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A novel algorithm, called the signed regressor least mean fourth (SRLMF) adaptive algorithm, that reduces the computational cost
and complexity while maintaining good performance is presented. Expressions are derived for the steady-state excess-mean-square
error (EMSE) of the SRLMF algorithm in a stationary environment. A sufficient condition for the convergence in the mean of the
SRLMF algorithm is derived. Also, expressions are obtained for the tracking EMSE of the SRLMF algorithm in a nonstationary
environment, and consequently an optimum value of the step-size is obtained. Moreover, the weighted variance relation has been
extended in order to derive expressions for the mean-square error (MSE) and the mean-square deviation (MSD) of the proposed
algorithm during the transient phase. Computer simulations are carried out to corroborate the theoretical findings. It is shown that
there is a goodmatch between the theoretical and simulated results. It is also shown that the SRLMF algorithm has no performance
degradation when compared with the least mean fourth (LMF) algorithm. The results in this study emphasize the usefulness of
this algorithm in applications requiring reduced implementation costs for which the LMF algorithm is too complex.

1. Introduction

Reduction in complexity of the least mean square (LMS)
algorithm has always received attention in the area of
adaptive filtering [1–3]. This reduction is usually done by
clipping either the estimation error or the input data, or
both to reduce the number of multiplications necessary at
each algorithm iteration. The algorithm based on clipping
of the estimation error is known as the sign error or more
commonly the sign algorithm (SA) [4–8], the algorithm
based on clipping of the input data is known as the sign
regressor algorithm (SRA) [9–12], and the algorithm based
on clipping of both the estimation error and the input data
is known as the sign sign algorithm (SSA) [13, 14]. These
algorithms result in a performance loss when compared
with the conventional LMS algorithm [9, 10]. However,
significant reduction in computational cost and simplified
hardware implementation can justify this poor performance
in applications requiring reduced implementation costs [15,
16].

The behavior of the SRA algorithm depends on the input
data. It is shown in [11] that for some inputs, the LMS
algorithm is stable while the SRA algorithm is unstable. This
is a drawback of the SRA algorithm when compared with the
SA algorithm since the latter is more stable than the LMS
algorithm [4, 16]. The SRA algorithm is always stable when
the input data is Gaussian as in the case of speech processing.
Also, the performance of the SRA algorithm is superior to
that of the SA algorithm for Gaussian input data. It is shown
in [10] that the SRA algorithm is much faster than the SA
algorithm in achieving the desired steady-state mean-square
error for white Gaussian data. Theoretical studies of the SRA
algorithm with correlated Gaussian data in both stationary
and nonstationary environments are found in [12].

The convergence rate and the steady-state mean-square
error of the SRA algorithm is only slightly inferior to
those of the LMS algorithm for the same parameter setting.
In [10], the convergence rate of the SRA algorithm is
compared with that of the LMS algorithm to show that the
SRA algorithm converges slower than the LMS algorithm
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by a factor of 2/π for the same steady-state mean-square
error.

It is shown in [17] that the SRA algorithm exhibits
significantly higher robustness against the impulse noise than
the LMS algorithm.

The above-mentioned advantages motivate us to analyze
the proposed sign regressor least mean fourth (SRLMF)
adaptive algorithm. In this paper, the mean-square analysis,
the convergence analysis, the tracking analysis, and the
transient analysis of the SRLMF algorithm are carried
out. The framework used in this work relies on energy
conservation arguments [18]. Expressions are evaluated for
the steady-state excess-mean-square error (EMSE) of the
SRLMF algorithm in a stationary environment. A condition
for the convergence of the mean behavior of the SRLMF
algorithm is also derived. Also, expressions for the tracking
EMSE in a nonstationary environment are presented. An
optimum value of the step-size μ is also evaluated. Moreover,
an extension of the weighted variance relation is provided in
order to derive expressions for the mean-square error (MSE)
and the mean-square deviation (MSD) of the proposed
algorithm during the transient phase. From the simulation
results it is shown that both the SRLMF algorithm and
the least mean fourth (LMF) algorithm [19] have a similar
performance for the same steady-state EMSE. Moreover, the
results show that the theoretical and simulated results are in
good agreement.

The paper is organized as follows: following the Intro-
duction is Section 2 where the proposed algorithm is
developed, while the mean-square analysis of the proposed
SRLMF algorithm is presented in Section 3. The convergence
analysis of the proposed algorithm is presented in Section 4.
Section 5 presents the tracking analysis of the proposed algo-
rithm for random walk channels and as a by-product of this
analysis the optimum value of step-size for these channels
is derived. And Section 6 presents thoroughly the transient
analysis of the proposed algorithm. The Computational
Load is detailed in Section 7. To investigate the performance
of the proposed algorithm, several simulation results for
different scenarios are presented in Section 8. Finally, some
conclusions are given in Section 9.

2. AlgorithmDevelopment

The SRLMF algorithm is based on clipping of the regression
vector ui (row vector). Consider now the adaptive filter,
which updates its coefficients according to the following
recursion [18]:

wi = wi−1 + μH[ui]u∗i g[ei], i ≥ 0, (1)

where wi (column vector) is the updated weight vector at
time i, μ is the step-size, H[ui] is some positive-definite
Hermitian matrix-valued function of ui, g[ei] denotes some
function of the estimation error signal given by

ei = di − uiwi−1, (2)

where di is the desired signal. When the data is real-valued
and g[ei] = e3i , the general update form in (1) becomes

wi = wi−1 + μH[ui]uTi e
3
i , i ≥ 0. (3)

Now if

H[ui] = diag

{
1∣∣ui1∣∣ ,

1∣∣ui2∣∣ , . . . ,
1∣∣uiM∣∣

}
, (4)

then the update form in (3) reduces to

wi = wi−1 + μdiag

{
1∣∣ui1∣∣ ,

1∣∣ui2∣∣ , . . . ,
1∣∣uiM∣∣

}
uTi e

3
i

= wi−1 + μ sign [ui]
Te3i , i ≥ 0,

(5)

where M is the filter length. The SRLMF algorithm update
recursion in (5) can be regarded as a special case of the
general update form in (3) for somematrix data nonlinearity
that is implicitly defined by the following relation:

sign [ui]
T = H[ui]uTi . (6)

3. Mean-Square Analysis of
the SRLMF Algorithm

We wil assume that the data {di,ui} satisfy the following
conditions of the stationary data model [18, 20–24].

(A.1) There exists an optimal weight vector wo such that
di = uiwo + vi.

(A.2) The noise sequence vi is independent and identically
distributed (i.i.d.) with variance σ2v = E[|vi|2] and is
independent of u j for all i, j.

(A.3) The initial condition w−1 is independent of the zero
mean random variables {di,ui, vi}.

(A.4) The regressor covariance matrix is R = E[u∗i ui] > 0.

For any adaptive filter of the form in (1), and for any
data {di,ui}, assuming filter operation in steady-state, the
following variance relation holds [18]:

μE
[
‖ui‖2Hg2[ei]

]
= 2E

[
eaig[ei]

]
, as i −→ ∞, (7)

where

E
[
‖ui‖2H

]
= E

[
uiH[ui]uTi

]
, (8)

ei = eai + vi, (9)

and eai = ui(wo−wi−1) is the a priori estimation error. Then
g[ei] becomes

g[ei] = e3i =
(
eai + vi

)[
e2ai + v2i + 2eaivi

]
. (10)

By using the fact that eai and vi are independent, we reach at
the following expression for the term E[eaig[ei]]:

E
[
eaig[ei]

] = 3σ2vE
[
e2ai

]
+ E
[
e4ai

]
. (11)
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Ignoring third and higher-order terms of eai , then (11)
becomes

E
[
eaig[ei]

] ≈ 3σ2vE
[
e2ai

]
. (12)

To evaluate the term E[‖ui‖2Hg2[ei]], we start by noting that

g2[ei] = e6ai + 6e5aivi + 6eaiv
5
i + 15e4aiv

2
i + 15e2aiv

4
i

+ 20e3aiv
3
i + v6i .

(13)

If we multiply g2[ei] by ‖ui‖2H from the left, use the fact that
vi is independent of both ui and eai , and again ignoring third
and higher-order terms of eai , we obtain

E
[
‖ui‖2Hg2[ei]

]
≈ 6E

[
‖ui‖2Heaiv5i

]
+ 15E

[
‖ui‖2He2aiv4i

]

+ E
[
‖ui‖2Hv6i

]

≈ 6E
[
‖ui‖2Heai

]
E
[
v5i
]
+ 15E

[
‖ui‖2He2ai

]

× E
[
v4i
]
+ E
[
‖ui‖2H

]
E
[
v6i
]

≈ 6E
[
‖ui‖2Heai

]
E
[
v5i
]
+ 15E

[
‖ui‖2He2ai

]
ξ4v

+ E
[
‖ui‖2H

]
ξ6v ,

(14)

where ξ4v = E[|vi|4], ξ6v = E[|vi|6] denote the forth and
sixth-order moments of vi, respectively.

From Price’s theorem [25] we have

E
[
x sign

(
y
)] =

√
2
π

1
σy

E
[
xy
]
, (15)

then

E
[
‖ui‖2H

]
= E

[
ui sign [ui]

T
]
=
√

2
πσ2u

Tr(R). (16)

Substituting (16) into (14) we get

E
[
‖ui‖2Hg2[ei]

]
≈ 6E

[
‖ui‖2Heai

]
E
[
v5i
]
+ 15E

[
‖ui‖2He2ai

]
ξ4v

+

√
2

πσ2u
Tr(R)ξ6v .

(17)

Substituting (12) and (17) into (7) we get

6σ2vE
[
e2ai

]
= μξ6v

√
2

πσ2u
Tr(R) + 15μξ4vE

[
‖ui‖2He2ai

]

+ 6μE
[
‖ui‖2Heai

]
E
[
v5i
]
.

(18)

In order to simplify (18) and arrive at an expression for
the steady-state EMSE ζ = E[e2ai], we consider two cases.

(1) Sufficiently Small Step-Sizes. Small step-sizes lead to
small values of E[e2ai] and eai in steady-state. Therefore, for
smaller values of μ, the last two terms in (18) can be ignored,
the steady-state EMSE is given by

ζ = μξ6v
6σ2v

√
2

πσ2u
Tr(R). (19)

(2) Separation Principle. For larger values of μ, we resort
to the separation assumption, namely, that at steady-state,
‖ui‖2H is independent of eai . In this case, the last term in (18)
will be zero since eai is zero mean, the steady-state EMSE can
be shown to be

ζ =
μξ6v
√
2/πσ2u Tr(R)(

6σ2v − 15μξ4v
√
2/πσ2u Tr(R)

) . (20)

4. Convergence Analysis of
the SRLMF Algorithm

Convergence analysis of the SRLMF algorithm is much more
complicated than that of the LMS algorithm due to existence
of the higher order estimation error signal in the coefficient
update recursion. We thus make the following assumptions
along with (A.2) to make the analysis mathematically more
tractable [19–24, 26]:

(A.5) di and ui are zero-mean, wide-sense stationary, and
jointly Gaussian random variables.

(A.6) The input pair {di,ui} is independent of {dj ,u j} for
all i, j.

Subtracting both sides of (5) from wo we get

w̃i = w̃i−1 + μ sign [ui]
Te3i , (21)

where w̃i = wo−wi. Taking expectations of both sides of (21)
we obtain

E[w̃i] = E[w̃i−1] + μE
[
sign [ui]

Te3i
]
. (22)

Using Price’s theorem [25], we can conclude that

E
[
sign [ui]

Te3i
]
=
√

2
πσ2u

E
[
uTi e

3
i

]
. (23)

Substituting (23) into (22) we get

E[w̃i] = E[w̃i−1] + μ

√
2

πσ2u
E
[
uTi e

3
i

]
. (24)

The expectation E[uTi e
3
i ] can be simplified using the fact that

for zero-mean and jointly Gaussian random variables x1 and
x2,

E
[
x1x

3
2

] = 3E[x1x2]E
[
x22
]
. (25)
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Thus, using (25) in conjunction with (A.5), it follows that

E
[
uTi e

3
i

]
= E

[
E
[
uTi e

3
i | w̃i−1

]]

= 3E
[
E
[
e2i | w̃i−1

]]
E
[
E
[
uTi ei | w̃i−1

]]

= 3E
[
σ2e|w̃i−1

]
E
[
E
[
uTi ei | w̃i−1

]]
,

(26)

where

E
[
σ2e|w̃i−1

]
= σ2e − var

{
E[ei | w̃i−1]

}
= σ2e ,

(27)

and from (9)

E
[
E
[
uTi ei | w̃i−1

]]
= E

[
E
[
uTi (vi + uiw̃i−1) | w̃i−1

]]

= E
[
E
[
uTi uiw̃i−1 | w̃i−1

]]

= E
[
uTi uiw̃i−1

]

= RE[w̃i−1].

(28)

Substituting (27) and (28) in (26) yields

E
[
uTi e

3
i

]
= 3σ2eRE[w̃i−1]. (29)

Substituting (29) into (24) we get

E[w̃i] = E[w̃i−1] + 3μ

√
2

πσ2u
σ2eRE[w̃i−1]

=
[
I + 3μ

√
2

πσ2u
σ2eR

]
E[w̃i−1].

(30)

Ultimately, it is easy to show that the mean behavior of the
weight vector, that is E[wi], converges to the optimal weight
vector wo if μ is bounded by:

0 < μ <

√
2πσ2u

3λmaxσ2e
, (31)

where λmax represents the maximum eigenvalue of the
regressor covariance matrix R. Notice, that there exists the
time-varying function σ2e and the regressor variance σ

2
u in the

upper bound for μ. Since σ2e is usually large at the beginning
of adaptation processes, we can see that the convergence
of the SRLMF algorithm strongly depends on the choice of
initial conditions.

5. Tracking Analysis of the SRLMF Algorithm

Here, we assume that the data {di,ui} satisfy the following
assumptions of the nonstationary data model [18].

(A.7) There exists a vector wo
i such that di = uiwo

i + vi.

(A.8) The weight vector varies according to the random-
walk model wo

i = wo
i−1 + qi, and the sequence qi

is i.i.d. with covariance matrix Q. Moreover, qi is
independent of {vj ,u j} for all i, j.

(A.9) The initial conditions {w−1,wo
−1} are independent of

the zero mean random variables {di,ui, vi,qi}.

In this case, the following variance relation holds [18]:

μE
[
‖ui‖2Hg2[ei]

]
+ μ−1 Tr(Q) = 2E

[
eaig[ei]

]
, as i −→ ∞.

(32)

Tracking results can be obtained by inspection from the
mean-square results as there are only minor differences.
Therefore, by substituting (12) and (17) into (32), we get

6σ2vE
[
e2ai

]
= μ−1 Tr(Q) + μξ6v

√
2

πσ2u
Tr(R)

+ 15μξ4vE
[
‖ui‖2He2ai

]

+ 6μE
[
‖ui‖2Heai

]
E
[
v5i
]
.

(33)

We again consider two cases for the evaluation of the tracking
EMSE ζ of the SRLMF algorithm.

(1) Sufficiently Small Step-Sizes. Also, here, in this case we get

ζ =
μ−1 Tr(Q) + μξ6v

√
2/πσ2u Tr(R)

6σ2v
. (34)

An optimum value of the step-size of the SRLMF algorithm
is obtained by minimizing (34) with respect to μ. Setting the
derivative of ζ with respect to μ equal to zero gives

μopt =
√√√√ Tr(Q)√

2/πσ2u Tr(R)ξ6v
. (35)

(2) Separation Principle. Similarly here as it was done for the
derivation of (20), we obtain the following:

ζ =
μ−1 Tr(Q) + μξ6v

√
2/πσ2u Tr(R)(

6σ2v − 15μξ4v
√
2/πσ2u Tr(R)

) , (36)

and eventually the optimum step-size of the SRLMF algo-
rithm is given by

μopt =
√√√√√Tr(Q)

⎡
⎣225(ξ4v )2 Tr(Q)

36
(
σ2v
)2(

ξ6v
)2 +

1√
2/πσ2u Tr(R)ξ6v

⎤
⎦

− 15ξ4v
6σ2v ξ6v

Tr(Q).

(37)

6. Transient Analysis of the SRLMF Algorithm

Here, we will assume that the data {di,ui} satisfy the condi-
tions of the stationary data model described in Section 3.
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6.1. Weighted Energy-Conservation Relation

Theorem 1. For any adaptive filter of the form (1), any
positive-definite Hermitian matrix Σ, and for any data {di,ui},
it holds that [18]:

‖ui‖2HΣH

∥∥w̃i

∥∥2
Σ +

∣∣∣eHΣ
ai

∣∣∣2 = ‖ui‖2HΣH

∥∥w̃i−1
∥∥2
Σ +

∣∣∣eHΣ
pi

∣∣∣2,
(38)

where eHΣ
ai uiH[ui]Σw̃i−1, eHΣ

pi uiH[ui]Σw̃i, and ‖ui‖2HΣH =
ui(H[ui]ΣH[ui])u∗i .

Proof. Let us consider the adaptive filter updates of the
generic form given in (1). Subtracting both sides of (1) from
wo, we get

w̃i = w̃i−1 − μH[ui]u∗i g[ei]. (39)

If we multiply both sides of (39) by uiH[ui]Σ from the left,
we get

eHΣ
pi = eHΣ

ai − μ‖ui‖2HΣHg[ei]. (40)

Two cases can be considered here.

Case 1 (‖ui‖2HΣH = 0). In this case, w̃i = w̃i−1 and eHΣ
ai = eHΣ

pi

so that ‖w̃i‖2Σ = ‖w̃i−1‖2Σ and |eHΣ
ai |2 = |eHΣ

pi |2.

Case 2 (‖ui‖2HΣH /= 0). In this case, we use (40) to solve for
g[ei],

g[ei] = 1

μ‖ui‖2HΣH

(
eHΣ
ai − eHΣ

pi

)
. (41)

Substituting (41) into (39), we get

w̃i = w̃i−1 − H[ui]u∗i
‖ui‖2HΣH

(
eHΣ
ai − eHΣ

pi

)
. (42)

Expression (42) can be rearranged as

w̃i +
H[ui]u∗i
‖ui‖2HΣH

eHΣ
ai = w̃i−1 +

H[ui]u∗i
‖ui‖2HΣH

eHΣ
pi . (43)

Evaluating the energies of both sides of (43) results in

∥∥∥∥∥w̃i +
H[ui]u∗i
‖ui‖2HΣH

eHΣ
ai

∥∥∥∥∥
2

Σ

=
∥∥∥∥∥w̃i−1 +

H[ui]u∗i
‖ui‖2HΣH

eHΣ
pi

∥∥∥∥∥
2

Σ

. (44)

After a straightforward calculation, the following weighted
energy-conservation results:

∥∥w̃i

∥∥2
Σ +

1

‖ui‖2HΣH

∣∣∣eHΣ
ai

∣∣∣2 = ∥∥w̃i−1
∥∥2
Σ +

1

‖ui‖2HΣH

∣∣∣eHΣ
pi

∣∣∣2.
(45)

The weighted energy-conservation relation in (45) can also
be written as

‖ui‖2HΣH

∥∥w̃i

∥∥2
Σ +

∣∣∣eHΣ
ai

∣∣∣2 = ‖ui‖2HΣH

∥∥w̃i−1
∥∥2
Σ +

∣∣∣eHΣ
pi

∣∣∣2.
(46)

6.2. Weighted Variance Relation. Here, the weighted variance
relation presented in [18] has been extended in order to
derive expressions for the MSE and the MSD of the SRLMF
algorithm during the transient phase.

Theorem 2. For any adaptive filter of the form (1), any
positive-definite Hermitian matrix Σ, and for any data {di,ui},
it holds that

E
[∥∥w̃i

∥∥2
Σ

]
= E

[∥∥w̃i−1
∥∥2
Σ

]
+ μ2E

[
‖ui‖2HΣH

∣∣g[ei]∣∣2]
−2μRe

(
E
[
eHΣ∗
ai g[ei]

])
, as i −→ ∞.

(47)

Similarly, for real-valued data, the above weighted variance
relation becomes

E
[∥∥w̃i

∥∥2
Σ

]
= E

[∥∥w̃i−1
∥∥2
Σ

]
+ μ2E

[
‖ui‖2HΣHg

2[ei]
]

−2μE
[
eHΣ
ai g[ei]

]
, as i −→ ∞.

(48)

Proof. Squaring both sides of (40), we get∣∣∣eHΣ
pi

∣∣∣2 = ∣∣∣eHΣ
ai − μ‖ui‖2HΣHg[ei]

∣∣∣2. (49)

For compactness of notation let us omit the argument of g so
that (49) looks like∣∣∣eHΣ

pi

∣∣∣2 = ∣∣∣eHΣ
ai

∣∣∣2 + μ2‖ui‖4HΣH

∣∣g∣∣2 − μeHΣ
ai ‖ui‖2HΣHg

∗

− μeHΣ∗
ai ‖ui‖2HΣHg.

(50)

Substituting (50) into (46), we get

‖ui‖2HΣH

∥∥w̃i

∥∥2
Σ = ‖ui‖2HΣH

∥∥w̃i−1
∥∥2
Σ + μ2‖ui‖4HΣH

∣∣g∣∣2
− μeHΣ

ai ‖ui‖2HΣHg
∗ − μeHΣ∗

ai ‖ui‖2HΣHg.
(51)

Dividing both sides of (51) by ‖ui‖2HΣH (of course here
‖ui‖2HΣH /= 0) we get∥∥w̃i

∥∥2
Σ=

∥∥w̃i−1
∥∥2
Σ + μ2‖ui‖2HΣH

∣∣g∣∣2 − μeHΣ
ai g

∗ − μeHΣ∗
ai g.

(52)

Taking expectations of both sides of (52), we obtain

E
[∥∥w̃i

∥∥2
Σ

]
= E

[∥∥w̃i−1
∥∥2
Σ

]
+ μ2E

[
‖ui‖2HΣH

∣∣g[ei]∣∣2]

− μE
[
eHΣ
ai g[ei]

∗ + eHΣ∗
ai g[ei]

]
,

(53)

or in the following format:

E
[∥∥w̃i

∥∥2
Σ

]
= E

[∥∥w̃i−1
∥∥2
Σ

]
+ μ2E

[
‖ui‖2HΣH

∣∣g[ei]∣∣2]

− 2μRe
(
E
[
eHΣ∗
ai g[ei]

])
, as i −→ ∞.

(54)

For real-valued data, the weighted variance relation in (54)
becomes

E
[∥∥w̃i

∥∥2
Σ

]
= E

[∥∥w̃i−1
∥∥2
Σ

]
+ μ2E

[
‖ui‖2HΣHg

2[ei]
]

−2μE
[
eHΣ
ai g[ei]

]
, as i −→ ∞.

(55)
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The transient analysis of the class of filters in (1) is more
challenging due to the presence of the error nonlinearity.
Nevertheless, by using some approximations, the analysis can
be carried out to provide some useful insights about the
performance of the SRLMF algorithm.

To start, the expectations E[‖ui‖2HΣHg
2[ei]] and

E[eHΣ
ai g[ei]] are evaluated in the ensuing analysis in

terms of the weighted norm of w̃i−1. Since these expectations
are involved mathematically we will rely on the following
assumption in order to facilitate their evaluation [18].

(A.10) The a priori estimation errors {eai , eHΣ
ai } are jointly

circular Gaussian.

Evaluation of E[eHΣai g[ei]]. From Price’s theorem, if x and y
are jointly Gaussian random variables that are independent
from a third random variable z, then it holds that [25]:

E
[
xg
(
y + z

)] = E
[
xy
]

E
[
y2
] E[yg(y + z

)]
. (56)

Applying this result to the term E[eHΣ
ai g[ei]], and using (9),

we get

E
[
eHΣ
ai g[ei]

]
= E

[
eHΣ
ai g

[
eai + vi

]]

= E
[
eHΣ
ai eai

]⎡⎣E[eaig[ei]]
E
[
e2ai

]
⎤
⎦. (57)

In view of the assumption (A.10), the expectation E[eaig[ei]]
depends on eai only through its second moment, E[e2ai].
Therefore, we can define the following function of E[e2ai]:

Z1 = E
[
eaig[ei]

]
E
[
e2ai

] . (58)

For the SRLMF algorithm, g[ei] = e3i , therefore

E
[
eaig[ei]

] = E
[
eai
(
eai + vi

)3]

= E
[
e4ai + 3e3aivi + 3e2aiv

2
i + v3i eai

]
.

(59)

Now since eai and vi are zero mean Gaussian and inde-
pendent random variables with variances E[e2ai] and σ2v ,
respectively, we obtain

E
[
eaig[ei]

] = E
[
e4ai

]
+ 3σ2vE

[
e2ai

]
. (60)

By using the fact that for circular Gaussian eai it holds that
E[e4ai] = 3E[e2ai]

2, we get

E
[
eaig[ei]

] = 3E
[
e2ai

]2
+ 3σ2vE

[
e2ai

]

= 3E
[
e2ai

][
E
[
e2ai

]
+ σ2v

]
.

(61)

Substituting (61) into (58), we get

Z1 = 3
[
E
[
e2ai

]
+ σ2v

]
. (62)

The expression for Z1 is related to the desired term
E[eHΣ

ai g[ei]] through the equality

E
[
eHΣ
ai g[ei]

]
= Z1E

[
eHΣ
ai eai

]
. (63)

Evaluation of E[‖ui‖2HΣHg2[ei]]. In order to facilitate the
evaluation of the term E[‖ui‖2HΣHg

2[ei]] we use the sepa-
ration principle, namely, we assume that the filter is long
enough so that the following assumption holds [18].

(A.11) ‖ui‖2HΣH is independent of ei.

Therefore,

E
[
‖ui‖2HΣHg

2[ei]
]
=
(
E
[
‖ui‖2HΣH

])(
E
[
g2[ei]

])
. (64)

Since eai is Gaussian and independent of the noise, the expec-
tation E[g2[ei]] depends on eai through its second moment
only. Therefore, we can define the following function of
E[e2ai]:

Z2 = E
[
g2[ei]

]
. (65)

For the SRLMF algorithm, g[ei] = e3i . Since eai and vi are
zero mean Gaussian and independent random variables with
variances E[e2ai] and σ2v , we have σ

2
e = E[e2i ] = E[e2ai] + σ2v .

Moreover from [18], E[e6i ] = 15σ6e .
Thus

Z2 = E
[
e6i
]

= 15σ6e

= 15
(
σ2e
)3

= 15
(
E
[
e2ai

]
+ σ2v

)3

= 15
(
E
[
e2ai

])3
+ 45σ2v

(
E
[
e2ai

])2
+ 45ξ4vE

[
e2ai

]
+ 15ξ6v .

(66)

The expression for Z2 is related to the desired term
E[‖ui‖2HΣHg

2[ei]] through the equality

E
[
‖ui‖2HΣHg

2[ei]
]
= Z2E

[
‖ui‖2HΣH

]

= Z2E
[∥∥sign[ui]∥∥2Σ

]
.

(67)

Since

E
[
‖ui‖2HΣH

]
= E

[
uiH[ui]ΣH[ui]uTi

]

= E
[
sign[ui]Σ sign [ui]

T
]

= E
[∥∥sign[ui]∥∥2Σ

]
.

(68)

Substituting (63) and (67) into (55), we get

E
[∥∥w̃i

∥∥2
Σ

]
= E

[∥∥w̃i−1
∥∥2
Σ

]
+ μ2Z2E

[∥∥sign[ui]∥∥2Σ
]

− 2μZ1E
[
eHΣ
ai eai

]
.

(69)

Independence Assumption. If we assume that the regressor
sequence {ui} is i.i.d. then

E
[
eHΣ
ai eai

]
= E

[
w̃T
i−1ΣH[ui]uTi uiw̃i−1

]

= E
[∥∥w̃i−1

∥∥2
ΣHuTi ui

]
.

(70)
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In this way, the terms {E[eHΣ
ai eai],Z1,Z2} become all func-

tions of w̃i−1. Therefore, (69) becomes

E
[∥∥w̃i

∥∥2
Σ

]
= E

[∥∥w̃i−1
∥∥2
Σ

]
+ μ2Z2E

[∥∥sign[ui]∥∥2Σ
]

− 2μZ1E
[∥∥w̃i−1

∥∥2
ΣHuTi ui

]

= E
[∥∥w̃i−1

∥∥2
Σ

]
+ μ2Z2E

[∥∥sign[ui]∥∥2Σ
]

− 2μZ1E
[∥∥w̃i−1

∥∥2
Σ sign [ui]

Tui

]

= E
[∥∥w̃i−1

∥∥2
Σ

]
+ μ2Z2E

[∥∥sign[ui]∥∥2Σ
]

−
√

8
πσ2u

μZ1E
[∥∥w̃i−1

∥∥2
ΣR

]
.

(71)

We thus find that studying the transient behavior of the
SRLMF algorithm in effect has reduced to evaluating the
functions Z1 and Z2 and studying the resulting variance
relation (71). Let us now illustrate the application of the
above results for white and correlated input data.

White Input Data. For white input data R is diagonal, say
R = σ2uI. Therefore, if we select Σ = I, the variance relation
(71) becomes

E
[∥∥w̃i

∥∥2] = E
[∥∥w̃i−1

∥∥2] + μ2Z2E
[∥∥sign[ui]∥∥2]

−
√

8σ2u
π

μZ1E
[∥∥w̃i−1

∥∥2].
(72)

Now since

e2ai = w̃T
i−1u

T
i uiw̃i−1

= ∥∥w̃i−1
∥∥2
uTi ui

.
(73)

Substituting (73) into (66), we get

Z2 = 15
(
E
[∥∥w̃i−1

∥∥2
uTi ui

])3
+ 45σ2v

(
E
[∥∥w̃i−1

∥∥2
uTi ui

])2

+ 45ξ4vE
[∥∥w̃i−1

∥∥2
uTi ui

]
+ 15ξ6v

= 15
(
E
[∥∥w̃i−1

∥∥2
R

])3
+ 45σ2v

(
E
[∥∥w̃i−1

∥∥2
R

])2

+ 45ξ4vE
[∥∥w̃i−1

∥∥2
R

]
+ 15ξ6v

= 15
(
σ2uE

[∥∥w̃i−1
∥∥2])3 + 45σ2v

(
σ2uE

[∥∥w̃i−1
∥∥2])2

+ 45ξ4v σ
2
uE
[∥∥w̃i−1

∥∥2] + 15ξ6v .

(74)

Similarly by substituting (73) into (62), we get

Z1 = 3
(
σ2uE

[∥∥w̃i−1
∥∥2] + σ2v

)
. (75)

Substituting (74) and (75) into (72), we get

E
[∥∥w̃i

∥∥2] = E
[∥∥w̃i−1

∥∥2] + μ2
[
15
(
σ2uE

[∥∥w̃i−1
∥∥2])3

+ 45σ2v
(
σ2uE

[∥∥w̃i−1
∥∥2])2

+45ξ4v σ
2
uE
[∥∥w̃i−1

∥∥2] + 15ξ6v
]

× E
[∥∥sign[ui]∥∥2]− 3

√
8σ2u
π

μ

×
(
σ2uE

[∥∥w̃i−1
∥∥2] + σ2v

)
E
[∥∥w̃i−1

∥∥2].

(76)

Since E[‖ sign[ui]‖2] =M, the recursion in (76) becomes

E
[∥∥w̃i

∥∥2] = E
[∥∥w̃i−1

∥∥2] + 15μ2Mσ6u
(
E
[∥∥w̃i−1

∥∥2])3

+ 45μ2Mσ2v σ
4
u

(
E
[∥∥w̃i−1

∥∥2])2

+ 45μ2Mξ4v σ
2
uE
[∥∥w̃i−1

∥∥2] + 15μ2Mξ6v

− 6

√
2σ2u
π

μσ2u
(
E
[∥∥w̃i−1

∥∥2])2

− 6

√
2σ2u
π

μσ2vE
[∥∥w̃i−1

∥∥2]

= f E
[∥∥w̃i−1

∥∥2] + 15μ2Mξ6v ,

(77)

where

f = 1 + 3μ

⎛
⎝15μMσ2uξ

4
v − 2

√
2σ2u
π

σ2v

⎞
⎠

+ 3μσ2u

⎛
⎝15μMσ2uσ

2
v − 2

√
2σ2u
π

⎞
⎠E[∥∥w̃i−1

∥∥2]

+ 15μ2Mσ6u
(
E
[∥∥w̃i−1

∥∥2])2.

(78)

We see that the transient behavior of the SRLMF algorithm
is described by a nonlinear recursion in E[‖w̃i‖2] due to the
presence of the factor E[‖w̃i−1‖2] inside f .

Correlated Input Data. For uncorrelated data, the variance
relation (72) shows that only unweighted norms of w̃i and
w̃i−1 appear on both sides of the equation. However, for
correlated data, different weighing matrices will appear on
both sides of (72).

If Σ = I in (71), we get

E
[∥∥w̃i

∥∥2] = E
[∥∥w̃i−1

∥∥2] + μ2Z2E
[∥∥sign[ui]∥∥2]

−
√

8
πσ2u

μZ1E
[∥∥w̃i−1

∥∥2
R

]
.

(79)
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If Σ = R in (71), we get

E
[∥∥w̃i

∥∥2
R

]
= E

[∥∥w̃i−1
∥∥2
R

]
+ μ2Z2E

[∥∥sign[ui]∥∥2R
]

−
√

8
πσ2u

μZ1E
[∥∥w̃i−1

∥∥2
R2

]
.

(80)

Similarly if Σ = RM−1 in (71), we get

E
[∥∥w̃i

∥∥2
RM−1

]
= E

[∥∥w̃i−1
∥∥2
RM−1

]
+ μ2Z2E

[∥∥sign[ui]∥∥2RM−1

]

−
√

8
πσ2u

μZ1E
[∥∥w̃i−1

∥∥2
RM

]
.

(81)

The term E[‖w̃i‖2RM ] can be inferred from the prior weighting
factors{

E
[∥∥w̃i

∥∥2], E[∥∥w̃i

∥∥2
R

]
, E
[∥∥w̃i

∥∥2
R2

]
, . . . , E

[∥∥w̃i

∥∥2
RM−1

]}
,

(82)

by expressing RM as a linear combination of its lower-order
powers using the Cayley-Hamilton theorem. Thus let p(x) =
det(xI− R) denote the characteristic polynomial of R, say

p(x) = xM + pM−1xM−1 + pM−2xM−2 + · · · + p1x + p0.
(83)

Then we know that [18]:

RM = −pM−1RM−1 − pM−2RM−2 − · · · − p1R− p0I. (84)

Using this fact, we have

E
[∥∥w̃i

∥∥2
RM

]
= −p0E

[∥∥w̃i

∥∥2]− p1E
[∥∥w̃i

∥∥2
R

]

− · · ·

− pM−1E
[∥∥w̃i

∥∥2
RM−1

]
.

(85)

We can collect the above results into a compact vector
notation by writing (79)–(81) as

Wi = FWi−1 + μ2Z2Y, (86)

where theM × 1 vectors {Wi,Y} are given by

Wi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E
[∥∥w̃i

∥∥2]
E
[∥∥w̃i

∥∥2
R

]
...

E
[∥∥w̃i

∥∥2
RM−1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E
[∥∥sign[ui]∥∥2]

E
[∥∥sign[ui]∥∥2R

]
...

E
[∥∥sign[ui]∥∥2RM−1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(87)

and theM ×M coefficient matrix F is given by

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −
√

8
πσ2u

μZ1

0 1 −
√

8
πσ2u

μZ1

0 0 1 −
√

8
πσ2u

μZ1

...

0 0 1 −
√

8
πσ2u

μZ1

√
8

πσ2u
μp0Z1

√
8

πσ2u
μp1Z1 · · ·

√
8

πσ2u
μpM−2Z1 1 +

√
8

πσ2u
μpM−1Z1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (88)

As can be seen from (86), the transient behavior of the
SRLMF algorithm is described by an M-dimensional state-
space recursion as opposed to one-dimensional in the white
input case (72).

We know that, the mean-square error is defined as

MSE � lim
i→∞

E
[
|ei|2

]
, (89)

and the excess mean-square error is defined as

EMSE � lim
i→∞

E
[∣∣eai∣∣2], (90)

where

E
[∣∣eai∣∣2] = E

[∥∥w̃i−1
∥∥2
R

]
. (91)
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Table 1: Computational load per iteration for LMF and SRLMF
algorithms when data is real.

Algorithm + × Sign

LMF 2M 2M + 3

SRLMF 2M 2M + 2 1

Table 2: Computational load per iteration for LMF and SRLMF
algorithms when data is complex.

Algorithm + × Sign

LMF 8M + 1 8M + 5

SRLMF 6M + 1 6M + 3 2

The evolution of E[|eai|2] is described by the second entry of
the state vector Wi in (86). The resulting learning curve of
the filter is E[|ei|2] = σ2v + E[|eai|2].

We know that the mean-square deviation is defined as

MSD � lim
i→∞

E
[∥∥w̃i

∥∥2]. (92)

The evolution of E[‖w̃i‖2] is described by the first entry of
the state vectorWi in (86).

7. Computational Load

Finally, the computational complexity of the LMF and
SRLMF algorithms is discussed in this section. Tables 1
and 2 detail the estimated computational load per iteration
for LMF and SRLMF algorithms, respectively, for real- and
complex-valued data in terms of the number of real additions
(+), real multiplications (×), and comparisons with zero (or
sign evaluations). We know that one complex multiplication
requires four real multiplications and two real additions,
while one complex addition requires two real additions.

As can be seen from these two tables, the computational
complexity of the SRLMF algorithm becomes more inter-
esting when the data is complex-valued. The case of fading
channels inmobile communications is a good example where
this scenario can bring drastic improvement in complexity of
the SRLMF algorithm over the LMF algorithm.

8. Simulation Results

First, the performance analysis of the LMF and the SRLMF
algorithms is investigated in an unknown system identifica-
tion setup with wo = [0.227 0.460 0.688 0.460 0.227]T

as far as convergence, steady-state and transient behaviors are
concerned. Figure 1 depicts the convergence behavior of the
two algorithms for a signal to noise ratio (SNR) of 10 dB in
a uniform environment. This figure shows almost identical
performance for the two algorithms; no deterioration has
occurred to the SRLMF algorithm.

Second, in order to validate the theoretical findings,
extensive simulations are carried out for different scenarios.
While Figures 2–4 are for the case of the steady-state EMSE of
the SRLMF algorithm in a stationary environment, Figure 5
is for the case of the tracking EMSE in a nonstationary
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×103
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−4
−3
−2
−1
0

Iterations

M
SE

(d
B
)

LMF
SRLMF

Figure 1: Comparison of the MSE learning curves of LMF and
SRLMF algorithms in a uniform noise environment with SNR =
10 dB.
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(d
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Theory (small µ)
Theory (separation)

Figure 2: Theoretical and simulated MSE learning curves of
the SRLMF algorithm using white Gaussian regressors with shift
structure with SNR = 30 dB.

environment. In all of these figures the MSE is plotted versus
the step-size μ with a SNR = 30 dB.

In the case of Figure 2, the regressors, with shift structure,
are generated by feeding a unit-variance white process into a
tapped delay line. However, in Figure 3, the regressors, with
shift structure, are generated by passing correlated data into
a tapped delay line. Here, the correlated data are obtained
by passing a unit-variance i.i.d. Gaussian data through
a first-order autoregressive model with transfer function√
1− a2/(1 − az−1) and a = 0.8. To further test the validity

of the results, Gaussian regressors with an eigenvalue spread
of five without a shift structure are used, this is depicted in
Figure 4. As it can be seen from these figures, the simulation
results match very well the theoretical results ((19) and (20)).
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Figure 3: Theoretical and simulated MSE learning curves of the
SRLMF algorithm using correlated Gaussian regressors with shift
structure with SNR = 30 dB.
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Figure 4: Theoretical and simulated MSE learning curves of the
SRLMF algorithm using Gaussian regressors with an eigenvalue
spread = 5 without shift structure with SNR = 30 dB.

Third, to further validate the theoretical results in a track-
ing scenario, the results of Figure 5 depicts this behavior.
Here, the random-walk channel behaves according to

wo
i = wo

i−1 + qi, (93)

where qi is a Gaussian sequence with zero mean and variance
σ2q = 10−9 and wo

−1 = wo. As observed from Figure 5, the
simulation results corroborate closely the theoretical results
((34) and (36)).

Finally, we examine the transient behavior of the SRLMF
algorithm for the case of Gaussian data. Let us consider a
real-valued regression sequence {ui} with covariance matrix
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−35

−30

−25

−20

−15

−10

−5

0

Step-size (µ)

Simulation
Theory (small µ)
Theory (separation)

M
SE

(d
B
)

Figure 5: Theoretical and simulated MSE learning curves of the
SRLMF algorithm for a random-walk channel with SNR = 30 dB.
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Figure 6: Theoretical and simulatedMSD (a) andMSE (b) learning
curves of the SRLMF algorithm using white Gaussian regressors
with SNR = 50 dB.

R whose eigenvalue spread we set at ρ = 5. Let the SNR be
50 dB and the step-size is fixed at μ = 0.01.

The results in Figures 6 and 7 show the theoretical and
simulated MSD and MSE learning curves of the SRLMF
algorithm using white Gaussian regressors and Gaussian
regressors with an eigenvalue spread equal to 5. The theo-
retical values are obtained by using the expression (86). As
can be seen here, There is an excellent match between the
theoretical and simulated results.
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Figure 7: Theoretical and simulatedMSD (a) andMSE (b) learning
curves of the SRLMF algorithm using Gaussian regressors with an
eigenvalue spread = 5, SNR = 50 dB.

9. Conclusions

A new adaptive algorithm, called the SRLMF algorithm, has
been presented in this work. Expressions are derived for the
steady-state EMSE in a stationary environment. A condition
for the mean convergence is also found, and it turns out
that the convergence of the SRLMF algorithm strongly
depends on the choice of initial conditions. Also, expressions
are obtained for the tracking EMSE in a nonstationary
environment. An optimum value of the step-size μ is also
evaluated. Moreover, an extension of the weighted variance
relation is provided in order to derive expressions for the
mean-square error (MSE) and the mean-square deviation
(MSD) of the proposed algorithm during the transient
phase. Monte Carlo simulations have shown that there is
a good agreement between the theoretical and simulated
results. The simulation results indicate that both the SRLMF
algorithm and the LMF algorithm converge at the same rate
resulting in no performance loss. The analysis developed
in this paper is believed to make practical contributions to
the design of adaptive filters using the SRLMF algorithm
instead of the LMF algorithm in pursuit of the reduction in
computational cost and complexity whilst still maintaining
good performance.

Acknowledgment

The authors acknowledge the support provided by King
Fahd University of Petroleum and Minerals to carry out this
work.

References

[1] H. Sari, “Performance evaluation of three adaptive equal-
ization algorithms,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP
’82), vol. 7, pp. 1385–1389, May 1982.

[2] N. J. Bershad, “On the optimum data nonlinearity in LMS
adaptation,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 34, no. 1, pp. 69–76, 1986.

[3] C. P. Kwong, “Dual sign algorithm for adaptive filtering,” IEEE
Transactions on Communications, vol. 34, no. 12, pp. 1272–
1275, 1986.

[4] O. Macchi, “Advances in adaptive filtering,” in Digital Com-
munications, E. Biglieri and G. Prati, Eds., pp. 41–57, North-
Holland, Amsterdam, The Netherlands, 1986.

[5] V. J. Mathews and S. H. Cho, “Improved convergence analysis
of stochastic gradient adaptive filters using the sign algorithm,”
IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 35, no. 4, pp. 450–454, 1987.

[6] N. A.M. Verhoeckx and T. A. C.M. Claasen, “Some considera-
tions on the design of adaptive digital filters equipped with the
sign algorithm,” IEEE Transactions on Communications, vol.
32, no. 3, pp. 258–266, 1984.

[7] E. Eweda, “Almost sure convergence of a decreasing gain
sign algorithm for adaptive filtering,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 36, no. 10, pp.
1669–1671, 1988.

[8] E. Eweda, “Tight upper bound of the average absolute error
in a constant step-size sign algorithm,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 37, no. 11, pp.
1774–1776, 1989.

[9] T. A. C. M. Claasen and W. F. G. Mecklenbrauker, “Com-
parison of the convergence of two algorithms for adaptive
FIR digital filters,” IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 29, no. 3, pp. 670–678, 1981.

[10] N. J. Bershad, “Comments on ’comparison of the convergence
of two algorithms for adaptive FIR digital filters’,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 33,
no. 6, pp. 1604–1606, 1985.

[11] W. A. Sethares, I. M. Y. Mareels, B. D. O. Anderson, C.
R. Johnson Jr., and R. R. Bitmead, “Excitation conditions
for signed regressor least mean squares adaptation,” IEEE
Transactions on Circuits and Systems, vol. 35, no. 6, pp. 613–
624, 1988.

[12] E. Eweda, “Analysis and design of a signed regressor LMS
algorithm for stationary and nonstationary adaptive filtering
with correlated Gaussian data,” IEEE Transactions on Circuits
and Systems, vol. 37, no. 11, pp. 1367–1374, 1990.

[13] S. Dasgupta and C. R. Johnson Jr., “Some comments on the
behavior of sign-sign adaptive identifiers,” Systems and Control
Letters, vol. 7, no. 2, pp. 75–82, 1986.

[14] S. I. Koike, “Analysis of the sign-sign algorithm based on
Gaussian distributed tap weights,” in Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’98), vol. 3, pp. 1673–1676, May 1998.

[15] D. L. Duttweiler, “Adaptive filter performance with nonlin-
earities in the correlation multiplier,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 30, no. 4, pp. 578–
586, 1982.

[16] A. Gersho, “Adaptive filtering with binary reinforcement,”
IEEE Transactions on Information Theory, vol. 30, no. 2, pp.
191–199, 1984.

[17] S. Koike, “Effects of impulse noise at filter input on perfor-
mance of adaptive filters using the LMS and signed regressor



12 EURASIP Journal on Advances in Signal Processing

LMS algorithms,” in Proceedings of the International Sym-
posium on Intelligent Signal Processing and Communications
(ISPACS ’06), pp. 829–832, December 2006.

[18] A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley Inter-
science, New York, NY, USA, 2003.

[19] E. Walach and B. Widrow, “The Least Mean Fourth (LMF)
adaptive algorithm and its family,” IEEE Transactions on
Information Theory, vol. 30, no. 2, pp. 275–283, 1984.

[20] A. Zerguine, C. F. N. Cowan, and M. Bettayeb, “LMS-LMF
adaptive scheme for echo cancellation,” Electronics Letters, vol.
32, no. 19, pp. 1776–1778, 1996.

[21] T. Aboulnasr and A. Zerguine, “Variable weight mixed-
norm LMS-LMF adaptive algorithm,” in Proceedings of the
33rd Annual Asilomar Conference on Signals, Systems, and
Computers, pp. 791–794, Pacific Grove, Calif, USA, October
1999.

[22] M. Moinuddin and A. Zerguine, “Tracking analysis of the
NLMS algorithm in the presence of both random and cyclic
nonstationarities,” IEEE Signal Processing Letters, vol. 10, no.
9, pp. 256–258, 2003.

[23] A. Zerguine, M. K. Chan, T. Y. Al-Naffouri, M. Moinuddin,
and C. F. N. Cowan, “Convergence and tracking analysis of
a variable normalised LMF (XE-NLMF) algorithm,” Signal
Processing, vol. 89, no. 5, pp. 778–790, 2009.

[24] A. Zerguine, M. Moinuddin, and S. A. A. Imam, “A noise
constrained least mean fourth (NCLMF) adaptive algorithm,”
Signal Processing, vol. 91, no. 1, pp. 136–149, 2011.

[25] R. Price, “A useful theorem for nonlinear devices having
Gaussian inputs,” IRE Transactions on Information Theory, vol.
4, no. 2, pp. 69–72, 1958.

[26] S. H. Cho, S. D. Kim, and K. Y. Jeon, “Statistical convergence
of the adaptive least mean fourth algorithm,” in Proceedings
of the 3rd International Conference on Signal Processing (ICSP
’96), vol. 1, pp. 610–613, October 1996.


	1. Introduction
	2. Algorithm Development
	3.Mean-Square Analysis of the SRLMF Algorithm
	4. Convergence Analysis of the SRLMF Algorithm
	5. Tracking Analysis of the SRLMF Algorithm
	6. Transient Analysis of the SRLMF Algorithm
	6.1. Weighted Energy-Conservation Relation
	6.2.Weighted Variance Relation.

	7. Computational Load
	8. Simulation Results
	9. Conclusions
	Acknowledgment
	References

