are points on or
inside the cube based on the triplet of values (R, G, B). The
block-based image data can be sequentially outputted via
the proposed locally raster-scanning mechanism for this raw
image sensor. The reason for adopting a novel image sensor
without using generally conventional ones is to efficiently
save the size of buffer memory. Conventional raw image
sensors adopt the raster-scanning mechanism to output the
image pixels sequentially, but they need large buffer memory
to form each block-based image data before executing the
block-based compression. However, we only need a small
ping-pong type memory structure to directly save the block-
based image data from the proposed locally raster-scanning
raw image sensor. The structure of this raw image sensor
is shown in Figure 2(a), and the pixel sensor architecture
for the proposed image sensor is shown in Figure 2(b). In
order to prove the validity for this novel image sensor before
the fabrication via the Chung-Shan Institute of Science
and Technology, the chip of the 32-by-32 locally raster-
scanning raw image sensor was designed by full-custom
CMOS technology, and this chip is submitted to Chip
Implementation Center (CIC), Taiwan, for the fabrication.
Figures 3(a) and 3(b), respectively, show the chip layout and
the package layout with the chip specification. The advantage
of this novel CMOS image sensor can save the large area
of buffer memory. The size of buffer memory can be as
a simple ping-pong memory structure shown in Figure 10
while executing the proposed image algorithm, a novel block
coding.

Our research only focuses on developing the proposed
image compressor, and other components are implemented
by another research department for the GICam-II capsule
endocopy. Therefore, the format of the GI image used in
the simulation belongs to a raw image from the 512-by-
512 sensor designed by Chung-Shan Institute of Science
and Technology. In this work, we applied twelve GI images

captured shown in Figure 4 for test cases to evaluate the
compression technique. The distribution of GI image pixels
in the RGB color space is nonuniform. Obviously, the GI
image is reddish, and the pixels are amassed to the red
region. Based on the observation in the RGB color space, the
majority of red values are distributed between 0.5 and 1 while
most of the green and blue values are distributed between 0
and 0.5 for all tested GI images.

To further analyze the chrominance distributions and
variations in the RGB color space for each tested GI image,
two quantitative indexes are used to quantify these effects.
The first index is to calculate the average distances between
total pixels and the maximum primary colors in each GI
image, and the calculations are formulated as (1), (2), and
(3). First, (1) defines the average distance between total pixels
and the most red color (R), in which R(i, j) means the value
of red component of one GI image at (i, j) position and the
value of most red color (Rmax) is 255. In addition, M and N
represent the width and length for one GI image, respectively.
The M is 512, and the N is 512 for twelve tesed GI images in
this work. Next, (2) also defines the average distance between
total pixels and the most green color (G), and the value of the
most green one (Gmax) is 255. Finally, (3) defines the average
distance between total pixels and the most blue color (B), and
the value of the most blue color (Bmax) is 255. Table 1 shows
the statistical results of R, G, and B for all tested GI images.
From Table 1, the results clearly show that R has the shortest
average distance. Therefore, human eyes can be very sensitive
to the obvious cardinal ingredient on all surfaces of tested GI
images. Moreover, comparing G with B, G is shorter than B
because G contributes larger proportion in luminance.

We have
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The first index has particularly quantified the chromi-
nance distributions through the concept of average distance,
and the statistical results have also shown the reason the
human eyes can sense the obvious cardinal ingredient for all
tested GI images. Next, the second index is to calculate the
variance between total pixels and average distance, in order
to further observe the color variations in GI images, and
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Figure 2: (a) The structure of locally raster-scanning raw image sensor. (b) The pixel sensor architecture for the locally raster-scanning raw
image sensor.

the calculations are formulated as (4). Table 2 shows that the
average variation of red signal is 0.09, the average variance of
green one is 0.03, and the average variance of blue one is 0.02.
It signifies that the color information of red signal must be
preserved carefully more than the other two primary colors,
green and blue, for GI images because the dynamic range of
red signal is broader than the green and blue ones. In addi-
tion, the secondary is green signal, and the last is blue signal.

We have
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3.2. The Analysis of Sharpness Sensitivity to Primary Colors
for Gastrointestinal Images. Based on the analysis of RGB
color space, the importance of chrominance is quantitatively
demonstrated for GI images. Except for the chrominance,
the luminance is another important index because it can
efficiently represent the sharpness of an object. Equation (5)
is the formula of luminance (Y ) and the parameters a1, a2,
and a3 are 0.299, 0.587, and 0.114, respectively:

Y = a1× R + a2×G + a3× B. (5)

To efficiently analyze the importance of primary colors in the
luminance, the analysis of sensitivity is applied. Through the
analysis of sensitivity, the variation of luminance can actually
reflect the influence of each primary colors. Equation (6)

defines the sensitivity of red (S
Ri,j

Yi, j
), the sensitivity of green
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Figure 3: (a) The chip layout of the locally raster-scanning raw image sensor. (b) The package layout and the chip specification of the locally
raster-scanning raw image sensor.

Table 1: The analysis of average distance.

Average distance

Test picture ID R G B

1 0.58 0.80 0.82

2 0.55 0.74 0.79

3 0.54 0.81 0.86

4 0.55 0.76 0.81

5 0.66 0.82 0.85

6 0.66 0.84 0.87

7 0.59 0.82 0.88

8 0.68 0.81 0.83

9 0.55 0.80 0.85

10 0.53 0.81 0.84

11 0.53 0.81 0.86

12 0.62 0.80 0.85

Average 0.59 0.80 0.84

Table 2: The analysis of variance.

Variance of distance

Test picture ID VARR VARG VARB

1 0.08 0.02 0.02

2 0.11 0.05 0.03

3 0.10 0.03 0.02

4 0.10 0.04 0.02

5 0.07 0.02 0.01

6 0.08 0.02 0.01

7 0.09 0.02 0.01

8 0.06 0.02 0.02

9 0.09 0.03 0.01

10 0.10 0.03 0.02

11 0.10 0.03 0.02

12 0.10 0.04 0.02

Average 0.09 0.03 0.02
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Figure 4: The twelve tested GI images.
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(6)

After calculating the sensitivity of each primary color for

a GI image, the average sensitivity of red (SRY ), the average

sensitivity of green (SGY ), and the average sensitivity of blue

(SBY ) are calculated by (7) for each GI image. M and N
represent the width and length for a GI image, respectively.
Table 3 shows the average sensitivities of red, green, and blue
for all tested GI images. From the calculational results, the
sensitivity of blue is the slightest, and hence the variation of
luminance arising from the aliasing of blue is very invisible.
In addition to the sensitivity of blue, the sensitivity of red is
close to the one of green, and thus they both have a very close
influence on the variation of luminance.

We have
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(7)

To sum up the variance of chrominance and the sensitivity
of luminance, blue is the most insensitive color in the
GI images. Therefore, the blue component can be further
downsampled without significant sharpness degradation.
Moreover, comparing the red signal with the green signal,
they both have a very close influence on the variation
of luminance, because they have very close sensitivities.
However, the chrominance of red varies more than the
chrominance of green, and hence the information com-
pleteness of red has higher priority than the green. Because
the proposed compression coding belongs to the DCT-
based image coding, the coding is processed in the spatial-
frequency domain. To let the priority relationship between
red and green also response in the spatial-frequency domain,
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Table 3: The analysis of average sensitivities.

The sensitivity of primary colors in luminance

Test picture ID SRY SGY SBY

1 0.49 0.43 0.08

2 0.44 0.48 0.08

3 0.55 0.39 0.06

4 0.47 0.46 0.07

5 0.45 0.47 0.08

6 0.48 0.45 0.07

7 0.52 0.42 0.06

8 0.44 0.48 0.08

9 0.51 0.43 0.06

10 0.54 0.40 0.06

11 0.55 0.39 0.06

12 0.49 0.44 0.07

Average 0.49 0.44 0.07

the analysis of alternating current (AC) variance will be
accomplished to demonstrate the inference mentioned above
in the next subsection.

3.3. The Analysis of AC Variance in the 2D DCT Spatial
Frequency Domain for Gastrointestinal Images. According to
the analysis results from the distributions of primary colors
in the RGB color space and the proportion of primary
colors in the luminance for GI images, the red signal plays
a decisive role in the raw image. The green signal plays
a secondary role, and the blue signal is very indecisive.
To verify the validity of observation mentioned above, we
first use the two-dimensional (2D) 8 × 8 discrete cosine
transform (DCT) to transfer the spatial domain into the
spatial-frequency domain for each of the components, R,
G1, G2, and B. The 2D 8 × 8 DCT transformation can be
perceived as the process of finding for each waveform in the
2D 8 × 8 DCT basic functions and also can be formulated
as (8) for each 8 × 8 block in R, G1, G2, and B subimages,
respectively. M and N represent the width and length for
one GI image, respectively. k, l = 0, 1, . . . , 7, and ykl is the
corresponding weight of DCT basic function in the kth row
and the lth column. P represents the total number of pictures
and B represents the total number of 8 × 8 blocks in the GI
images.

We have

Rpb(kl) = c(k)
2

7∑
i=0

⎡
⎣ c(l)

2

7∑
j=0

ri j cos

((
2 j + 1

)
lπ

16

)⎤
⎦

× cos
(

(2i + 1)kπ
16

)
,

Gpb(kl) = c(k)
2

7∑
i=0

⎡
⎣ c(l)

2

7∑
j=0

gi j cos

((
2 j + 1

)
lπ

16

)⎤
⎦

× cos
(

(2i + 1)kπ
16

)
,

(a)

Frequency

(b)

Frequency

(c)

Figure 5: (a) Zigazg scanning for a 8 × 8 block (b) 1D signal
distribution after zigzag scanning order. (c) The symmetric type of
frequency for the 1D signal distribution.
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(8)

Next, we calculate the average energy amplitude of all
alternating current (AC) coefficients of all tested GI images,
in order to observe the variation of energy for each of the
components R, G1, G2, and B, and the calculations are
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Figure 6: (a) Spatial-frequency distribution converting into one dimension for G1 component. (b) Spatial-frequency distribution converting
into one dimension for G2 component. (c) Spatial-frequency distribution converting into one dimension for R component. (d) Spatial-
frequency distribution converting into one dimension for B component.
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Figure 7: The GICam-II image compression algorithm.
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formulated as

AR(kl) = 1
P

P∑
p=1

[
B−1∑
b=0

∣∣∣Rpb(kl)
∣∣∣
]

,

AG(kl) = 1
P

P∑
p=1

[
B−1∑
b=0

∣∣∣Gpb(kl)
∣∣∣
]

,

AB(kl) = 1
P

P∑
p=1

[
B−1∑
b=0

∣∣∣Bpb(kl)
∣∣∣
]
.

(9)

After calculating the average energy amplitude, we convert
the 2D DCT domain into one-dimensional (1D) signal
distribution in order to conveniently observe the variation
of frequency. Consequently, a tool for transforming two-
dimensional signals into one dimension is needed. There
are many schemes to convert 2D into 1D, including row-
major scan, column-major scan, peano-scan, and zigzag
scan. Majority of the DCT coding schemes adopt zigzag scan
to accomplish the goal of conversion, and we use it here.
The benefit of zigzag is its property of compacting energy to
low-frequency regions after discrete cosine transformation.
The arrangement sorts the coefficients from low to high
frequency, and Figure 5(a) shows the zigzag scanning order
for 8× 8 block. Figure 5(b) shows the 1D signal distribution
after zigzag scanning order, and Figure 5(c) shows the
symmetric type of frequency for the 1D signal distribution.

Through the converting method of Figure 5, the 1D
signal distributions of each R, G1, G2, B component are
shown in Figure 6. The variances of frequency are 1193, 1192,
1209, and 1244 for G1, G2, R, and B, respectively, and the
variance of R is very close to the ones of G1 and G2 from
the result. However, the data of G are twice the data of R
based on the Bayer pattern and hence, the data of G can
be reduced to half at the most. Based on the analysis result
mentioned above, the R component is very decisive for GI
images, and it needs to be compressed completely. However,
the G1, G2, and B components do not need to be compressed
completely because they are of less than the R component.
Therefore, in order to efficiently reduce the memory access to
expend the battery life of capsule endoscopy, the data of G1,
G2, and B components should be appropriately decreased
according to the proportion of their importance prior to the
compression process. In this paper, we successfully propose
a subsample-based GICam image compression algorithm,
and the proposed algorithm firstly uses the subsample
technique to reduce the incoming data of G1, G2, and
B components before the compression process. The next
section will describe the proposed algorithm in detail.

4. The Subsample-Based GICam Image
Compression Algorithm

Figure 7 illustrates the GICam-II compression algorithm.
For a 512 × 512 raw image, the raw image firstly divides
into four parts, namely, R, G1, G2, and B components and
each of the components has 256 × 256 pixels. For the R
component, the incoming image size to the 2D DCT is 256×
256 × 8 bits, where the incoming image data are completely
compressed because of the importance itself in GI images.

(a) (b)

Figure 8: (a) 2 : 1 subsample pattern. (b) 4 : 1 subsample pattern.

Except for the R component, the GICam-II algorithm can
use an appropriate subsample ratio to pick out the necessary
image pixels into the compression process for G1, G2, and
B components, and (10) and (11) are formulas for the
subsample technique. SM16:2m is the subsample mask for
the subsample ratio 16-to-2m as shown in (10), and the
subsample mask SM16:2m is generated from basic mask as
shown in (11). The type of subsample direction is block-
based, when certain positions in the subsample mask are
one, their pixels in the same position will be compressed,
or otherwise they are not processed. For the G1 and G2
components, the low subsample ratio must be assigned,
considering their secondary importance in GI images. Thus,
the 2 : 1 subsample ratio is candidate one, and the subsample
pattern is shown in Figure 8(a). Finally, for the B component,
the 4 : 1 subsample ratio is assigned, and the subsample
pattern is shown in Figure 8(b). In the GICam-II image
compression algorithm, the 8 × 8 2D DCT is still used to
transfer the R component. However, the 4 × 4 2D DCT is
used for G1 and G2 components because the incoming data
are reduced by subsample technique. Moreover, the G quan-
tization table is also modified and shown in Figure 9. Finally,
the B component is directly transmitted, not compressed,
after extremely decreasing the incoming data. Because of the
noncompression for the B component, the 8 × 8 and 4 ×
4 zigzag scanning techniques are added into the GICam-II
to further increase the compression rate for R, G1, and G2
components before entering the entropy encoding. In the
GICam-II, the Lempel-Ziv (LZ) coding [23] is also employed
for the entropy coding because of nonlook-up tables and low
complex computation.

We have

SM16:2m
(
i, j
)=BM16:2m

(
i mod 4, j mod 4

)
m = 1, 2, 3, 4, 5, 6, 7, 8,

(10)

BM16:2m(k, l)=

⎡
⎢⎢⎢⎢⎣
u(m− 1) u(m− 5) u(m− 2) u(m− 6)

u(m− 7) u(m− 3) u(m− 8) u(m− 4)

u(m− 2) u(m− 5) u(m− 1) u(m− 6)

u(m− 7) u(m− 3) u(m− 8) u(m− 4)

⎤
⎥⎥⎥⎥⎦,

where u(n) is a step function,

u(n) =
{

1, for n ≥ 0

0, for n < 0.
(11)
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5. The Architecture of Subsample-Based GICam
Image Compressor

Figure 10 shows the architecture of the GICam-II image
compressor, and it faithfully executes the proposed GICam-
II image compression algorithm shown in Figure 7. The
window size, w, and the maximum matching length, l,
parameters for LZ77 encoder can be loaded into the param-
eter register file via a serial interface after the initial setting
of the hardware reset. Similarly, coefficients of 2D DCT
and parameters of initial setting for all controllers shown in
Figure 10 can be also loaded into the parameter register file.
The GICam-II image compressor processes the image in the
block order of G1, R, G2, and B. Because the data stream
from the image sensor is block based, the GICam-II image
compressor adopts the structure of ping-pong memory to
hold each block of data. The advantage of using this structure
is the high parallelism between the data loading and data
processing.

When the GICam-II image compressor begins, the
proposed architecture first loads the incoming image in
the block order of G1, R, G2, and B from the image
sensor and passes them with the valid signal control via the
Raw-Data Sensor Interface. The Raw-Data Sensor Interface
is a simple register structure with one clock cycle delay.
This design absolutely makes sure that no any glue-logic
circuits that can affects the timing of logic synthesis exists
between the raw image sensor and the GICam-II image
compressor. The Downsample Controller receives the valid
data and then selects the candidate subsample ratio to sample
the candidate image data in the block order of G1, R,
G2, and B. The Ping-Pong Write Controller can accurately
receive the data loading command from the Downsample
Controller and then push the downsample image data into
the candidate one of the ping-pong memory. At the same
time, the Ping-Pong Read Controller pushes the stored
image data from another memory into the Transformation
Coding. The Ping-Pong Write Controller and the Ping-
Pong Read Controller will issue an announcement to the
Ping-Pong Switch Controller, respectively, while each data
access is finished. When all announcement arrives in turn,
the Ping-Pong Switch Controller will generate a pulse-type
Ping-Pong Switching signal, one clock cycle, to release each
announcement signal from the high level to zero for the Ping-
Pong Write Controller and the Ping-Pong Read Controller.
The Ping-Pong Switch Counter also uses the Ping-Pong
Switching signal to switch the read/write polarity for each
memory in the structure of the Ping-Pong Memory.

The Transformation Coding consists of the 2D DCT and
the quantizer. The goal of the transformation coding is to
transform processing data from the spatial domain into the
spatial frequency domain and further to shorten the range
in the spatial frequency domain before entropy coding in
order to increasing the compression ratio. The 2D DCT
alternatively calculates row or column 1D DCTs. The 1D
DCT is a multiplierless implementation using the algebraic
integer encoding [14]. The algebraic integer encoding can
minimize the number of addition operations. As regards the
RG quantizer, the GICam-II image compressor utilizes the

barrel shifter for power-of-two products. The power-of-two
quantization table shown in Figure 9 can reduce the cost of
multiplication while quality degradation is quite little. In
addition, the 8-by-8 memory array between the quantizer
and the LZ77 encoder is used to synchronize the operations
of quantization and LZ77 encoding. Since the frame rate of
GICam-II image compressor is 2 frames/second, the 2D DCT
can be folded to trade the hardware cost with the computing
speed, and the other two data processing units, quantization
and LZ77 encoder, can operate at low data rate. Due to
noncompression for the B component, the B component
is directly transmitted from the ping-pong memory, not
compressed. Finally, the LZ77 encoder is implemented by
block-matching approach and the details of each processing
element and overall architecture have been also shown in
[14].

6. Experimental Results

We have particularly introduced the method of efficiently
decreasing the incoming data with the subsample technique
in the GICam-II compression algorithm. The performance of
the compression rate, the quality degradation, and the ability
of power saving will then be experimentally analyzed using
the GICamm-II compressor.

6.1. The Analysis of Compression Rate for GI Images. In
this paper, twelve GI images are tested and shown in
Figure 4. First of all, the target compression performance
of the GICam-II image compression is to reduce image
size by at least 75%. To meet the specification, we have to
exploit the cost-optimal LZ coding parameters. There are
two parameters in the LZ coding to be determined: the
window size, w, and the maximum matching length, l. The
larger the parameters are, the higher the compression ratio
will be; however, the implementation cost will be higher. In
addition, there are two kinds of LZ codings in the GICam-II
compressor; one is R(w, l) for R component, and the other
is G(w, l) for G1 and G2 components. We set the values
of parameters by using a compression ratio of 4 : 1 as the
threshold. Our goal is to determine the minimum R(w, l) and
G(w, l) sets under the constraint of 4 : 1 compression ratio.

The compression ratio (CR) is defined as the ratio
of the raw image size to the compressed image size and
formulated as (12). The measure of the compression ratio is
the compression rate. The formula of the compression rate
is calculated by (13). The results in Figure 11 are shown by
simulating the behavior model of GICam-II compressor; it
is generated by MATLAB. As seen in Figure 11, simulating
with twelve endoscopic pictures, (32, 32) and (16, 8) are the
minimum R(w, l) and G(w, l) sets to meet the compression
ratio requirement. The subsample technique of the GICam-
II compressor initially reduces the input image size by
43.75% ((1−1/4−(1/4∗1/2∗2)−(1/4∗1/4))∗100%)before
executing the entropy coding, LZ77 coding. Therefore, the
overall compression ratio of GICam-II compressor minus
43.75% is the compression effect of LZ77 coding that
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Figure 9: (a) The modified R quantization table. (b) The modified G quantization table.
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Figure 10: The GICam-II image compressor.

combines with the quantization, and the simulation results
are shown in Figure 12.

This research paper focuses on proposing a subsample-
based low-power image compressor for capsule gastrointesti-
nal endoscopy. This obvious reddish characteristic is due to
the slightly luminous intensity of LEDs and the formation of
image in the capsule gastrointestinal endoscopy. The GICam-
II compression algorithm is motivated on the basis of this
reddish pattern. Therefore, we do not consider compressing
other endoscopic images except for gastrointestinal images
to avoid the confusion of topic for this research. However,
general endoscopic images generated via a wired endoscopic

take on the yellow characteristic due to the vividly luminous
intensity of LEDs. The yellow pattern mainly consists of red
and green, and it also complies with the color sensitivity
result in this research work. Therefore, I believe that the
proposed GICam-II still supports good compression ratio for
general endoscopic images.

We have

Compression Ratio (CR) = bits before compression
after compression

,

(12)

Compression Rate =
(

1− CR−1
)
× 100%. (13)
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Figure 11: The compression performance of the GICam-II image
compressor.

6.2. The Analysis of Compression Quality for GI Images. Using
(32, 32) and (16, 8) as the parameter sets, in Table 4, we can
see the performance in terms of the quality degradation and
compression ratio. The measure of compression quality is
the peak signal-to-noise ratio of luminance (PSNRY). The
calculation of PSNRY is formulated as (14), where MSE
is the mean square error of decompressed image and is
formulated as (15). In (15), αi j is the luminance value of
original GI image, and βi j is the luminance value of decom-
pressed GI image. The result shows that the degradation of
decompressed images is quite low while the average PSNRY
is 40.73 dB. Figure 13 illustrates the compression quality of
decoded test pictures. The difference between the original
image and the decompressed image is invisible.

We have

PSNRY = 10 log10

(
2552

MSE

)
, (14)

MSE =
(

1
M ×N

)M−1∑
i=0

N−1∑
j=0

(
αi j − βi j

)2
. (15)

To demonstrate the validity of decompressed images, five
professional gastroenterology doctors from the Division of
Gastroenterology, Taipei Medical University Hospital, are
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Figure 12: The compression performance of LZ77 coding that
combines with the quantization in the GICam-II image compressor.

invited to verify whether or not the decoded image quality
is suitable for practical diagnosis. The criterion of evaluation
is shown in Table 5. The score between 0 and 2 means that
the diagnosis is affected, the score between 3 and 5 means
that the diagnosis is slightly affected, and the score between
6 and 9 means that the diagnosis is not affected. According
to the evaluation results of Figure 14, all decoded GI images
are suitable for practical diagnosis because of high evaluation
score, and the diagnoses are absolutely not affected, except
for the 5th and 8th decoded images. The degrees of diagnoses
are between no affection and extremely slight affection for
the 5th and the 8th decoded images because only two doctors
subjectively feel that their diagnoses are slightly affected.
However, these two decoded images are not mistaken in
diagnosis for these professional gastroenterology doctors.
Therefore, the PSNRY being higher than 38 dB is acceptable
according to the objective criterion of gastroenterology
doctors.

6.3. The Analysis of Power Saving. To validate the GICam-
II image processor, we used the FPGA board of Altera
APEX 2100 K to verify the function of the GICam-II image
processor, and the prototype is shown in Figure 15. After
FPGA verification, we used the TSMC 0.18 μm 1P6M pro-
cess to implement the GICam-II image compressor. When
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Figure 13: Demosaicked GI images.
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Figure 14: The evaluation results of professional gastroenterology
doctors.

operating at 1.8 V, the power consumption of logic part
is 3.88 mW, estimated by using PrimePower. The memory
blocks are generated by Artisan memory compiler and
consume 5.29 mW. The total power consumption is 9.17 mW
for the proposed design. When comparing the proposed
GICam-II image compressor with our previous GICam one
in Table 6, the power dissipation can further save 38.5%
under the approximate condition of quality degradation
and compression ratio because of the reduction of memory
requirement for G1, G2, and B components.

Table 4: The simulation results of twelve tested pictures.

Test picture ID PSNRY (dB) Compression rate (%)

1 40.76 82.36

2 41.38 82.84

3 39.39 80.62

4 38.16 79.70

5 42.56 84.25

6 41.60 83.00

7 41.03 82.74

8 43.05 84.63

9 40.21 82.11

10 40.36 81.84

11 39.39 80.66

12 40.85 82.60

Average 40.73 82.28

The GICam-II compressor has poorer image recon-
struction than JPEG and our previous GICam one because
the GICam-II compressor uses the subsample scheme to
downsample green and blue components according to the
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Table 5: The criterion of evaluation.

Score Description

0∼2 Diagnosis is affected

3∼5 Diagnosis is slightly affected

6∼9 Diagnosis is not affected

Figure 15: The FPGA prototype of the GICam-II image compres-
sor.

Table 6: The comparison result with previous GICam works.

JPEG designed
by [26]

GICam image
compressor [14]

Proposed
GICam-II

image
compressor

Average PSNRY 46.37 dB 41.99 dB 40.73 dB

Average
compression rate

82.20% 79.65% 82.28%

Average power
dissipation

876 mW 14.92 mW 9.17 mW

2 : 1 and the 4 : 1 subsample ratios. The raw data before
compression have lost some raw data information. Hence,
the decoded raw data should be reconstructed (the first
interpolation) before reconstructing the color images (the
second interpolation). Using two-level interpolations to
reconstruct the color images has poorer image quality
than one-level interpolation. Fortunately, the decoded image
quality using GICam-II compressor can be accepted and
suitable for practical diagnosis, and the evaluation results of
professional gastroenterology doctors can be shown in the
last subsection.

Finally, we compare the GICam-II image processor with
other works, and the comparison results are shown in
Table 7. According to the comparison results, our proposed
GICam-II image compressor has lower area and lower
operation frequency. It can fit into the existing designs.

Table 7: The comparison results with existing works.

Area
Frequency

(MHz)
Power
(mW)

Supply
voltage

(V)

GICam image
compressor [14]

390 k 12.58
14.92

(evaluated)
1.8

Xie et al. [15]∗ 12600 k 40.0
6.2

(measured)
1.8

Wahid et al. [16] 325 k 150
10

(evaluated)
1.8

Chen et al. [17]∗ 11200 k 20
1.3

(measured)
0.95

Proposed
GICam-II image
compressor

318 k 7.96
9.17

(evaluated)
1.8

∗
Includes analog and transmission circuit and SRAM.

7. Conclusion

In order to further extend the battery life of capsule endo-
scope, this paper mainly focuses on a series of mathematical
statistics to systematically analyze the color sensitivity in GI
images from the RGB color space domain to the 2D DCT spa-
tial frequency domain. According to the analysis results, an
improved ultralow-power subsample-based GICam image
compression processor is proposed for capsule endoscope or
swallowable imaging capsules. We make use of the subsample
technique to reduce the memory requirements of G1, G2,
and B components according to the analysis results of DC/AC
coefficients in 2D DCT domain. As shown in the simulation
result, the proposed image compressor can efficiently save
38.5% more power consumption than previous GICam one
[14] and can efficiently reduce image size by 75% at least
for each sampled gastrointestinal image. Therefore, video
sequences totally reduce size by 75% at least. Furthermore,
the proposed image compressor has lower area and lower
operation frequency according to the comparison results. It
can fit into the existing designs.
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