Hindawi Publishing Corporation

EURASIP Journal on Advances in Signal Processing
Volume 2011, Article ID 412036, 14 pages
doi:10.1155/2011/412036

Research Article

Performance of Post-Demodulator Adaptive Filters for
FSK Signals in a Multipath Environment

Shu-Ting Lee,! Sally L. Wood,! Michael J. Ready,” and John R. Treichler?

I Department Of Electrical Engineering, Santa Clara University, Santa Clara, CA 95053, USA
2 Corporate Division, Applied Signal Technology, Sunnyvale, CA 94086, USA

Correspondence should be addressed to Shu-Ting Lee, sleel@scu.edu

Received 2 July 2010; Revised 17 October 2010; Accepted 11 December 2010

Academic Editor: Antonio Napolitano

Copyright © 2011 Shu-Ting Lee et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

FSK continues to be an important component of modern communication systems, and discoveries of lower impact methods for
mitigating performance degradation due to multipath propagation are needed in many application areas. Previous work suggested
the benefit of a simple post-demodulator LMS filter but the focus was narrow and analysis was hindered by the nonlinearity
of the demodulation process and the nonstationary signal environment. This paper significantly extends understanding of the
post-demodulator filter and demonstrates that the statistical assumptions that align BER performance with MSE performance
do not apply in this context, and that simply decreasing the MSE might increase the BER rather than decrease it. An alternative
post-demodulator adaptive filter with similar complexity to the LMS filter is proposed which shows improved BER performance.
Analysis provides a simplified interpretation of the interaction of system and channel model parameters which may form the basis
for more general use of a post-demodulator adaptive filter.

1. Introduction

Frequency shift keying (FSK) has been used since virtually
the dawn of both wired and wireless communications to
carry data signals over both short and long distances [1].
The reasons for its continued use in the modern context of
wireless communication and optical fiber are the same as for
its initial use. It is simple to generate, it is robust in the pres-
ence of noise, and it is resistant to degradations induced by
nonlinear amplifiers and other circuit elements [2-5]. These
attributes will motivate its use in future telecommunications
systems as well. As transmission speeds grow, however,
FSK-based radio systems must address another form of
impairment as well, which is self-interference induced by
multipath propagation.

Most modern receivers include adaptive equalizers to
mitigate multipath-induced dispersion which is especially
prevalent in urban areas. In the case of frequency-modulated
signals, a constant modulus algorithm (CMA) adaptive filter
is typically placed between the received signal and the FM
demodulator to minimize envelope fluctuations caused by
a multipath channel [6-8]. To be effective the CMA filter

length must be long enough to reasonably represent the
inverse channel filter, which is typically about three times
the delay spread of the channel [8, 9]. For a multipath
channel with long-delay reflections, the combined effect of
a long filter length, complex multiplications for coefficient
updates, and slow adaptation time [10] may be too heavy
a computational burden in applications with limited power
or computing resources. The alternative of optimal detection
using a maximum likelihood detector [11] or the Viterbi
algorithm [12, 13] is also computationally intensive.

Ready and Harp [14] introduced the novel alternative of
a post-Demodulator (post-D) architecture for FSK signals
by placing a real-valued adaptive filter after the nonlinear
demodulator block in the receiver. Although this adaptive
filter, driven by the least mean square (LMS) adaptation
algorithm of Widrow and Hoff [15], could not function as
a traditional equalizer, empirical results showed significant
performance and computational advantages compared to
the commonly used pre-Demodulator (pre-D) architecture
using the same amount of computation. Results were
demonstrated for several multipath channels derived from
physical measurements of signals received in multipath



environments. Ready and Harp’s simulations with these
channel models representing moderate and severe multipath
indicated that relatively short post-D filters improved per-
formance even when the filter length was much shorter than
a channel inverse filter. However, they did not investigate
performance for arbitrary multipath channels.

The post-D filter approach is counterintuitive in several
ways. This application is not a typical linear channel
equalization or system identification application because the
nonlinear frequency demodulator between the channel and
the adaptive filter destroys any linear relationship between
system parameters and the statistical characteristics of the
received signal. However, it is possible that although normal
assumptions of linearity and stationarity do not apply, there
may be signal correlations that could be used to advantage by
an LMS filter.

Although results from some special cases have been
reported [14, 16], a unified understanding of the behavior
and performance of a post-D filter is still an open question.
The shorter filter cannot directly compensate for long
channels, and because it operates on a real-valued signal, it
cannot match the spectrum of the complex envelope signal
which does not have complex conjugate symmetry. Chung et
al. [16] used a time varying model to bound the behavior of
the post-D LMS adaptive filter. However that analysis only
derived bounds on the time variation for channel models
limited to a single reflection with a very small magnitude and
delay. It did not provide any insight about the function of the
post-D filter or the expected performance for longer delays
or stronger reflections.

For the post-D architecture to become a useful compo-
nent for system design, the performance benefit of using
it must be understood as a function of design parameters
across a wide range of typical application environments. In
FSK applications, the impact of noise and interference from
multipath addition of delayed signals before demodulation
is difficult to model analytically because the nonlinearity
of the demodulator block creates complex interrelationships
between parameters of the channel model, the added noise,
and the modulation. Because of the nonlinear demodulator
block, the impact of individual parameters cannot be
analyzed in isolation, and a strategy is needed to make use-
ful generalizations in this nonstationary nonlinear context
[17].

In this paper we have explored the general behavior of a
post-D LMS filter and derived and demonstrated results that
can be applied to longer channels with more severe multi-
path. Our work initially uncovered the lack of validity of the
assumption in previously reported results that the minimum
mean squared error (MSE) could be used as a performance
measure which would correspond to a minimum bit error
rate (BER) condition. While this assumption is valid in linear
systems where Gaussian statistical models are reasonable, in
the nonstationary nonlinear environment of the post-D filter
a number of unexpected and discouraging characteristics
of the relationship between MSE and BER were discovered.
Investigation of the relationship between BER for multipath
channels and typical measures of channel impact led to a
better understanding of equivalent sets of parameters and
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simplified further analysis for a wide range of mild and
moderate channel models.

We show that simply inserting an LMS adaptive filter
after the demodulator may not result in minimizing the BER
despite uncomplicated convergence to the correct minimum
MSE. There is a wide variation in performance depending
on the channel model, and, in all but the mildest multipath
models, there is danger that the post-D filter can increase the
BER. Based on further analysis, two different modifications
of the basic LMS filter are developed which are not compu-
tationally demanding. Both improve performance compared
to the LMS filter, and one shows significant improvement in
BER in both training and decision-directed operation.

2. Background

In general, an FSK signal shifts the carrier frequency by
an amount fy = 1/2 - Af - b[k], where Af is the
frequency deviation and the message symbols are b[k] =
+1,+3,..., =(M — 1). When this type of FSK signal is imple-
mented by switching among oscillators with desired frequen-
cies, it requires a relatively large bandwidth for accurate
transmission compared to the more efficient continuous-
phase FSK (CPESK) [18-20] obtained as a special case of
continuous phase modulation (CPM) [21]. CPM signals
exhibit the cyclostationarity property which poses research
challenges for the design and analysis of communication
systems, such as blind equalizers [22-25]. The CPM signal
starts with a pulse amplitude modulation (PAM) signal as
shown in (1) where T is the baud interval and g(¢) is the pulse
shaping filter selected to limit the bandwidth of the signal:

x(t) = > blklg(t — kT). (1)
k

A raised cosine (RC) pulse-shaping filter is often chosen
for g(t) to fit Nyquist’s criterion for zero intersymbol
interference (ISI) [26]. In most communication systems,
the RC pulse shape is factored into two square-root-raised
cosine (SRRC) pulse shapes as shown in (2) for bandwidth
limitation at both the transmitter and the receiver:

) = 4y cos((1+y)mt/T) + Tsin((1 — y)mt/T)/(4yt)
8V = 2UT 1— (4pt/T)’

(2)

An infinite duration-matched SRRC filter pair minimizes the
effects of ISI and channel noise [27]. However, in a practical
implementation, the pulse shape is windowed, which results
in nonzero side lobes in the frequency domain. The roll-off
factor, y, with 0 < y < 1 determines the excess bandwidth of
the filter.

From (1) the integral of x() scaled by the modulation
index h is used in (3) to generate ¢(f), the phase of
the complex envelope s(t) in (4) which has a normalized
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amplitude of 1. This complex envelope modulates a carrier
frequency to produce the transmitted signal:

o(t) = Ztht x(1)dr, (3)
s(t) = /90, (4)

A baseband equivalent multipath channel ¢(¢) for Ny indirect
paths can be modeled by the impulse response shown in (5)
where the reflection coefficients, «;, are in general complex
and t; represents the delay to the ith reflection. The channel
model has been normalized for a unity gain for the direct
path:

Ny
c(t) = 8(t) + > aid(t — ;). (5)

i=1

At the receiver it is assumed that the carrier frequency is
accurately detected and used to recover r(¢) in (6), which is
the sum of the complex envelope of the transmitted signal
convolved with the baseband equivalent multipath channel
model and an added noise, #(f). It is also assumed that
the additive noise is uncorrelated with s(¢). Here 0(t) is the
instantaneous phase of the signal observed at the receiver.
The received signal can be frequency demodulated using (7),
where r(t) has been written in terms of its real and imaginary
parts as r(t) = rr(t) + jri(t):

r(t) = s(t) * c(t) +n(t) = a(t)el?, (6)
sy Lod _ b od ()
O = a0 = g g 1<rR(t)) o)
S AU LR OO

3. Post-D Filter

A discrete time receiver samples r(t) with a sampling interval
T; = T/L to produce r[n] as shown in (8). The discrete
time demodulator in (9) uses digital filters to estimate
the derivatives to implement the demodulator of (7). The
noise and multipath interference can cause variation in the
amplitude of r[n], and a limiter follows the demodulator to
protect against very large output values due to an infrequent
very small amplitude of r[n]. We assume for simplicity that
the receiver knows the carrier frequency and there is no
carrier drift, so only the channel and noise alter r[n]:

Na
r(n] = s[n] + Z ais[n — ] +ylnl, (8)
i—1
a1 - L reln] - 7i[n] = ri(n] - 7g[n]
Ml = om r(n])? - O

To perform simulations a corresponding discrete time
model for s[n] following the models of (1) to (4) is

¥ ninl|
b n i
[m]. -g[n] x[n] -NII:gAD s[n]II ] ° : .

Transmitter

F1GURE 1: Discrete time transmitter and channel models.

needed. A block diagram of this model is shown in Figure 1.
The message signal b[m] is upsampled by factor of L for
a sampling interval of T to create b,[n] which is then
convolved with the sampled pulse-shaping filter g[n] to
generate x[n] as shown in (10). The pulse-shaping filter
has been windowed to 2K baud intervals. The trapezoidal
discrete time approximation to integration is used in (11)
to compute the sampled complex envelope signal s[n] given
by (12). Then, using a known carrier frequency, the complex
envelope signal s[n] creates the transmitted signal:

x[n] = SN0 blmlgln —mL]

<KL _ (10)
_Zkz—KLg[k]bu[n k],

n—1
ol] =2nh% (0.5-x[n]+ > x[k]) (11)
k

s[n] = e/l (12)

The pulse-shaping filter for the upsampled data signal
can be interpreted as L polyphase filters with length reduced
by a factor of L which creates a cyclostationary output x[n].
Using gi[k] = g[kL +i], (10) can be rewritten as (13) where
K; = floor((KL — i)/L) and i indexes the L polyphase filters
from0to L — 1:

K

x[mL+1i] = Z gilklb[m — k]. (13)
k=—K

The discrete channel c[n] defined in (14) is obtained from
(5):

Na
c[n] =d[n] + Za,-(S[n - n;l. (14)

i=1

Performance of a system is measured by BER where
errors may be due to the added noise, #[#], and the frequency
selective effects of the channel, c[n]. For 2-level FSK, let b[m]
be the message signal obtained from x[#]. The BER is given
by

x b 1
P, sz\ m] - b[m]|. (15)

A post-D adaptive filter shown in Figure 2 will use the

LMS algorithm [17] to minimize the mean-squared value of

e[m]. Let w, be the filter of L coefficients which produces
output y[n] using input X,, the nth snapshot of the input
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FIGURE 2: FM demodulator and post-D adaptive filter.

data vector given by (16). This snapshot holds ¢, data
samples following x[n] corresponding to a bulk delay to
allow for cases in which the amplitude of a reflection with
n; < ¢y is larger than the direct path amplitude:

% = [Rln+ &), &l 20— L+ 146]] (16)

The adaptive filter output y[n], given by (17), is sub-
tracted from the desired output b[m] to create an error e[m]
given by (18):

y[n] =wix,, (17)
e[m] = b[m] — y[mL]. (18)

Here y[mL] is the downsampled output of the post-D filter.
At every Lth sample, the weight vector is updated [17] using
(19) to minimize the average squared error, e; = E[e?[m]].
The adaptation constant y controls the rate of convergence
and misadjustment error:

wn+L=wn+y-e[%] X (19)

Let Rg; be the autocorrelation matrix of the input data
vector X, computed from only the data vectors used in
(19). Due to the cyclostationary properties caused by the
upsampled data signal and polyphase pulse shaping filter, Ry
will not in general be Toeplitz. Following the typical analysis
of an LMS adaptive filter, for convergence approaching
the Wiener filter, wig, as shown in (20), it is necessary
that the adaptation constant y be less than 2/An. [17],
where Apmax is the maximum eigenvalue of Rg. Here p is
the cross-correlation vector between the input X, and the
desired output b[n/L] as shown in (21) where E[-] denotes
the stochastic expectation. For a decision-directed feedback

system, the estimated message bit, g[m], made by a slicer can
replace b[m] in (18):

Wis = A_;(l “ps (20)

sz[ﬁn-b[%]]. 1)

For long channels, it is reasonable to assume that there
should be no correlation between s[n] and s[n + n;] for
a finite duration pulse shaping filter and independently
distributed message bits. From (14) for N; = 1, the difference
between the received and transmitted signal is the reflection
and noise term, a;s[n — n;] + n[n], which may cause a phase
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and amplitude difference between r[n] and s[n]. If s[n — n]
is not correlated with s[n], then the expected value of the
magnitude of the received signal error will be the magnitude
of ays[n — ny] + nln]. Since s[n — n;] and #[n] are assumed
to be uncorrelated, the power of the interference term can be
represented by (22) where 02 denotes the power of the added
noise. Thus for long channels we expect the performance to
strongly depend on |« | but have little dependence on #;:

E[|oc15[n—n1]+f7[n]|2] = laq|® + o2 (22)

4, Results

Analysis and simulation studies were used to address the
questions of when and if a post-D adaptive filter could
provide performance improvement in a multipath envi-
ronment, how much improvement could be expected, and
what generalizations would be possible in this nonlinear
context. Because of the nonlinear characteristics of the FM
demodulator between the channel and the adaptive filter, it
cannot be assumed that the performance impact of channel
parameters, SNR levels, modulation index, and adaptive
filter structure could be studied independently. Simulation
experiments were designed to determine the effects of the
interaction of the parameters and to validate analytical
predictions.

To systematically investigate the relationship of the many
parameters to MSE and BER performance, the discrete time
models in Figures 1 and 2 were used. A square-root-raised
cosine filter of width 12T was used for g[n]. Although Chung
et al. [16] implied that the choice of modulation index was
not significant, results for two different modulation indices
were compared for most of the questions addressed below.
One modulation index, h;, was selected to be close the
modulation index which produces Minimum-shift keying
(MSK) [28] and the other, h,, expanded the signal bandwidth
to approach the limit of the unaliased bandwidth at a
sampling interval of T; = T/2. MSK, a special case of
CPFSK signaling with frequency deviation equal to 1/2 the
bit rate, has been investigated and shown to have equivalent
bandwidth and error probability to Offset Quadrature Phase
Shift Keying (OQPSK) while shaping and filtering the data
pulses [29].

The first question addressed was whether any generaliza-
tions could be made about the impact on BER of channel
length or number of reflections. Previous analytical work
[16] has focused on a model with a single reflection and a
short delay of 2T, or one symbol interval. However, because
of the nonlinear demodulation block, it is not clear that
conclusions drawn from the case of a single reflection in
a short channel would apply to channels with multiple
reflections and more realistic lengths. Without some way
to draw general conclusions about length or number of
reflections, it would be almost impossible to develop general
design rules for use of a post-D filter.

To empirically explore the performance impact of the
number of reflections in a multipath channel, the BER was
measured for simulated random channels using the channel
model of (14) with Ny set to 1,2,6, or 10 at several SNR
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levels. For each channel three general measures of channel
impact, the total power of the multipath reflections, Py,
the mean delay 74, and the rms delay spread, Tms, were
computed using the definitions in (23) [30, 31]. Each of the
N, multipath reflections of the baseband equivalent channel
c[n] is defined by a complex-valued reflection coefficient
ar and a delay ni. To simulate both mild and moderate
multipath channels, the amplitude of the reflections was
uniformly distributed between 0.1 and 0.5 with phase
uniformly distributed over 0 to 27. The delay intervals from
the main signal to the multipath reflection were uniformly
distributed over the interval 107, to 100T,:

Na

Py = > ( lol?),

k=1

Na
1 2
g = — D |ax| T,
Py k; ’ (23)

]
Trms = (P > ocklnkTS)2> — 12

M j—

Comparison of the observed average BERs for each
random channel with the corresponding channel measures
showed no clear relationship between the BER and either the
mean delay 74 or the rms delay spread 7;ms. However, in all
cases the total noise and interference power, P;, was a good
predictor of BER, where P; = Py + Py, is the sum of the noise
power, P, and the total power of the multipath reflections,
Pyr. For an SNR of 15 dB, Figure 3 shows a scatter plot of the
BER at the demodulator output of each random channel as a
function of P;. The symbols of the plotted points identify the
number of reflections in the channel model. As the number
of reflections increases, Py tends to increase on average.
The plot shows a smooth trajectory of overlapping regions
dominated by a specific number of reflections indicating
that the BER is clearly dependent on the magnitude of
the reflection coefficients and the noise level but relatively
independent of the number of reflections or the channel
delay over the range of 5 to 50 symbol intervals. Similar plots
for lower values of SNR overlap this plot but do not have
observation points at the lowest values of P; because of the
higher values of P, at lower SNR levels.

Based on these results, initial investigations focused on
channel models with a single reflection in the confidence that
the behavior should reasonably extend to multiple reflections
at the same value of P;. In addition, an SNR of 15 dB is used
for most results presented in this paper because it allows a
wide range of BER performance depending on Py;. However,
a range of SNR values were investigated and included in
discussion of the results presented.

There is no simple analytical representation of the effect
of the channel parameters on the BER of the demodulator
output, which is the input to the adaptive filter, and the
adaptive filter minimizes e?[m], not the BER. The perfor-
mance of the LMS filter will depend on the autocorrelation
of the input signal, Rg, and the correlation of the input
signal and the desired output, p, as shown in (20) as well

5
10°
1072 L
~
[£3]
m
1074 L
106 “E . . .
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Py
Ny =10 O Ng=2
A Nij=6 O Ng=1

Figure 3: BER versus interference and noise power for an SNR of
15 dB.

as the statistical characteristics of the input signal. Although
the nonlinearity of the demodulator block would make
the channel equalization typical of a pre-D CMA filter
impossible for a real-valued post-D filter, a post-D LMS
filter could still in principle improve performance by taking
advantage of any correlation of a desired signal within a time
window of the received signal. The phase of the reflections
and the length of the channel did not appear to have much
effect on the BER compared to the effect of P, in Figure 3, but
it is reasonable to expect that they might affect the correlation
functions and thus the performance of a post-D filter.

For sequences in which the message bits are iid., a
system with perfect modulation and demodulation and no
multipath channel or noise should produce a correlation
between the demodulator output and the desired message
bit that is identical to the pulse shaping filter g[n]. However
the impact of the channel and noise before the demodulator
block is not easily predicted. Typical correlation between the
desired message bit and the demodulator output for a signal
degraded by a multipath channel with a single reflection is
shown in Figure 4 for n; = 20. Results for |a;| = 0.5 with
three different phase values are shown for both modulation
index values in Figure 4(a). Results for h = h; are shown in
solid lines while results for & = h; are shown in dashed lines.
In all cases the correlation due to the multipath reflection
is clearly visible at a lag of 20 although closer examination
of the correlation in Figure 4(b) shows that the shape of the
correlation function at a lag of 20 is dependent on the phase
of the reflection coefficient and the modulation index.

Similar results for other values of n; show that the length
of the channel affects the shape as well as the lag position of
the secondary peaks. For example, results for h = h; when
1y is set to 16 or 24 are very similar in shape to those shown
by the solid lines in Figure 4 for n; = 20. However, results
for n; = 18 would show that although the same shapes



occur, they occur at different phase values of the reflection
coefficient. The results for «; = 0.5 and «; = —0.5, which
are almost identical for n; = 20, are seen at a«; = 0.5 for
ny = 18. For h = h; the shapes for &y = 0.5 and &y = —0.5
are different at n; = 20 and correspond to the opposite
values of a; at n; = 18. Thus, changing the phase of the
reflection coefficient in the channel model can produce the
same changes in the correlation function as changing the
delay of the reflection or the modulation index.

For values of n; large enough to avoid overlap of the
main and secondary peaks of the correlation function, the
amplitudes and shapes of the correlation function are similar
to those shown in Figure 4; so analysis of a small subset of
channel models can be used to predict behavior of channels
with much longer delays. It is noted that the analytical
work of Chung focused on n; = 2, which is a special case
because of the high degree of overlap and correlation of
the added signal. Thus results for n; = 2 are not likely to
be typical of results for longer channels delays, and later
simulations demonstrate this. Regardless of the complex
relationship between the shape of the correlation function
and the channel parameters and modulation index, there is
a significant level of correlation that could be used by an
adaptive filter.

These observations are consistent with a mathematical
representation of X(t). Consider the case of a single reflection
with a; = |a;]e/® from (6):

r(t) = e + | [P 4y (1),
(24)
F(t) = jo(1)el?D + jlag [t — t)el = T0 4 p(1).

Using (7) in the noise-free case we can write X(¢) in terms of
x(t) and x(t — t;) where from (3) ¢(t) = 27h x(t):

2(t) = x(£) (1 + |y | cos(Aep(t, 11, ¢1)))
1+2]a;| cos(Ap(t,t1, 1)) + lau |

x(t — tl)(loc1|2 + lay] cos(Ap(t, t1,¢1))>
1+2|ar| cos(Ag(t, t1,¢1)) + e ]?

(25)

Here Ag(t, 1, ¢1) = ¢(t) —(t—1t1)+¢;. Although the factors
multiplying x(t) and x(t—¢,) are time varying and dependent
on the message sequence, the impact of the modulation
index, the channel delay n;, the message sequence, and the
phase of a; are always contained within A@(¢, t1,¢;). These
factors may have complex interactions, but the range of
the impact is limited by the cosine function. However the
magnitude of a; has impact on the relative contribution of
x(t) and x(¢ — t;) to x(¢). This is consistent with observations
included in Figures 3 and 4 and further justifies the validity
of using a small subset of values of h, 1, and ¢, to represent
general behavior.

Adaptive filters were tested for a range of delay values
for an SNR of 15dB with «; = 0.5 corresponding to
moderate multipath in a reasonable operational range of
performance. Simulations for reflection coefficients with
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FIGURE 4: (a) Expected value of X, when b[m] = +1 for n; = 20 at
SNR = 15dB; (b) expanded scale view of (a) at a lag= n;.

smaller magnitudes of «; showed results similar to those
reported here but with lower BERs. The behaviors observed
as the delays vary are representative of the behaviors due to
phase changes in the reflection coefficient. Adaptive filters of
several lengths were placed between the demodulator output
and the decision block as shown in Figure 2. The filters
were initialized to have one tap set to 1.0 and all the rest
set to 0.0 so that adaptation would start from the case of
no post-D filtering and a fixed transport delay. To avoid
numerical problems from an r[n] value instantaneously close
to zero, a limiter was placed at the demodulator output. The
adaptation constant y was set to 0.0005, which was the value
used by Chung. However, simulations at other values of y
as well as computation of the stable range of y showed that
this was a somewhat conservative choice at the power levels
of these simulations. Increasing ¢ by a factor of 5 resulted
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in a corresponding decrease in convergence time without
significant impact on convergence values or misadjustment.

Tests for four filter lengths are shown in the results that
follow. A filter of length 3 with an initialization of 1.0 at
the center tap was used to test the limit of the hypothesis
that a very short LMS adaptive filter could produce benefits
as proposed by Ready and Harp [14]. This filter spans only
the large central peak of the correlation function shown
in Figure4. It is also short enough to easily allow the
exact computation of the filter coefficients that produce the
minimum BER. Filter lengths of 8, 16, and 32 were tested
with initializations of 1.0 at the quarter length position to
show the impact of filter length and to allow comparison
with previously published results. Ready and Harp’s work
[14] indicated that a relatively short post-D adaptive filter
of length 8 to 32 was found to be effective in reducing
the MSE for physically observed channels with total delays
much longer than the adaptive filter length. Chung et al.
[16] used filter lengths of 10 for a reflection delay of 27Ts.
Although results for other filter lengths are not included in
the following discussion, the results for a filter length of 8 are
representative of other short filters with lengths from 5 to 10.

Multipath channel delays from 2 to 20 were selected
for simulation. The lower values were used for comparison
with other published work but were not expected to be
representative of longer channels. For delays larger than 8 or
10, the results were expected to be similar to results for longer
channels with appropriate selection of modulation index and
phase of the reflection coefficient. In addition for the two
longest filter lengths, this range of delay values would show
the effect of the filter length compared to the extent of the
correlation function.

The results of this set of simulations showed a number
of unexpected results and provided some insight into the
variability of previously reported results obtained when only
a narrow set of examples were explored. Figure 5 shows both
the BER and MSE for simulations for an SNR of 15dB and a
modulation index of h = h; using a channel with a; = 0.5
and n; = 10. The MSE shown in Figure 5(b) converges
for all filter lengths with the two longest filters producing
the lowest values of MSE. However, the trajectories of the
corresponding BERs did not follow the steadily decreasing
trajectory of the MSE and instead attained a number of local
maxima and minima. In Figure 5(a) the BER when no post-
D filter is used is 0.00041, and after convergence of the LMS
filter, all filters have an increased BER rather than a decreased
BER. The length 32 filter has the lowest BER at convergence,
but its BER of 0.00113 more than 2.5 times higher than the
original BER. The BER for the shortest filter is more than ten
times as large as the initial BER. Exact computation of the
autocorrelation and crosscorrelation was used to compute
the Weiner filter in (20) and verify the correct convergence
in these simulations.

Figure 6 shows similar results for the case of n; = 12.
Although the MSE behavior is similar to that of Figure 5, here
the BER at convergence is higher for the longer filters than it
is for the shorter filters. Even though it has the lowest MSE,
the longest filter has the highest BER rate at convergence at
0.00092. This is just slightly lower than the initial BER of
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FiGUrE 5: (a) BER and (b) Average MSE of four post-D LMS filters
with SNR = 15 dB, modulation index & = h;, and channel model
a; = 0.5and n; = 10.

0.00113 and well above the minimum observed BER. The
lowest converged BER is 0.00072 for the shortest filter.

These surprising results are important because pre-
viously reported analyses of the post-D filter implicitly
assumed that minimizing e?[m] would minimize BER, and
so only MSE or cluster variance was reported. The BER in
many applications where Gaussian statistical models apply
is expected to follow the MSE [32], but for a post-D
filter an assumption of Gaussian statistical models is not
reasonable, and previous work using MSE or cluster variance
as a performance measure would miss this detrimental and
unexpected behavior of the post-D filter with respect to the
BER. Changing the channel delay #; by only two sample time
intervals caused a large quantitative difference in converged
BER as well as a large qualitative difference in that for one
value of n; the longest filter was the best performer while
at the other value of n; the shortest filter performed best.
Considering these results, it is not clear how a post-D LMS
filter could be used reliably in this context.
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FIGURE 6: (a) BER and (b) Average MSE of four post-D LMS filters for the case in Figure 5 with n; = 12.
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F1Gure 7: Converged LMS BER for #; = 2 to 20 for modulation indices (a) h = h; and (b) h = h,.

Simulations to systematically determine the BER for
converged LMS filters as a function of n; are shown in
Figure 7 for both modulation indices at the four filter lengths
shown in Figures 5 and 6. The BER for a system without
a post-D filter is also included as an unmarked dashed line
for reference. Figure 7(a), which uses h = h;, shows a cyclic
pattern of BER for values of n; larger than 8. This pattern
is consistent with correlation results such as those shown
in Figure 4. There is a wide range of BER performance as a
function of n;, and the converged LMS filter does not always
improve the BER. The performance of the filters of lengths 16
and 32 is similar until n, increases, above 14. As n; continues

to increase the performance of the length 16 filter is more
similar to the length 8 filter because at those channel delay
values neither filter is long enough to include the secondary
peak of the correlation functions. Figure 7(b), which uses
h = h,, shows a different cyclic pattern of BER for values of
n of larger than 8. In this case there is very little difference in
the performance of adaptive filters of different lengths. These
cyclic patterns are consistent with (25).

These results are completely unexpected. Although the
reduction in MSE and convergence is consistent with
reported work [14, 16], the BER performance is poor and
erratic and does not show a consistent relationship to filter
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Figure 8: Histogram of x[m] when b[m] = —1 for four channel
models with delays of n; = 9 to 12, SNR = 15dB, and modulation
index h = hy; the case of no multipath is shown for reference: (a)
range of correct decision, and (b) range of bit errors at expanded
scale.

length. It is not immediately obvious why the BER of the
converged LMS filter is often higher than the initial BER
before filtering. New insight into the behavior of the post-
D filter can be gained by observing the histogram of the
demodulator output. This data could be collected easily
from an operating system and would be an estimate of the
probability density function of x(¢) in (25). Figure 8 shows
the histogram conditioned on a message bit value of —1 for
four channel models with n; setto 9, 10, 11, and 12. The same
cyclical pattern shown in Figure 7 is seen in the histograms;
so the behavior for longer channel delays is effectively
included in this figure. Figure 8(a) shows the histogram for
negative received values which would not cause a bit error,
and Figure 8(b) shows the histogram at a magnified scale for
positive demodulator outputs which would cause an error.
The histogram for the case of no channel is included for ref-
erence. Results obtained conditioned on a message bit value
of +1 are the same after reflection on the horizontal axis.

The interference from the multipath signal additions
creates multimodal density functions characteristic of the
lengths shown. Similar density functions are observed at
other channel delay values and at other phases of the
reflection coefficient. This is expected based on (25) since if
x(t—t1) = x(t), then X(t) = x(¢) and the value of Ag(t,t1, ¢1)
does not affect x(t). For other values of x(t — t;) there will be
a distribution of values away from x(t) based on A¢(t, t1, ¢1).
As |aq]| increases, this distribution becomes wider and causes
more received values to fall on the wrong side of the decision
boundary.

Figure 8(b) shows the histogram for the bits that caused
errors, and the reason for the variability of the BERs as #;
is changed can be seen from the difference in these plots.
As the LMS filter adapts, the histogram of the outputs
will migrate toward a more Gaussian shape, and as the
number of values with a large deviation on both sides of the
desired value is reduced, more outputs move across the error
boundary.

Figure 9 shows the histograms for the post-D filter
outputs for three representative delays of n; = 10, 11 and
12 at three significant times in the adaptation process: the
initial time, the time of minimum BER, and convergence.
In Figure 9(a) where n; = 10, the histogram has a
much lower variance at convergence. However this lower
variance histogram has a significant increase in positive
values corresponding to an increased BER as shown in

Figure 9(b). Similar effects are observed for n; = 11
and n; = 12 although they are not as dramatic as for
n; = 10. For all values of n; the variance was reduced

by the adaption process, skew was reduced although it
remained negative, and kurtosis was reduced and moved
closer to the Gaussian value. Thus in minimizing the MSE
the adaptive filter generates an output with a probability
density function that is closer to Gaussian than the filter
input, but this often moves more values across the error
threshold.

5. An Improved Post-D Filter

These simulations show that an LMS post-D filter will not
reliably reduce BER even when successfully minimizing MSE.
Although results were shown for |a;| = 0.5, increasing or
decreasing the value of |a;| shows similar behavior but at
correspondingly higher or lower values of BER. As predicted
by (25) the amount of the spread of the histograms compared
to the case of no channel increases as |a;| increases. It is
clear from Figures 8 and 9 that part of the problem with the
performance of the LMS filter is that the large values at the
tails of the density functions which do not cause bit errors
have a high cost in terms of squared error and will cause
relatively larger changes in the LMS adaptation process. A
new adaptive filter is proposed here which minimizes this
impact by introducing a weighting function for the error.
The proposed alternative adaptive filter would cause the filter
to emphasize the updates when a bit error occurs compared
to updates where no bit error occurs and would prevent
adaptation on large values that do not cause bit errors. One
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F1GURE 10: Block diagram for SULMS post-D filter.

possible method would modify the LMS cost function to
create the selected update LMS (SULMS) filter defined by
(26) and (27) as shown in Figure 10:

Wil = Wy + - D[m] -e[%] - Xy (26)
plm] = (- (b[m] - y[mL] - B),
e—p[m] (27)
D[m] =

In (27), D[m] is defined as a sigmoid curve controlled
by the parameters { and f to adjust the contribution of the
error e[n/L]. The steepness of the transition of the sigmoid
curve is controlled by { and the position of the transition is
controlled by . The performance of this filter is relatively
insensitive to the parameter (. If the parameter § is large
compared to the width of the histogram of the demodulated
values, the behavior of the SULMS is indistinguishable from
the traditional LMS filter because D[m] will have a value
of 1 for almost all values of e[n/L]. As 3 decreases, fewer
values of e[n/L] contribute significantly to the adaptation
which slows the convergence process. Although a wide range
of values of f give good results, a value of § = 0.25
is used in results presented here. Since the histogram of
demodulator output values is easily measured, the peak
values observed operationally can be used to set reasonable
values of parameters for the SULMS filter.

As defined in (27), p[m] requires training data. An alter-
native that could be used in a decision-directed application
is defined in (28):

plm] = (| ylmL]| - B). (28)

This would suppress adaptation on all large values of the
demodulator output.

The trajectory of the BER as the SULMS filter adapts is
shown in Figure 11, with the same channel models and noise
level that were used in Figures 5 and 6 shown in Figures
11(a) and 11(b), respectively. In both cases there is significant
reduction in the BER as the filter converges with the longest
filter reducing the BER by almost a factor of 10. In both cases
the longest filter has the lowest BER. At this SNR level results
are the same for p[m] defined by (27) or (28) and show a
significant improvement compared to Figures 5 and 6.

The performance improvement of the SULMS post-D
filter is plotted in Figure 12(a) as a function of delay value
for the four filter lengths. The gain is defined as the ratio of
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FiGure 11: BER of four post-D SULMS filters with SNR = 15dB,
modulation index h = h;, channel model «; = 0.5, and (a) n, = 10,
(b) n; = 12.

the BER with no post-D filter to the BER of the converged
SULMS filter and is plotted on a logarithmic scale to allow
comparison of gains over a wide dynamic range. For all
delays the length 32 filter showed better performance than
the two shortest filters. For n; > 8 the cyclic pattern of
the BER for a filter of length 32 is clear. Depending on the
channel delay, using the SULMS filter lowers the BER by a
factor of 3 to 9. The BER for the filter of length 16 follows the
value of the length 32 filter until n; is 12. Above that the delay
is longer than the filter memory and the BER performance
begins to follow a trajectory similar to the length 8 filter.
For n; > 8 SULMS filters of lengths 3 and 8 also show a
cyclic pattern with a maximum BER reduction of a factor
of 3. These adaptive filters can take advantage of correlation
introduced by the pulse shaping filter, but they are not
long enough to take advantage of correlation introduced
by the multipath reflection. For shorter channel delays the
BER improvement is generally larger, but these cases are
special because of the channel delay dependent overlap of the
correlation peaks and it is not expected that the same level
of improvement would be seen for longer channel delays.
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FiGure 12: BER gain as a function of channel delay with SNR =
15dB and modulation index h = h; for (a) converged SULMS
filter compared to no post-D filter and (b) converged SULMS filter
compared to LMS filter.

Importantly, there were no cases in which the SULMS filter
caused the BER to increase.

The performance of the SULMS filter is compared to
the conventional LMS filter in Figure 12(b). It shows BER
improvements by as much as a factor of 40 because in some
cases the LMS post-D filter increases the BER compared to
the case where no filter is used. For all filter lengths and
all delay values the SULMS filters lowered the BER of the
unfiltered output, and in all cases SULMS outperformed the
simple LMS filter. For tracking changes in a propagation
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channel, the speed of convergence required of an adaptive
filter depends on the ratio of the rate of change of the channel
to the symbol rate of the signal [8]. This ratio varies widely
depending on the application, but the convergence rate of
the post-D SULMS method should be appropriate in the
class of applications where other stochastic gradient descent
methods such as LMS or CMA are suitable.

A second approach to improving the performance of the
LMS filter was also tested. Instead of using D[m], the limiter
could be used to prevent the large outputs of the demodula-
tion evident in Figures 8 and 9. Although the purpose of the
limiter was to prevent very large demodulation outputs when
the received signal had an uncharacteristically low amplitude,
the limit value could be reduced to a lower level closer
to the histogram peaks. Figure 13 shows that this simple
approach is not as effective as the SULMS. Figure 13(a) shows
the performance improvement of the reduced limit LMS
post-D filter compared to no post-D filter and Figure 13(b)
shows the performance improvement of the reduced limit
LMS post-D filter compared to the unmodified LMS filter.
The improvement shown in Figure 13(b) is less than the
improvement shown by the SULMS filter in Figure 12(b),
but it is still a substantial improvement over the unmodified
LMS post-D filter. However, Figure 13(a) shows that use of
this filter often increases the BER.

Using (28) for applications where training is not possible,
the SULMS filter was tested in a decision-directed mode
in which the decision b[m] was used instead of b[m] to
compute e[m]. There was no significant difference in either
the convergence or the BER for the SNR =15dB cases in
Figures 11(a) and 11(b). When the SNR was reduced to
10dB both trained and decision-directed SULMS systems
showed a BER reduction from 0.018 to 0.007 for channels
with behavior similar to n; = 10. For channels with behavior
similar to n; = 12, the unfiltered BER of 0.0037 was reduced
to 0.0028 for the trained system or 0.0031 for the decision-
directed system. Further reduction to SNR = 0 dB results in
an unfiltered BER of approximately 0.3. At this noise level the
trained systems show a reduction BER of 4% to 20% while
the decision-directed systems show an increase in BER of 4%
to 10%.

The decision-directed mode of operation has the addi-
tional advantage that for nonminimum phase channels with
lar] > 1 and n; > &, the decision block following the filter
produces the message signal delayed by n; with the same
BER level associated with 1/|a;| because the filter adapts to
the stronger signal. In the training mode, when n; < £,
the SULMS filter adapts to take advantage of the strong
signal in the X, vector in (16) with the same 1/|a;| BER
performance. However for n; > ¢, the direct path signal is so
weak compared to the interference that the BER in a training
mode is poor.

6. Conclusions

The analysis and results presented in this paper make a signif-
icant advance in understanding the behavior, benefits, limita-
tions, and practical implementation of a post-Demodulator
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FiGurg 13: BER gain as a function of channel delay with SNR =
15dB and modulation index h = h; for (a) reduced limit LMS
filter compared to no post-D filter and (b) reduced limit LMS filter
compared to LMS filter.

filter in a multipath environment. The post-D filter was
proposed for an FSK communication application because
it offered potential performance improvement at a lower
computational cost than a traditional pre-D CMA equalizer
or ML optimal decoding, and this could be of benefit in
many communications applications with significant cost and
power constraints. However, because of the nonlinearity of
the frequency demodulator, general analysis of the impact
of system and channel parameters on performance was not
found in prior work.
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Previously reported results used MSE or cluster variance
to measure the performance benefit of the post-D adaptive
filter, but our work shows that the statistical assumptions that
link minimum BER to minimum MSE do not apply to the
post-D filter, and that in fact simply inserting an LMS filter at
the demodulator output may increase the BER even when the
MSE is decreasing and the adaptation is stable. Probability
density functions estimated from histograms and correlation
functions were analyzed to understand the impact of the
system and model parameters on the demodulator output.
Analysis predicted and simulation showed that changes in
reflection delay, reflection phase, and modulation index have
similar impacts on the estimated probability density func-
tions of the demodulator output. This allows a few selected
cases to be representative of the range of these parameters
despite the nonlinearity of the system. In addition, this
approach shows why the LMS algorithm can increase BER
while reducing MSE.

Based on this analysis, two modifications of the post-D
filter were developed and shown to provide significant
improvement in BER performance compared to the LMS
algorithm. One, the SULMS filter applied a sigmoid function
to the error used for adaptation and the other limited the
range of values on the input to the adaptive filter. Use of the
SULMS filter substantially reduced the BER compared to
the unfiltered BER, and both trained and decision-directed
implementations were effective. Although previous work
suggested that very short filters perform as well as longer
ones, these results suggest that additional performance
improvement is possible if the filter is long enough to take
advantage of the correlation between the demodulated
output and the desired message bit. In addition, a short
post-D SULMS filter could improve performance of a system
with a pre-D CMA filter if the channel model included
delays too long for the CMA equalizer. Preliminary post-D
results for channels with multiple reflections show BER
performance and general behavior consistent with the single
reflection results for the same total noise and interference
power. The results of this work may form the basis for
understanding of how to effectively use a post-D filter in a
multipath environment.
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