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Interactive musical systems require real-time, low-latency, accurate, and reliable event detection and classification algorithms.
In this paper, we introduce a model-based algorithm for detection of percussive events and test the algorithm on the detection
and classification of different percussive sounds. We focus on tuning the algorithm for a good compromise between temporal
precision, classification accuracy and low latency. The model is trained offline on different percussive sounds using the expectation
maximization approach for learning spectral templates for each sound and is able to run online to detect and classify sounds from
audio stream input by a Hidden Markov Model. Our results indicate that the approach is promising and applicable in design and
development of interactive musical systems.

1. Introduction

Percussion instruments traditionally provide the rhythmic
backbone in music. In the past few years, their automatic
detection and classification has been studied in the context
of music information retrieval for numerous purposes,
including metrical analysis, database labeling and searches,
automatic transcription, and interactive musical systems.
Recently, we have witnessed an increase in the number of
interactive applications built around sound detection and
classification algorithms, which has been enabled by the
increase in computational power of computers and appli-
ances. Many games, toys, and educative applications exploit
sophisticated signal processing as part of the interactive
system. However, while the computational power enables the
use of more and more complex algorithms, the applications
still favor algorithmic simplicity and demand low-latency
solutions in order to make the interaction fluent.

We explore the domain of realtime automatic detection
and labeling of percussive sounds for interactive systems.
These systems require an efficient and reliable low-level
method for sound analysis. Our solution to the problem
is a probabilistic model-based algorithm, which efficiently

detects and labels percussive events. While many previous
algorithms have been designed for a particular set of
instruments or a specific application, our solution is generic;
it can be retrained for any desired sound palette and fitted to
numerous different applications. As examples, we consider
rhythmic tutoring systems, which instruct the user to learn
new rhythms, and interactive accompaniment reacting to
the user’s playing. We demonstrate the performance of
the algorithm on different unpitched percussive sounds,
including hand clapping and Turkish percussive instruments.
The realization of a real-time object capable of labeling the
events in an audio stream is discussed, with special attention
to its applicability in interactive systems.

The paper is structured as follows. In Section 2, a review
of related work related to low-level sound detection and
labeling and to interactive musical systems is presented.
Sections 3 and 4 summarize the proposed model-based
technique. Experiments and results with different percussive
sounds are discussed in the two subsequent sections, starting
with hand clap sounds in Section 5 and followed by
percussive instruments in Section 6. Section 7 discusses the
implementation of the proposed technique as a module for
real-time audio signal processing environments. Finally, in
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Section 8, we discuss the potential musical applications that
can make use of the method, followed by conclusions in
Section 9.

2. RelatedWork

Sound recognition in music information retrieval has largely
focused on pitched instruments, but automatic detection
and labeling of unpitched percussive instruments has started
to gain attention as well especially related to automatic
music transcription [1]. The vast majority of related research
concentrates on offline methods, as automatic transcription
and audio database queries have less real-time constraints
than interactive musical systems. For interactive systems, also
some online methods and applications have been proposed.
In this section, we summarize the state of art related to
detection and labeling of unpitched percussion. For a more
comprehensive review in the context of automatic music
transcription, see [1].

The methods applied for sound detection and classifi-
cation can roughly be grouped into methods with separate
steps for onset detection and classification, and methods
that combine detection and classification into a single
technique. Details of implementations vary a lot, from
decision tree based techniques to sophisticated probabilistic
machine learning algorithms. Some techniques utilize lots of
preprocessing to extract various temporal or spectral features
from the audio to be used in the classification, while other
methods emphasize the classification step. A review of a set of
classification techniques for isolated percussion sounds has
been presented by Herrera et al. [2].

The mainstream research on detection of percussive
sounds has focused on a limited sound palette, that is,
tracking the drum sounds in western popular music for
automatic transcription or audio database annotation. Zils et
al. [3] approached the problem with an analysis-by-synthesis
technique to track snare drum and bass drum sounds in
polyphonic music. Yoshii et al. [4] based their AdaMast
algorithm for the same problem on template matching and
adaptive spectral templates of the drum sounds, whereas
Steelant et al. [5] applied high-dimensional feature vectors
and Support Vector Machines (SVMs). SVMs were also
applied by Tanghe et al. [6], whose experiment included hi-
hat sounds along bass and snare drum. While some of these
techniques may be efficient enough to be run in real time, no
results on real time performance were reported.

The AdaMast algorithm of Yoshii et al. [4] was later
applied in an intelligent instrument equalizer INTER:D [7].
The system works as an active music listening feature in a
music player, enabling the user to cut or boost snare and bass
drum levels or to replace their timbres with other timbres.
The system has been reported to work real-time and relies on
the AdaMast template matching and adaptation algorithm
for low-level drum event detection from polyphonic mix.

As a deviation from western popular music instruments,
Gillet and Richard [8] have examined automatic labeling of
the sounds of the North Indian percussion instrument Tabla.
Their approach consists of three steps. First, an envelope
extraction and onset detection technique is used to segment

the audio, each segment including a single stroke. After
extracting rhythmic information by using beat detection
techniques, they train a Gaussian Mixture Model (GMM)
which approximated the power spectra of the tabla signals
with four Gaussians. They finally apply a classification
scheme based on aHiddenMarkovModel by using the GMM
parameters as feature vectors. Overall accuracy of 94% is
reported for real-time transcription of tabla performances.

Paulus and Klapuri have approached the labeling of
percussive events with a model-based technique on several
occasions. In [9], they propose a method for detection
and labeling of arbitrary percussive sounds. Their technique
detects event onsets and estimates themusical meter and uses
this information to determine temporal locations for feature
extraction and to inform a probabilistic model. Several
temporal, spectral, and cepstral features are computed. The
features are clustered by a fuzzy K-means algorithm, in
which the number of clusters is set manually. The temporal
locations of clusters are quantized on a metrical grid. The
probabilistic model provides a mapping between the feature
clusters and event labels.

Recently, Paulus and Klapuri have proposed an HMM-
based drum sound detection method with a joint technique
for event segmentation and recognition in polyphonicmusic,
that is, without a separate onset detection step [10]. After
applying a simple sinusoid-plus-residual model to the audio
signal, they use the residual signal in order to circumvent
the problems imposed by polyphony. Then Mel-frequency
cepstral coefficients (MFCCs) and their first-order deriva-
tives are used as acoustic features. They apply HMMs in
two different ways: in the first, they model the combinations
of the target drums, whereas in the second, they use
different, detector-like HMMs for each target drum. By
exploring dimensionality reduction and acoustic adaptation
techniques, they report 75% accuracy on polyphonic audio
recordings.

Considering early real-time detectors for percussive
sounds, Puckette et al. [11] have developed an object called
bonk∼ for Max/MSP and Pd software platforms. bonk∼

utilizes bounded-Q transform to decompose the incoming
audio signal into frequency bands, computes the signal
power on each band for detection, and can be trained to
recognize sounds based on template matching. The object
has been used in numerous real-time applications built
on Max/MSP and Pd, including, for example, interactive
accompaniment [12], synchronizing an electronic sequencer
with a live drummer [13], and a rhythmic tutoring system
[14].

The anthropomorphic robotic percussionist Haile [12] is
an example of using real-time percussion recognition for an
interactive accompaniment system. The robot listens to the
user’s playing of a drum and according to the analysis of the
performance, can join the user in different ways, for example
bymimicking the user’s playing or providing improvisational
solo patterns. The system incorporates a music perception
engine, which requires accurate low-level event detection for
high-level analysis.

B-Keeper [13] is a beat-tracking system that enables
rhythmic interaction between a drummer and Ableton Live.
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The system tracks tempo from the kick drum and uses
this to control the tempo of sequencer output. This enables
live performances without a click track. The low-level event
detection with bonk∼ is in this case easy, since the input
signal is monophonic, that is, the kick drum sound, and
requires no classification step.

Rhythmic tutoring with an interactive system has been
studied by Jylhä et al. in the context of Flamenco [14]. In
rhythmic tutoring, the system needs to be able to distinguish
between different user inputs, for example, different types of
drum strokes, in order to be able to make high-level analysis
on the user’s performance and give feedback to the user.
While this kind of tutoring systems is still rare, they provide
an interesting domain for research and applications.

For all these interactive examples, an algorithm that is
capable of accurate and reliable low-level detection is crucial.
In the following sections, we aim at tackling this problem
with a novel, model-based algorithm that is reliable,
retrainable according to needs of any given interactive
system, and meeting the real-time requirements of fluent
interaction.

3. Probabilistic Modeling of Percussive Sounds

In [15], Şimşekli and Cemgil presented two probabilistic
models for online pitch tracking. Since the models are
template based and do not heavily depend on the application,
it is fairly easy to apply the models to percussive events.
Instead of detecting pitch labels from streaming audio data,
in this study, we adapt one of the probabilistic models to
percussive event tracking and aim at inferring a predefined
set of short, percussive events. Our goal is low latency
without compromising the detection quality.

Our approach to this problem is model based. We
construct a probabilistic generative model which relates
a latent event label to the actual audio recording. The
audio signal is subdivided into frames and represented by
their magnitude spectrum, which is calculated with discrete
Fourier transform.We define xv,τ as the magnitude spectrum
of the audio data with frequency index ν and time frame
index τ, where ν ∈ {1, 2, . . . ,F} and τ ∈ {1, 2, . . . ,T}.

For each time frame τ, we define an indicator variable rτ
on a discrete state space Dr , which determines the label we
are interested in. In our case, Dr consists of event labels such
as {hand clap, finger snap,. . ., attack of a conga hit, sustain
of a conga hit, release of a conga hit,. . .}. The indicator
variables rτ are hidden since we do not observe them
directly.

In our model, the main idea is that each event has a
certain characteristic spectral shape which is rendered by a
specific hidden scaling variable, vτ . The spectral shapes that
we denote as spectral templates are denoted by tν,i. The ν
index is again the frequency index and the index i indicates
the event labels. Here, i takes values between 1 and I , where
I is the number of different spectral templates. The scaling
variables vτ define the overall amplitude factor, by which the
whole template is multiplied. An overall sketch of the model
is given in Figure 1.

rτ = i

i

tν,i

ντ

xν,τ

τ

ν

ν

Figure 1: The block diagram of the probabilistic model. The
indicator variables rτ define the template to be used. The chosen
template is multiplied by the scaling parameter vτ in order to obtain
the magnitude spectrum, xν,τ .

4. HiddenMarkovModel

A Hidden Markov Model (HMM) is a well-known statistical
model which is basically a Markov chain observed in
noise. We utilize HMM as an inference model in our
method, that is, for labeling audio frames as relating to
hidden variables. Here the underlying Markov chain is not
observable, therefore it is hidden. What is observable in
an HMM is a stochastic process, which is assumed to be
generated from the hidden Markov chain [16]. In our case
rτ form the Markov chain and xν,i are the noisy observations.
The probabilistic model is defined as follows:

r0 ∼ p(r0)

rτ | rτ−1 ∼ p(rτ | rτ−1)
vτ ∼ G(vτ ; av, bv)

xν,τ | vτ , rτ ∼
I∏

i=1
PO

(
xν,τ ; tν,ivτ

)[rτ=i].

(1)

Here, [x] = 1 if x is true, [x] = 0 otherwise, and the
symbols G and PO represent the Gamma and the Poisson
distributions respectively, where

G(x; a, b) = exp
(
(a− 1) log x − bx − logΓ(a) + a log(b)

)

PO
(
y; λ
) = exp

(
y log λ− λ− logΓ

(
y + 1

))
,

(2)

where Γ is the Gamma function.
In some recent work on music information retrieval,

Poisson observation model was used in the Bayesian non-
negative matrix factorization (NMF) models [17]. Since our
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probabilistic models are similar to NMF models, we choose
the Poisson distribution as the observation model. We also
choose Gamma prior on vτ to preserve conjugacy and make
use of the scaling property of the Gamma distribution. The
conjugate prior grants us an analytic closed-form solution
to the posterior; otherwise numerical integration would be
required.

Moreover, we choose Markovian prior on the indicator
variables, rτ which means rτ depends only on rτ−1. We
use one single state in order to represent silence and
nonresonant events (e.g., hand claps) and we use three
states to represent resonant events (e.g., hand drums): one
state for the attack part, one for the sustain part, and one
for the release part. Figure 2 shows the graphical model
of the three-state HMM, which provides an intuitive way
to represent the conditional independence structure of the
probabilistic model. In the model, the nodes correspond to
probability distributions of model variables, and edges to
their conditional dependencies. The joint distribution can be
rewritten by making use of the directed acyclic graph

p
(
r1:T , v1:T , x1:F,1:T

)

=
T∏

τ=1
p
(
rτ | pa(rτ)

)
p
(
vτ | pa(vτ)

)

×
F∏

ν=1
p
(
xν,τ | pa

(
xν,τ
))
,

(3)

where pa(χ) denotes the parent nodes of χ. Figure 3 shows the
Markovian structure of the indicator variables inmore detail.

The observation model assumes that the subsequent
frames are conditionally independent from each other given
the latent indicators rτ . Hence, to conform with this assump-
tion, we calculate the spectra xτ on nonoverlapping frames.
In practice, one could also compute the spectrum using
overlapping frames, but then the conditional independence
assumption would not be exactly valid.

4.1. Inference. Inference is a fundamental issue in probabilis-
tic modeling. It is characterized by the question “what can
be the hidden variables as we have some observations?” [16].
For online processing, we are interested in the computation
of the following posterior quantity, also known as the
filtering density (Note that we use MATLAB’s colon operator
syntax in which (1 : T) is equivalent to [1, 2, 3, . . . ,T] and
x1:T = {x1, x2, . . . , xT})

p
(
rτ | x1:F,1:τ

)
, (4)

that is, given an observation, what is the probability of
the class labels for that observation? Similarly, we can also
compute the most likely label trajectory over time given all
the observations

r∗1:T = argmax
r1:T

p
(
r1:T | x1:F,1:T

)
. (5)

This latter quantity requires that we accumulate all data and
process in a batch fashion. There are also other quantities,

rτ−1 rτ

vτ−1

FF

xν,τ−1 xν,τ

vτ

Figure 2: Graphical model of the Hidden Markov Model. This
graph visualizes the conditional independence structure between
the random variables and allows the joint distribution to be
rewritten by utilizing (3). In the model, the nodes correspond to
probability distributions of model variables, and edges to their
conditional dependencies. Note that we use the plate notation for
the observed variables where F distinct nodes (i.e., xν,i where ν ∈
{1, . . . ,F}) are grouped and represented as a single node in the
graphical model. In this case, F is the number or frequency bins.

atk sus rel

Figure 3: The state transition diagram of the indicator variable rτ .
This figure visualizes the possible states that rτ can be in given the
previous state rτ−1. Here atk, sus, and rel refer to the attack, sustain,
and release parts of an event, respectively. The first black square can
be either the silence or a release state. Similarly the second black
square can be either a silence or an attack state. For example, given
that rτ−1 is the release state of event Ei, then rτ can be either the
same state as rτ−1 (i.e., Ei resumes) or it can be the silence state (i.e.,
Ei ends) or it can be the attack state of a percussive event which is
defined in the model (i.e., a new event starts). Similarly, rτ cannot
be a sustain state if given that rτ−1 is a release state.

called “fixed lag smoothers” that compromise between those
two extremes. For example, at time τ, we can compute

p
(
rτ | x1:F,1:τ+L

)

r∗τ = argmax
rτ

p
(
r1:τ+L | x1:F,1:τ+L

)
,

(6)

where L is a specified lag, and it determines the tradeoff
between the accuracy and the latency. By accumulating a
few observations from the future, the detection at a specific
frame can be eventually improved by introducing a slight
latency. This way, we do not need to accumulate all data
before inference, while still obtaining a smoothed estimate
for the hidden variable posterior.

In order to simplify the inference scheme, we can
integrate out analytically the scaling variables vτ . It is easy
to check that once we do this, provided the templates tν,i are
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already known, the model reduces to a standard HMM with
a Compound Poisson observation model as shown below

p
(
x1:F,τ | rτ = i

)

=
∫
dvτ exp

⎛
⎝

F∑

ν=1
logPO

(
xν,τ ; vτtν,i

)
+ logG(vτ ; av, bv)

⎞
⎠

= exp

⎛
⎝logΓ

⎛
⎝

F∑

ν=1
xν,τ + av

⎞
⎠ +

F∑

ν=1
xν,τ tν,i −

F∑

ν=1
logΓ

(
xν,τ + 1

)

−
⎛
⎝

F∑

ν=1
xν,τ + av

⎞
⎠ log

⎛
⎝

F∑

ν=1
tν,i + bv

⎞
⎠ + av log bv−logΓ(av)

⎞
⎠.

(7)

Since we have standard HMM from now on, we can run
the well-known forward algorithm in order to compute the
filtering density or fixed-lag versions with a few backward
steps. Also we can estimate the most probable state sequence
by running the Viterbi algorithm. A benefit of having a
standard HMM is that the inference algorithm can be made
to run very fast. This lets the inference scheme to be
implemented in realtime without any approximation [18].

4.2. Training and Parameter Learning. Since we have con-
structed our inference algorithms with the assumption of
the spectral templates tν,i to be known, they have to be
learned at the beginning. In this study, we utilize the
Expectation-Maximization (EM) algorithm for this purpose.
This algorithm iteratively maximizes the log-likelihood as
follows:

E-step:

q(r1:T , v1:T)
(n) = p

(
r1:T , v1:T | x1:F,1:T , t(n−1)1:F,1:I ,

)
(8)

M-step:

t(n)1:F,1:I = argmax
t1:F,1:I

〈
log p(r1:T , v1:T , x1:F,1:T | t(n)1:F,1:I)

〉
q(r1:T ,v1:T )

(n) ,

(9)

where 〈 f (x)〉p(x) =
∫
p(x) f (x)dx is the expectation of the

function f (x) with respect to p(x).
In the E-step, we compute the posterior distributions of

rτ and vτ . These quantities can be computed via the methods
which we described in Subsection 4.1. In the M-step, we aim
to find the tν,i that maximize the likelihood. Maximization
over tν,i yields the following fixed-point equation:

t(n)ν,i =
∑T

τ=1 〈[rτ = i]〉(n)xν,τ∑T
τ=1 〈[rτ = i]vτ〉(n)

. (10)

Intuitively, we can interpret this result as the weighted
average of the normalized audio spectra with respect to vτ .

5. Experiment 1: Hand Clapping

We have run two sets of experiments to test the applicability
of the presented technique for identification of percussive

sounds. In the first experiment, we tested the method with
different types of hand clapping to identify the clapping
type. With this experiment, we tested the performance of
the algorithm in the context of very similar, non-resonant
sounds. In the second experiment, we recorded sounds of
Turkish percussion instruments and applied the method for
tracking the percussion events in simple rhythmic patterns.
With the second experiment, in addition to testing the
detection and labeling accuracy, we specifically looked at
the compromise between latency and performance. In this
section, we discuss the experiment with hand clapping
sounds, and in the following section with the percussive
instruments.

Hand claps are a relatively primitive conveyor of sonic
information, yet they are widely applied for different pur-
poses [19]. In different cultures hand claps are used in a
musical context, and we are used to give feedback of a
performance by applause [20], by indicating different levels
of enthusiasm to the performers. Hand claps are also an
essential part of Flamencomusic, in which rhythmic patterns
of soft and sharp claps are used as an accompaniment [14].
Furthermore, hand clapping sounds can be used for interact-
ing with musical systems and computer interfaces [21].

As percussive events, hand claps of an individual decay
very rapidly and are very short in time. In anechoic
conditions, a hand clap sound lasts typically around 5ms,
and it is difficult to pinpoint any systematic differences
between different kinds of hand claps only by listening.
This performance improves significantly in more casual
indoors listening situations, where the room becomes an
extended resonator. In fact, our perception seems to process
simultaneously both the source characteristics of hand
claps and the room characteristics, supporting involvement
of special mechanisms during the perception of the self-
produced sound [22]. Specifically, according to Repp [19],
human observers are able to identify their own hand clapping
and deduce the hand configuration of a clapper with a
reasonable accuracy in a single-clapper setting by listening
to the hand clap sound.

Based on spectral analysis, Repp has proposed eight
different hand configurations which have audible differences.
These clapping modes were presented in detail in [20, 23];
here we provide only a short description. In P (parallel)
modes, the hands are kept parallel and flat, whereas in
A (angle) modes they form a right angle with a natural
curvature. The following numerical index indicates the
position of the right hand relative to the left hand: from
palm-to-palm (1) to fingers-to-palm (3), (2) corresponding
to about the midpoint. Finally, the curvature of hands varies
in A1 mode to result a flat (A1−) or a very cupped (A1+)
configuration, compared to A1.

To evaluate the real-time event detection technique with
hand clapping sounds, we have conducted several experi-
ments. The experiment design focused on obtaining audio
data systematically for inferring the hand configuration and
the identity of an individual by the technique proposed
in Section 4, using a single-state HMM. We evaluated the
technique with hand clap signals recorded in an anechoic
chamber and in a quiet room.
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5.1. Hand Claps in an Anechoic Room. Three subjects (one
female and two male) participated in this experiment. They
were given verbal, as well as pictorial description about the
clapping modes, and instructed to produce five claps in each
mode. The recordings were segmented into three different
files, and high pass was filtered with a fifth-order Chebyshev
Type I filter with a cutoff frequency of 100Hz to remove the
structural vibration of the anechoic chamber at low frequen-
cies. The phase delay of the filter has been compensated by
zero-phase filtering using the filtfiltMATLAB function.

5.2. Hand Claps in a Quiet Room. We recorded sequences
of hand claps in an ITU-R BS.116 standard listening room,
with reverberation time of 0.3 s. Two male subjects A
and B performed 20 claps of each type. The recordings
were segmented into 16 separate files, each containing one
clapping mode of one subject.

5.3. Training and Classification Procedure. In the anechoic
case, we trained the system with three claps from each user
in each mode, and tested it on the whole data set. Instead
of the three-state HMM, we applied a -state model, since
clapping sounds do not incorporate sustain. For the quiet
room recordings, we randomly divided the recorded data
into training and test data. We divided each of the audio
files into four equally long segments and randomly chose
two of these segments for training and two for testing the
classification performance of the algorithm.

As explained in Section 4, the algorithm learns templates
of different classes in the training phase and provides a
posterior distribution of audio frames corresponding to
each spectral template in the test phase. In the anechoic
case, each mode of each subject was provided as classes,
totaling 24 templates for clapping modes, and an additional
one for silence. We have also tested using one template for
each mode of all subjects and silence (i.e., 9 templates).
From the posterior distribution, we classified detected
nonsilent sounds into one of the trained classes based on
the classification results of all non-silent frames that met
the condition p(rτ | ·) > ε, where ε is a threshold for the
decision. The value of ε = 0.5 was used in the tests. Note that
the chance level classification of 8 modes is 0.125.

In the quiet room dataset, this technique caused difficul-
ties in reverberant conditions because some clapping modes
were prone to being confused with room reverberation.
Therefore, we have added a post processing step, in which
we only used the first frame of a non-silent segment and
skipped the following 10 frames (23.2ms) to overcome the
reverberation effect. The thresholding was otherwise similar
to the anechoic case.

5.4. Results. In both anechoic and quiet conditions, the
algorithm performs well as a detector of clapping, with event
frames being classified as non-silent nearly 100% of the
time. We have done clapping detection previously with the
Pure Data external bonk∼ [11], for which the clap detection
rate in similar conditions has been around 85% (without
optimizing its detection parameters).

In anechoic settings, we tested how well the algorithm
identifies the eight clapping modes of three clappers. The
results are presented in Table 1, for the offline (top) and
real-time (bottom) operation, where the rows are target class
labels and columns give the percentage of classifying that
target as each of the eight classes. The overall accuracy of
the offline simulation is 66% and the real-time simulation
with forward-backward smoothing yields 61%. If a single
template for each mode is used, the accuracy reduces to
53% (offline) and 49% (online), which indicates that there
are differences between subjects producing these modes. We
observe that the real-time case reduces the latency with a
slight effect on accuracy. In the following, we present only
the real-time results.

We also tested how well the algorithm identifies the eight
clapping modes of two clappers in a quiet room setting. The
results are presented in Table 2. The overall performance of
using the algorithm for classification is 65% for subject A and
41% for subject B. While these rates may seem low, it should
be noted that the algorithm performs way beyond chance
level (12.5%) in all cases and that some hand configurations
are rather similar with respect to the sound output. All the
hand claps were detected as hand clap events.

Next, we have trained the system with one subject’s
clapping and tested it with the other subject’s clapping. The
overall correct classification performance is around 30%. The
reason for this not being lower is mostly due to the fact that
mode A1+ is so prominently different from other modes
that even with two different clappers that mode is classified
correctly most of the time. On the other hand, since this
performance clearly indicates that a system trained by one
person cannot be reliably used by another one, we find these
results interesting for customizing a system to work properly
only with one person’s clapping.

These results indicate that, while our algorithm can
be trained to identify different modes of clapping, the
division into eight modes is likely suboptimal for reliable
identification of the modes. We can hypothesize on more
robust groupings of modes for example, by grouping the
modes into just A and P modes, or into number modes so
that all “1” modes (palm on palm) make one class, all “2”
modes another class, and “3”modes (fingers on palm) a third
class. In addition, since the curvature of A1+ mode leads to
pronouncedly low resonances and good classification results,
this mode could be its own class in any grouping.

6. Experiment 2: Percussion Instrument
Detection and Identification

We have run a second set of experiments with two Turkish
percussion instruments, namely the Darbuka (goblet drum)
and the Bendir (frame drum). Both drums are membra-
nophones, but with major differences in the sound. The
sound of the darbuka is typically shorter and inherently more
damped than that of the bendir, which has a larger and more
elastic membrane. The playing style of the instruments is
similar, however, in that both instruments are often used to
produce “düm” and “tek” strokes. The first is a shot with
fingers hitting the membrane near the rim but not on the
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Table 1: Relative classification results for the eight modes of three subjects in an anechoic chamber, the offline inference results (top, cf. (5))
and the online inference results (bottom, cf. (4)). Row labels indicate target class and columns the percentage of classifying the claps of target
class to all classes. Note that, in some cases such as P1 in the top part, the rows do not add to 100% because of the rounding performed in
the presentation of the results in a tabular form.

Offline, overall accuracy 66%

Label P1 P2 P3 A1 A2 A3 A1+ A1−
P1 81 13 0 7 0 0 0 0

P2 15 77 0 0 0 0 0 8

P3 7 7 60 7 0 7 0 13

A1 0 0 0 73 0 7 7 13

A2 7 7 0 7 60 0 7 13

A3 0 0 20 0 7 47 7 20

A1+ 0 0 0 13 7 0 80 0

A1− 0 13 7 7 0 7 13 53

Real-time, overall accuracy 61%

Label P1 P2 P3 A1 A2 A3 A1+ A1−
P1 69 19 0 6 6 0 0 0

P2 15 69 0 0 0 8 0 8

P3 7 13 53 7 0 7 0 0

A1 0 0 0 67 0 0 20 13

A2 7 7 0 7 60 0 7 13

A3 0 0 20 0 7 40 13 20

A1+ 0 0 0 13 7 7 73 0

A1− 0 13 7 7 7 7 7 53

Table 2: Relative classification results for the eight modes of two subjects. Row labels indicate target class and columns the percentage of
classifying the claps of target class to all classes. Overall classification rate is 65% for subject A and 41% for subject B.

Subject A

Label P1 P2 P3 A1 A2 A3 A1+ A1−
P1 56 0 0 22 22 0 0 0

P2 0 78 0 0 11 11 0 0

P3 0 40 20 0 30 10 0 0

A1 0 0 0 90 10 0 0 0

A2 0 0 20 10 60 10 0 0

A3 0 10 0 20 0 70 0 0

A1+ 0 0 0 0 0 0 100 0

A1− 0 10 0 40 0 0 0 50

Subject B

Label P1 P2 P3 A1 A2 A3 A1+ A1−
P1 56 0 11 0 22 0 0 11

P2 0 56 11 0 22 11 0 0

P3 0 0 22 0 11 67 0 0

A1 11 0 0 33 33 0 11 11

A2 0 0 0 0 20 30 0 50

A3 0 0 0 0 56 44 0 0

A1+ 0 0 0 30 10 0 60 0

A1− 11 11 0 33 11 0 0 33
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rim, whereas the latter is produced by hitting the rim with a
finger. Therefore, “düm” typically resonates longer on lower
frequencies than “tek.” There are other types of strokes, too,
but in this study we focus on these two types. Exemplary
spectrograms of düm and tek sounds on both instruments
can be seen in Figure 4. From these plots the difference
in the duration of the sound between the two instruments
stands out, with the bendir sounds resonating 3-4 times
longer than the darbuka sounds. Also, we notice differences
in the spectral characteristics between düm and tek strokes,
the latter ones resonating more on higher frequencies. The
bendir sound is in general darker.

We recorded the playing of both instruments with an
expert percussionist in both an anechoic chamber and
normal room conditions with a portable recorder (ZOOM
H4). For the darbuka, we recorded 40 isolated düm strokes,
40 isolated tek strokes, and a simple rhythmic pattern with
one düm followed by two teks. For the bendir, we did
the same, but we separately recorded two types of isolated
tek strokes, one with the index finger hitting the rim, and
one with the ring finger hitting the rim, because in many
practical cases the player can alternate between the two
fingers, especially with two subsequent tek strokes in the
pattern. For the Bendir, we also recorded the düm-tek-tek
pattern and in addition a simpler düm-tek pattern.

6.1. Test Procedure. We ran several tests on the algorithm
with the percussion instrument sounds. We used the isolated
recordings of darbuka and bendir as training data for
learning the templates, and the rhythmic patterns for testing
the detection and classification performance. For test runs,
the recorded patterns were manually labeled.

Considering that the attack part of a percussive event
lasts approximately 2-3ms, we tried to find a short frame
size where the frames could capture the whole attack part of
a percussive event. We then applied frames of 128 samples
(about 3ms at 44100Hz) to compute STFT. Since the succes-
sive audio frames are assumed to be distributed conditionally
independent from each other in our probabilistic model,
we used nonoverlapping frames in the calculation of the
spectra. Using overlapping frames requires a slightly different
probabilistic model (a so-called Gabor Regression model
[24]), which is not investigated in this study.

To eliminate the detection of a “double attack” due to
ambiguities in the sound around the transition from attack
to sustain, we added a post-processing step similar to that
used in the hand clap experiment, disregarding any detected
attacks after a fixed period of time following each detected
attack. While this may result in missed detections in the case
of two very rapidly played strokes, it is not a problem in this
monophonic case.

With these tests, we aimed at examining the effect of the
fixed lag amount in the HMM procedure (see Section 4)
on algorithmic performance. We defined a correctly detected
and classified event based on the attack segment of the sound,
because it captures best the sounding differences between
different strokes. The sustain and release parts were still
used in the inference procedure to inform the model, but

the overall classification decision was made on the attack
segment.

As metrics for the performance, we utilized the precision
rate, the recall rate, and the latency. These are defined as

precision = # correctly recognized events
# events recognized by the method

,

recall = # correctly recognized events
# true events

,

latency = estimated on set time− true on set time.
(11)

We separately trained and tested the model with record-
ings of one instrument from one room, for example, with
darbuka in anechoic conditions. That is, we exclusively
focused on the classification of düm strokes and tek strokes
under fixed conditions with fixed instruments. This resulted
in four test cases (darbuka anechoic, darbuka normal room,
bendir anechoic, and bendir normal room).

6.2. Overall Results. For labeling the events, the overall
performance with respect to the HMM lag is presented in
Figure 5. In the figure, the dashed line indicates results with
the offline algorithm used as a baseline.

We notice from the results that in general a lag of around
20–30ms seems a reasonable compromise between latency
and accuracy, with the overall precision of over 85% and
recall of over 80%. With longer lags, the precision and
recall improve slightly, but with the expense of adding more
overall latency. Note that the overall latency is the sum of the
computational latency (on y-axis in the figure) and the fixed
lag used in smoothing. We return to the latency discussion
and its implications for real-time systems in Section 8.

An interesting aspect is that in some cases the fixed-lag
smoothed results (solid lines) are observed to outperform
the offline results (dashed lines). This is a typical model
mismatch situation which shows that the HMM cannot
perfectly model the percussive audio. As a natural result of
this, increasing the size of the accumulated data does not
yield better results.

6.3. Comparison between Different Room Conditions and
Instruments. We then compared the same metrics between
different room conditions. As can be seen from Figure 6, the
results are better for anechoic conditions, which is hardly a
surprise given that there is no reverberation or other noise
corrupting the sounds. With the lag of 20ms, precision and
recall rates are around 85% in both cases.

In Figure 7, we compare the results between the two
instruments. We notice that the results for bendir are signif-
icantly better in terms of precision and recall. This is clear
especially in normal room conditions. We did not anticipate
this, as the bendir is significantly longersounding and in the
rhythmic patterns its decaying sound from previous hits is
practically always overlapping with the attack segment of
the following sounds. In contrast, the darbuka sound decays
faster and does not introduce this masking. An explanation
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Figure 4: Spectrograms of exemplary düm and tek strokes on the Darbuka (top) and the Bendir (bottom).
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Figure 6: Comparison of algorithm performance between (a) normal room conditions and (b) anechoic conditions. The dashed line
indicates offline performance.

for the results is that the spectral difference between the düm
stroke and tek stroke is not as obvious with the darbuka.

6.4. Auditory Comparison. To give a concrete example of
the results in practice, we used the algorithm output (event
times and labels) as control data to synthesize an audible
pattern for comparison with the original recorded pattern
by triggering recorded samples according to the automatic
recognition. These samples, along with excerpts of the orig-
inal recordings, are available at http://www.acoustics.hut.fi/
∼ajylha/percussion/. By listening to the samples, it is clear
that the results are better for the bendir. It is noteworthy that
the original temporal structure is well preserved.

7. Percussion DetectionModule for
Interactive Systems

As indicated in Section 4.1, we can run the inference scheme
in realtime with a standard HMM. In this section, we report
two real-time implementations of our algorithm. They both
rely on converting (7) in a suitable form for computation.

The first one, presented in Section 7.1, is realized as a
prototype on MATLAB using the Data Acquisition Toolbox.
We have then ported the HMM and the inference algorithm
to C++ by using the boost libraries (http://www.boost.org/)
for special distributions, matrix and vector calculations.
We have finally used the flext C++ development
layer (http://puredata.info/Members/thomas/flext/) for cross
compiling our algorithm as a plugin for popular real-
time audio signal processing environments Pure Data
(http://puredata.info/) andMax/MSP (http://cycling74.com/
products/maxmspjitter/). This implementation is presented
in Section 7.2.

Both real-time implementations operate well with the
FFT size of 128 under the sampling frequency 44.1 kHz, and
the buffer sizes corresponding to the optimal latency range
indicated in Section 6 (20–30ms). They give the same results
as the MATLAB simulations we have used in testing.

7.1. Real-Time Prototype. The Data Acquisition Toolbox
consists of a shared library, dynamically-linked interfaces to
specific hardware, and collection of functions, for example,
a pointer to the callback function that fills the preallocated
buffer shared by the Data Acquisition Engine and the
MATLAB platform. The toolbox currently runs only on
32-bit MS Windows and interfaces with the sound drivers
natively supported by this operating system (i.e., no low-
latency ASIO drivers). Despite of this, we have obtained good
results with the same portable recorder (ZOOMH4) we have
previously used in measurements. This device also functions
as a low-latency audio interface.

After initializing and setting up this device to operate
with chunks of 10 blocks (of size 128 samples, corresponding
to about 30ms), we have provided the same code block we
have used in training (see (7)) within the callback function.
In addition, the callback dynamically plots the acquired
data and prompts the recognized events to the command
line.

The toolbox would return an error if the number of
samples acquired or queued would exceed the allocated
memory. The reason for excess queuing would then be
our processing time, that is, our calculations could not be
completed within the time between two chunks. However,
even the chunk of 5 blocks (about 15ms) did not indicate an
error in our tests, and the results were as reliable as the offline
operation.
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Figure 7: Comparison of algorithm performance between (a) darbuka and (b) bendir. The dashed line indicates offline performance.

7.2. Real-Time Implementation. Encouraged by the results of
the real-time prototype, we have implemented the essential
HMM operations as a C++ class with the help of the boost
libraries (HMM), specialized these operations for our specific
problem according to our algorithm (PercussionHMM), and
wrapped these classes within the cross-platform plugins
using the flext layer (aed hmm). The resulting structure is
depicted in Figure 8 as a class diagram, one of the 14 models
of the Universal Modeling Language (UML 2.2).

The base class HMM declares the private variables
(attributes) A and I, corresponding to the state transition
matrix and number of states, respectively.

The subclass PercussionHmm specializes the base class
HMM to initiate an HMM (pt) and operate it on spectral
templatematrices t, each having I templates and F frequency
bins (65 in our case). a v and b v are the scale and shape
parameters of the Gamma prior, respectively. The other
private variables are for storing the intermediate results and
decreasing the computational burden. In the public member
functions, besides the accessor methods and the usual HMM
functions for prediction, estimation, and filtering, we have
methods for loading the templates and initializing the HMM
either parametrically or by a file.

Finally, the wrapper aed hmm contains a
PercussionHMM object pt and the previous estimate.
It constructs a plug-in with four inlets and one outlet. The
outlet is the detected onset. The two inlets are real and
imaginary parts of the FFT of the incoming audio signal,
and the other two set the variance and scaling of the spectral
slices in comparison to the templates. These instantaneous
variance and scaling parameters are also the private variables
f Av and f scaling, respectively, and their changes are
processed via callbacks. The main processing happens within
the protected virtual function m signal, which calls the
filtering and prediction methods of pt.

As in the prototype, the plug-in is observed to work
smoothly and efficiently on the host platforms with optimal
block sizes.

8. Applications

As the results indicate, the presented technique works with
good accuracy for percussive sound detection and labeling.
It also runs in real time, so it is operable in real-time inter-
active systems requiring reliable recognition of percussive
sounds.

We acknowledge that the constant lag required by the
HMM procedure would be an issue in systems requiring
immediate response to the detection, such as directly trig-
gering synthetic sounds with the detected events. The lag
in such systems would be perceivable between user input
and system output, at least for expert musicians, although
there are techniques that can be applied in delayed decision-
making situations. However, there are a number of real-time
applications that do not require such a direct response. Here,
we consider two specific cases, which are rhythmic tutoring
and interactive musical accompaniment.

Previously, Jylhä et al. [14] have presented an interactive
Flamenco tutoring system, which aims at teaching Flamenco
hand clapping patterns to a novice user. This virtual tutor
provides synthetic exemplary clapping of the pattern, listens
to the user’s clapping sounds, and gives feedback on the
user’s performance and learning. This feedback is based
on the analysis of the user’s performed accentuation (soft
and loud claps) and clapping tempo, derived from the
time instances of detected events. Here, a small amount of
latency is perfectly tolerable, as the tempo estimation is not
dependent on maximally fast response. Furthermore, since
the system operates with rhythmic patterns, a constant lag
is easily compensated by the virtual tutor. This is achieved
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Figure 8: The UML class diagram of the real-time implementation.

by anticipating the temporal location of the next clapping
event, which can be done by simply computing the difference
between the estimated average interval between subsequent
clapping events and the latency. This way, it is possible
to keep the tutor’s audio feedback in sync with the user’s
clapping. However, even this is not often necessary, as our
previous explorations indicate that the user naturally syncs
with the tutor’s clapping anyway.

With regards to virtual tutoring, more sophisticated
systems for different instruments and musical styles are
enabled by the event labeling in conjunction with event
detection. Namely, the algorithm can be applied in tutoring
systems evaluating the user’s performance on any percussion
instrument to provide low-level data on the user’s playing.
This data can be further applied in higher-level analysis
techniques to compute, for example, the tempo, temporal
deviations, correctness of the user’s performance gestures
(e.g., how clear is the difference of a rimshot and middle shot
on the hand drum), and overall success in performing the
correct pattern.

An exciting possibility of using probabilistic inference
in tutoring systems is measuring the user’s clarity and
consistence in playing desired types of events. Considering
that the algorithm can be trained, for example, with ideal
sounds resulting from a rimshot to a Darbuka, the inference
probability could be directly used as a measure of “goodness”
in the sound reproduced by the user.

Another domain where the method can be applied is
interactive accompaniment, to provide low-level analysis of
the user’s playing. The same compensation for a constant
lag as in the tutoring scheme can be applied in these

systems to sync the accompaniment with the human player.
Systems such as Haile discussed in Section 2 already utilize
low-cost event detection modules, but we believe that our
technique surpasses the state of art with respect to labeling
performance.

9. Conclusion

We have presented a real-time, model-based technique for
detecting and labeling percussive sounds. To date, most
related work on percussion recognition has concentrated
on offline algorithms not suitable for interactive systems.
Furthermore, the existing techniques typically have sepa-
rate steps for sound detection and classification, whereas
this technique performs both functions with a single
method.

The algorithm utilizes supervised learning and is re-
trainable for any desired palette of relatively short percussive
sounds. Therefore, the technique can be utilized in a
multitude of real-time interactive musical systems requiring
reliable detection and identification of percussive sounds
performed by the user. The real-time implementation of
the algorithm has been tested with different types of hand
clapping sounds and percussive instrument sounds. The
overall precision and recall rates are high with a moderate
time lag used by the HMMprocedure. This lag is not an issue
in certain real-time interactive systems, such as rhythmic
tutoring or automatic accompaniment.

In the current implementation, the templates are directly
based on relatively low-order Fourier transform, which is



EURASIP Journal on Advances in Signal Processing 13

suitable for a generic algorithm. However, investigating other
transforms more tuned especially for percussive sounds
would potentially increase the performance. For example,
filterbank-based transforms have been previously utilized
successfully with percussive sounds [11] and are worth
investigating with this technique as well with a comparative
study.

The algorithm is currently tuned formonophonic sounds
and has not been tested under polyphonic conditions. An
interesting future step will be extending the algorithm for
the detection and labeling of multiple simultaneous sounds,
which would make it suitable for multiplayer systems with
two or more percussion players performing simultaneously.
We have already started to gather data on such situations
and consider this as another major research step. However,
for polyphonic event tracking, the model needs to be rede-
fined and the inference scheme adjusted for simultaneously
occurring events, and meeting the real-time requirements
with an inevitably more complex algorithm requires special
attention.
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