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We propose a joint iterative transmit/receive (Tx/Rx) minimum mean square error (MMSE) frequency-domain equalization (FDE)
and intersymbol interference cancellation (ISIC) suitable for single-carrier (SC) hybrid automatic repeat request (HARQ) with
chase combining (CC). In the proposed scheme, a one-tap transmit MMSE-FDE and an iterative one-tap receive MMSE-FDE and
ISIC are employed. Every time the retransmitted packet is received, a series of receive MMSE-FDE, antenna diversity combining,
packet combining, and ISIC is carried out in an iterative manner by using updated receive MMSE-FDE weights in each iteration.
The transmit MMSE-FDE weight is determined based on the prediction of the degree of residual ISI after the iteration process
in a receiver. We theoretically derive a set of transmit and receive MMSE-FDE weights. We show by computer simulation that
joint iterative Tx/Rx MMSE-FDE and ISIC achieves better packet error rate (PER) and higher throughput of SC-HARQ than the
conventional Rx MMSE-FDE and ISIC.

1. Introduction

The broadband wireless channel comprises many propaga-
tion paths having different time delays [1]. The minimum
mean square error frequency-domain equalization (MMSE-
FDE) provides good bit error rate (BER) performance for
broadband single-carrier (SC) transmissions in a severe
frequency-selective fading channel [2–4]. However, the
performance of SC using the MMSE-FDE is still a few
dB away from the theoretical lower-bound due to residual
intersymbol interference (ISI) after MMSE-FDE. The use
of iterative MMSE-FDE and ISI cancellation (ISIC) has
been extensively studied [5–10]. In [5–8], iterative receive
(Rx) MMSE-FDE and ISIC was proposed. The receive FDE
weight is updated based on the MMSE criterion by using
the reliability information of data detection at the previous
iteration. In [8], channel decoding is incorporated into each
iteration process to further improve the performance. In
[9, 10], iterative Rx MMSE-FDE and ISIC was proposed for
SC-hybrid automatic repeat request (HARQ).

Recently, we took a different approach from the iterative
receive processing and proposed a joint transmit/receive
(Tx/Rx) MMSE-FDE [11] that exploits the channel state
information (CSI) at both the transmitter and the receiver
to improve the performance of broadband SC transmissions.
In [11], a set of transmit and receive MMSE-FDE weights
was derived based on the MMSE criterion. It was shown [11]
that the proposed scheme achieves better BER performance
than the conventional receive MMSE-FDE. More recently,
we proposed joint iterative Tx/Rx MMSE-FDE and ISIC
that is an extension of joint Tx/Rx MMSE-FDE [12]. In
this scheme, iterative Rx MMSE-FDE and ISIC proposed
in [5–8] is incorporated into joint Tx/Rx MMSE-FDE. At
the transmitter, one-tap transmit MMSE-FDE is carried out
using CSI before transmitting the signal. At the receiver, by
viewing a concatenation of transmit MMSE-FDE and the
channel as a new equivalent channel, one-tap receive MMSE-
FDE and ISIC is carried out in an iterative manner similar
to [5–8]. In each iteration stage, the receive MMSE-FDE
weight is updated so as to reduce the residual ISI significantly.
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On the other hand, the transmit MMSE-FDE weight is
computed based on the prediction of the degree of residual
ISI after ISIC at the receiver. Joint iterative Tx/Rx MMSE-
FDE and ISIC provides much better BER performance than
the conventional iterative MMSE-FDE and ISIC.

In this paper, we propose a joint iterative Tx/Rx MMSE-
FDE and ISIC suitable for SC-HARQ with Chase combining
(CC) [13–15]. In CC, the same packet is retransmitted until
it is correctly received. In the proposed scheme, a one-
tap transmit MMSE-FDE and an iterative one-tap receive
MMSE-FDE and ISIC are employed. Every time the retrans-
mitted packet is received, a series of receive MMSE-FDE,
antenna diversity combining, packet combining, and ISIC is
carried out in an iterative manner by using receive MMSE-
FDE weights updated in each iteration. In the proposed
scheme, the transmitter predicts the residual ISI power after
the receiver performs the iterative Rx MMSE-FDE and ISIC.
Based on the predicted residual ISI power, the transmit
MMSE-FDE weight is determined. We evaluate by computer
simulation the packet error rate (PER) and throughput per-
formances achievable by the proposed scheme and compare
them with those achievable by the conventional scheme
proposed in [9, 10].

In this paper, we assume perfect knowledge of CSI.
However, in practical systems, CSI should be estimated
to compute the transmit and receive MMSE-FDE weights.
Assuming the time-division duplex (TDD) systems, where
the same carrier frequency is used for the transmission
and reception and using the channel reciprocity [16], the
transmitter can estimate the CSI of the transmitting channel
by using the received signal and compute the transmit
MMSE-FDE weight. In [17], we evaluated the impact of
imperfect CSI on the performance of the joint Tx/Rx MMSE-
FDE (ISIC and packet combining were not introduced in
[17]). Assuming the TDD systems, it was shown that when
practical time-multiplexed pilot-assisted channel estimation
is used, the joint Tx/Rx MMSE-FDE always provides better
performance than the Rx MMSE-FDE except for a very high
mobility situation (e.g., several hundreds km/h assuming
100 MHz signal bandwidth at the carrier frequency 5 GHz).
A detailed discussion on the impact of imperfect CSI for
the joint iterative Tx/Rx MMSE-FDE and ISIC is left as an
important future study.

The rest of this paper is organized as follows. Section 2
describes the system model of SC-HARQ using joint iterative
Tx/Rx MMSE-FDE and ISIC. In Section 3, a set of transmit
and receive MMSE-FDE weights is derived. Section 4 shows
the computer simulation results. Section 5 concludes the
paper.

2. SC-HARQUsing Joint Iterative
Tx/RxMMSE-FDE and ISIC

Figure 1 illustrates a conceptual diagram of SC-HARQ
using joint iterative Tx/Rx MMSE-FDE and ISIC. The
transmitter/receiver structure is illustrated in Figure 2. Nr

receive antennas are assumed for diversity reception at the
receiver [18]. In case of the CC strategy, if any error is

detected, the same packet is retransmitted. After receiving
the retransmitted packet, the receive MMSE-FDE weight
is updated for diversity combining and packet combining.
Diversity combining and packet combining using MMSE-
FDE and ISIC are jointly carried out in an iterative manner.
If no error is detected, the ACK signal is sent to request the
transmission of a new packet.

The difference between the proposed scheme and the
conventional scheme proposed in [9, 10] is the introduction
of transmit FDE. Since the transmit FDE is a simple one-tap
FDE (which consists of fast Fourier transform (FFT), weight
multiplication on each frequency, and inverse FFT (IFFT)),
the computational complexity is not significantly increased
compared to the conventional scheme.

Below, symbol-spaced discrete-time signal representa-
tion is used. The (M − 1)th packet retransmission is
considered, that is, M copies of the same packet have been
received. Perfect knowledge of CSI is assumed.

2.1. Transmit Signal. The packet consists of blocks of Nc

symbols each, where Nc is the size of FFT and IFFT. Without
loss of generality, we consider the transmission of one Nc-
symbol block in a packet.

The Nc-symbol block is represented as d = [d(0), . . . ,
d(t), . . . ,d(Nc − 1)]T , where (·)T denotes the transpose
operation. Nc-point FFT is applied to d to obtain
the frequency-domain transmit signal D = [D(0), . . . ,
D(k), . . . ,D(Nc − 1)]T as

D = Fd, (1)

where

F = 1
√
Nc

×

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 · · · 1

1 e− j2π(1×1)/Nc · · · e− j2π(1×(Nc−1))/Nc

...
...

. . .
...

1 e− j2π((Nc−1)×1)/Nc · · · e− j2π((Nc−1)×(Nc−1))/Nc

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(2)

is an Nc×Nc unitary discrete Fourier transform (DFT)
matrix.

The transmit FDE weight multiplied to the kth frequency
component D(k) of a block in the (M − 1)th retransmitting
packet is denoted by Wt

(M−1)(k), k = 0 ∼ Nc − 1. Before the
(M−1)th retransmission, the transmit MMSE-FDE is carried
out as

S(M−1) =
[
S(M−1)(0), ..., S(M−1)(k), ..., S(M−1)(Nc − 1)

]T

= W(M−1)
t D,

(3)

where W(M−1)
t = diag{W (M−1)

t (0), . . . ,W (M−1)
t (k), . . . ,W (M−1)

t

× (Nc − 1)} is an Nc × Nc diagonal transmit MMSE-FDE
weight matrix for the (M − 1)th retransmission under the

transmit power constraint tr[W(M−1)
t W(M−1)H

t ] = Nc to
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Figure 1: SC-HARQ using joint iterative Tx/Rx MMSE-FDE and ISIC.

keep the transmit power intact, where diag{·} denotes the
diagonal matrix whose (k, k)th element is given by the kth
element of the input vector and (·)H denotes the Hermitian
transpose operation.

An Nc-point IFFT is applied to S(M−1) to obtain
the signal block s(M−1) = [s(M−1)(0), . . . , s(M−1)(t), . . . ,
s(M−1)(Nc − 1)]T = FHS(M−1). After the insertion of Ng-
sample cyclic prefix (CP) into the guard interval (GI), the
signal block is transmitted.

2.2. Received Signal. The propagation channel is assumed to
be an L-path frequency-selective block fading channel. The
complex-valued path gain and time delay of the lth path
between the transmit antenna and nth receive antenna for the
mth retransmission are, respectively, denoted by hl(n,m) and
τl(n,m), l = 0 ∼ L− 1, n = 0 ∼ Nr − 1, m = 0 ∼ M − 1, with∑L−1

l=0 E[|h(n,m)
l |2] = 1 (E[·] denotes the ensemble average

operation). The CP-length is assumed to be equal to or longer
than the maximum channel time delay τL−1. The received sig-

nal block r(n,m) = [r(n,m)(0), . . . , r(n,m)(t), . . . , r(n,m)(Nc − 1)]
T

on the nth receive antenna can be expressed, after the CP-
removal, as

r(n,m) =
√

2Es
Ts

h(n,m)s(m) + n(n,m), (4)

where Es and Ts are, respectively, the average transmit symbol
energy and symbol duration, h(n,m) is an Nc×Nc circulant
channel matrix given by

h(n,m) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h(n,m)
0 h(n,m)

L−1 · · · h(n,m)
1

h(n,m)
1

. . .
. . .

...
... h(n,m)

0 0 h(n,m)
L−1

h(n,m)
L−1 h(n,m)

1
. . .

. . .
...

. . .

0 h(n,m)
L−1 · · · · · · h(n,m)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5)

and n(n,m) = [n(n,m)(0), . . . ,n(n,m)(t), . . . ,n(n,m)(Nc − 1)]
T

is
the noise vector with n (n,m)(t) being a zero-mean additive
white Gaussian noise (AWGN) having variance 2N0/Ts (N0 is
the one-sided noise power spectrum density).

An Nc-point FFT is carried out on r(n,m) to obtain the
frequency-domain received signal R(n,m) as

R(n,m) = Fr(n,m) =
√

2Es
Ts

H(n,m)W(m)
t D + N(n,m), (6)

where N(n,m) = Fn(n,m) and H(n,m) = Fh(n,m)FH . Due to the
circulant property of h(n,m), the channel gain matrix H(n,m) of
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size Nc×Nc is diagonal. The kth diagonal element of H(n,m) is
given by

H(n,m)(k) =
L−1∑

l=0

h(n,m)
l exp

⎛

⎝− j2πk
τ(n,m)
l

Nc

⎞

⎠. (7)

2.3. Joint Iterative Rx MMSE-FDE, Antenna Diversity, Packet
Combining, and ISIC. At the receiver, MMSE-FDE, antenna
diversity combining, packet combining, and ISIC are jointly
carried out in each iteration stage. The maximum number of
iterations is denoted by I. Below, the ith iteration stage (0 <
i ≤ I) is described.

R(n,m) is multiplied by the receive MMSE-FDE weight

Wr(n,m,i)=diag{W (n,m,i)
r (0), . . . ,W (n,m,i)

r (k), . . . ,W (n,m,i)
r (Nc−

1)} before packet combining. The residual ISI replica is
generated using the decision result at the (i−1)th iteration
stage and is subtracted from the frequency-domain signal
after packet combining to obtain D̂(i) = [D̂(i)(0), . . . , D̂(i)(k),
. . . , D̂(i)(Nc − 1)]T as

D̂(i) =
Nr−1∑

n=0

M−1∑

m=0

W(n,m,i)
r R(n,m) −Θ(i−1), (8)

where

Θ(i−1) =
√

2Es
Ts

⎧
⎨

⎩

Nr−1∑

n=0

M−1∑

m=0

W(n,m,i)
r H(n,m)W(m)

t − I

⎫
⎬

⎭D̃(i−1)

(9)

is the frequency-domain residual ISI replica. In (10), D̃(i−1) is
the frequency-domain soft symbol replica given as

D̃(i−1) = Fd̃(i−1) (10)

where d̃(i−1) = [d̃(i−1)(0),. . .,d̃(i−1)(t),. . .,d̃(i−1)(Nc−1)]T is the
soft symbol replica block. The tth element d̃(i−1)(t) of d̃(i−1)

is given as [5–10]

d̃(i−1)(t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

{

tanh

(
λ(i−1)
t (0)

2

)

+ j tanh

(
λ(i−1)
t (1)

2

)}

for QPSK,

1√
10

{

tanh

(
λ(i−1)
t (0)

2

)(

2 + tanh

(
λ(i−1)
t (1)

2

))}

+
j√
10

{

tanh

(
λ(i−1)
t (2)

2

)(

2 + tanh

(
λ(i−1)
t (3)

2

))}

for 16 QAM,
(11)

where λ(i−1)
t (x) is the log-likelihood ratio (LLR) associated

with the xth bit of the tth symbol in a block, computed at
the (i−1)th iteration stage (note that x = 0 ∼ log2X − 1 and

t = 0 ∼ Nc − 1 (X is the modulation level) and d̃(0) = 0 for
the first iteration stage).

D̂(i) in (8) is transformed into a time-domain signal block
by IFFT. After receiving all the transmitted blocks in a packet,
channel decoding is applied. The channel decoder output
LLR is used to generate the residual ISI replica to be used
in the next iteration stage.

3. Derivation of TX andRXMMSE-FDEWeights

The MMSE-based transmit and receive FDE weights are
derived assuming that M copies of the same packet have been
received. First, we derive the receive MMSE-FDE weights for
the given transmit FDE weight. Then, the transmit MMSE-
FDE weight is derived assuming that the predicted receive
MMSE-FDE weight is used.

3.1. Receive MMSE-FDE Weight. A concatenation of the
transmit FDE and the propagation channel is viewed as
an equivalent channel. We introduce an expanded received
signal vector R of size MNrNc×1 defined as

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R(0,0)

...
R(0,M−1)

...

...
R(Nr−1,0)

...
R(Nr−1,M−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
√

2Es
Ts

HD + N, (12)

where

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H(0,0)W(0)
t

...

H(0,M−1)W(M−1)
t

...

...

H(Nr−1,0)W(0)
t

...

H(Nr−1,M−1)W(M−1)
t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N(0,0)

...
N(0,M−1)

...

...
N(Nr−1,0)

...
N(Nr−1,M−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (13)

Using (12), (8) can be rewritten as

D̂(i) = W(i)
r R−

√
2Es
Ts

{
W(i)

r H− I
}

D̃(i−1), (14)

where

W(i)
r

=
[

W(0,0,i)
r · · ·W(0,M−1,i)

r · · ·W(Nr−1,0,i)
r · · ·W(Nr−1,M−1,i)

r

]
.

(15)
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Figure 2: Transmitter/receiver structure.

The error vector e(i) = [e(i)(0), . . . , e(i)(t), . . . , e(i)(Nc −
1)]T between d and d̂(i)=FHD̂(i) at the ith iteration stage is
de-fined as

e(i) = d− d̂(i)
√

2Es/Ts

= FH
{

W(i)
r H− I

}{
D− D̃(i−1)

}
+

FHW(i)
r N

√
2Es/Ts

.

(16)

The total MSE e(i) = tr[E(e(i){e(i)}H)] is given as

e(i) = ρ(i−1) · tr
[{

W(i)
r H− I

}{
W(i)

r H− I
}H]

+ γ−1 · tr
[

W(i)
r

{
W(i)

r

}H]
,

(17)

where γ is the average symbol energy-to-noise power spec-
trum density ratio (Es/N0) and tr(·) denotes the trace of the
matrix. ρ(i−1) represents the residual ISI power estimated by
the receiver after the ith iteration of iterative Rx MMSE-FDE
and ISIC and is given by [8–10]

ρ(i−1) · I = E
[{

D− D̃(i−1)
}{

D− D̃(i−1)
}H]

. (18)

The MMSE solution of W(i)
r is the one that minimizes e(i).

From (17), we obtain

W(i)
r = H

H
{

HH
H

+
(
γρ(i−1)

)−1 · I
}−1

. (19)

Using the matrix inversion lemma [1], the MMSE

solution of W(n,m,i)
r on the nth receive antenna for the mth

retransmission can be derived as (Appendix A)

W(n,m,i)
r =

⎧
⎨

⎩

Nr−1∑

n′=0

M−1∑

m′=0

H(n′,m′)W(m′)
t

{
H(n′,m′)W(m′)

t

}H

+
(
γρ(i−1)

)−1
I
}−1

×
{

H(n,m)W(m)
t

}H
.

(20)

3.2. Transmit MMSE-FDE Weight. The transmitter predicts
the degree of the residual ISI after the iteration process in
the receiver. The predicted value of ρ(I−1) after the receiver
performs the iterative Rx MMSE-FDE and ISIC is denoted
by ρtx. The transmitter believes that the residual ISI power is
reduced by a factor of ρtx by a series of receive MMSE-FDE,
antenna diversity combining, packet combining, and ISIC is
carried out in an iterative manner at the receiver. The error
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vector e(M−1,tx)which corresponds to (16) can be given, based
on the prediction of the degree of residual ISI, as

e(M−1,tx) = √
ρtx · FH

{
W(tx)

r H− I
}

D +
FHW(tx)

r N
√

2Es/Ts
, (21)

where Wr
(tx) represents the virtual Nc×MNrNc receive

FDE weight matrix similar to (15). Similar to the
derivation of (18), the MMSE solution that minimizes
e(M−1,tx)=tr[E(e(M−1,tx){e(M−1,tx)}H)] can be derived as

W(tx)
r = H

H
{

HH
H

+
(
γρtx

)−1 · I
}−1

. (22)

Substituting (22) into (21), we obtain

e(M−1,tx)

= γ−1 · tr
[{

H
H

H +
(
γρtx

)−1
}−1

]

=
Nc−1∑

k=0

ρtx

γρtx
∑M−1

m=0

∣
∣
∣W (m)

t (k)
∣
∣
∣

2 ∑Nr−1
n=0

∣
∣H(n,m)(k)

∣
∣2 + 1

.

(23)

The MMSE solution W(M−1)
t can be derived using the

Lagrange multiplier method [1] under the transmit power

constraint tr[W(M−1)
t {W(M−1)

t }H] = Nc for the given {H(m);

m = 0 ∼ M − 1} and {W(m)
t ; m < M − 1} as (derivation is

shown in Appendix B)

W(M−1)
t

= diag
{
W (M−1)

t (0), . . . ,W (M−1)
t (k), . . . ,W (M−1)

t (Nc − 1)
}

,

(24)

with

∣
∣
∣W (M−1)

t (k)
∣
∣
∣

2

= max

⎡

⎣

⎧
⎨

⎩
1
μ

√
√
√√ γ−1

∑Nr−1
n=0

∣∣H(n,M−1)(k)
∣∣2

− γ−1

ρtx
∑Nr−1

n=0

∣∣H(n,M−1)(k)
∣∣2

−
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m<M−1

∣
∣∣W (m)

t (k)
∣
∣∣

2 ∑Nr−1
n=0

∣
∣H(n,m)(k)

∣
∣2

∑Nr−1
n=0

∣∣H(n,M−1)(k)
∣∣2

⎫
⎪⎬

⎪⎭
, 0

⎤

⎥
⎦,

(25)

where μ is chosen so as to satisfy tr[W(M−1)
t W(M−1)H

t ] = Nc.
As mentioned earlier, ρtx represents the predicted resid-

ual ISI power. ρ(I−1) represents the residual ISI power
estimated by the receiver after the Ith iteration in the iterative
Rx MMSE-FDE and ISIC. If the transmitter believes that
the receiver can perfectly cancel the residual ISI, ρtx in (25)

should be 0. When ρtx approaches zero, the second term of
(25) becomes very large and therefore, all the transmit FDE
weights are replaced by zero’s except those at frequencies
having the highest channel gain. In this case, transmit
FDE will severely distort the transmit signal spectrum and
produce a large amount of residual ISI at the receiver, thereby
significantly degrading the performance. On the other hand,
if the transmitter believes that the receiver cannot cancel
the residual ISI at all (or when the iterative ISIC is not
employed), ρtx in (25) should be 1. In this case, since
the transmitter predicts no ISI suppression at the receiver,
the transmit FDE tries, before the packet transmission, to
reduce the frequency-selectivity of the equivalent channel
seen by the receiver, thereby reducing the frequency-diversity
gain. As a consequence, the optimum ρtx does exist and it
depends on the channel condition, data modulation, coding
rate, average transmit Es/N0 , and the number of iterations.
However, it is quite difficult, if not impossible, to find the
optimum ρtx for the given instantaneous conditions. In
this paper, we found the value of ρtx that maximizes the
throughput by the preliminary computer simulation at each
average transmit Es/N0 for the given channel power delay
profile, data modulation, coding rate, and the number of
iterations in the receiver.

4. Performance Evaluation

The performance of SC-HARQ using the joint iterative
Tx/Rx MMSE-FDE and ISIC is evaluated by computer
simulation assuming Nc = 256, CP length of Ng = 32.
Both QPSK and 16 QAM are assumed for data modulation.
The channel is assumed to be an L = 16-path frequency-
selective block Rayleigh fading channel having exponential
power delay profile with decay factor β. A turbo encoder
with the original coding rate 1/3 using two (13, 15)
recursive systematic convolutional encoders [19] is used. A
2048 bit length codeword with the coding rate R = 1/2
is generated by puncturing the parity bit sequences. The
decoder consists of two log-MAP decoders. An error-free
ACK/NACK transmission is assumed.
Two different channel cases are considered.

Channel case 1: Independent channel for each re-
transmission.

Channel case 2: Identical channel for each retrans-
mission.

4.1. Channel and Tx FDE Weight for the Initial and First
Retransmission (M = 2). In this subsection, we discuss the
transmit MMSE-FDE weight for the case when the same
packet has been transmitted 2 times (M = 2). Nr = 1 and
uniform power delay profile (β = 0 dB) are assumed. Also
ρtx = 0.8 is assumed as an example. The average transmit
Es/N0 is set to 5 dB.

Figure 3(a) shows the channel gain and the transmit
MMSE-FDE weight for the channel case 1. The magnitude

of the transmit MMSE-FDE weight W (m=0)
t (k) is plotted in

Figure 3(a). Also plotted is the amplitude of the channel gain
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Figure 4: Channel transfer function and Tx MMSE-FDE weight for channel case 2.

H(m=0)(k). The value of |W (m=0)
t (k)| is identical to the one

we have previously proposed in [11] (note that in [11], the
packet combining is not taken into account for computing
the transmit MMSE-FDE weight). It can be seen from Fig-
ure 3(a) that at the initial transmission (m = 0), the transmit
MMSE-FDE weight allocates more power to the frequencies
having a good condition and no power (|Wt

(m=0)(k)| = 0)
at some frequencies having a bad condition. The magnitude

of the transmit MMSE-FDE weight W (m=1)
t (k) for the first

retransmission is plotted in Figure 3(b). It can be seen that
|Wt

(m=1)(k)| = 0 occurs more frequently. For the first
retransmission (m = 1), the transmit MMSE-FDE weight
|Wt

(m=1)(k)|more likely has large magnitude at the frequen-
cies with |Wt

(m=0)(k)| = 0 so as to make the equivalent
channel seen after the packet combining nearly flat. Every
time a new retransmission is to be made, the new transmit
MMSE-FDE weight allocates more power to the frequencies
which have not been allocated enough power at the previous
retransmissions; in other words, the transmit MMSE-FDE
weight tends to become zero on a frequency which has been
allocated enough power already at previous retransmissions.
For example, in Figure 3(a), the value of |Wt

(m=0)(k = 12)|
for the initial transmission is zero. However, the value of
|W (m=1)

t (k = 12)| for the first retransmission becomes very
high so as to rectify the variations in the equivalent channel
after packet combining over the signal bandwidth.

Figure 4 shows the channel gain and the transmit FDE
weight for the channel case 2. Since the channel gain

stays the same for the initial transmission and the first
retransmission, no time diversity gain is obtained. However,
the transmit FDE weight for the retransmission changes
from the initial transmission and therefore, the channel
amplitude variations in the frequency-domain can be slightly
reduced after the packet combining (see Figures 4(a) and
4(b)).

4.2. Average Packet Error Rate (PER) Performance. Figure 5
shows the achievable average PER performance, achievable
by our proposed joint iterative Tx/Rx MMSE-FDE and ISIC
as a function of the average transmit Es/N0 with the number
of iterations, I, as a parameter for 16 QAM, the channel case
1 with the decay factor β = 0 dB (uniform power delay
profile), and Nr = 1 (no receive diversity). The same packet
is assumed to have been transmitted M times. The PER
performance achieved by the conventional scheme (iterative
Rx MMSE-FDE and ISIC without transmit FDE proposed in
[9, 10]) is also plotted for comparison. It can be seen that
as I increases, PER performance of both schemes improves.
In comparison to the conventional scheme, the proposed
scheme always provides better PER performance for the same
value of I. When M = 1, the performance difference between
the proposed and conventional schemes becomes narrower
when I ≥ 6 (see Figure 5(a)); the reduction in the required
Es/N0 for achieving PER = 0.1 is only about 0.5 dB from the
conventional scheme. On the other hand, when M = 3, the
performance difference becomes wider as I increases thanks
to the packet combining gain (see Figure 5(b)); the proposed
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scheme with I = 6 can reduce the required Es/N0 by as much
as about 2.0 dB.

4.3. Impact of the Number of Iterations on the Required
Es/N0. To discuss the impact of the number of iterations,
I, on the performance, we plot the required Es/N0 for
achieving PER = 0.1 in Figure 6 as a function of I for
16 QAM and the channel case 1 with the decay factor β =
0 dB (uniform power delay profile). It can be seen from
Figure 6 that the packet combining significantly reduces the
required Es/N0. When M = 3, the proposed scheme provides
larger reduction in the required Es/N0 than the conventional
scheme since the proposed scheme achieves higher packet
combining gain due to the use of transmit MMSE-FDE.
When M = 1, only a slight difference in the required Es/N0

between the proposed and conventional schemes is seen,
especially for the case of Nr = 2 (receive antenna diversity).
This is because the use of antenna diversity reception tries
to flatten the equivalent channel transfer function seen
by the transmitter. The transmit FDE does not alter the
spectrum shape for the flat channel case at all and therefore,
the proposed scheme can reduce the required Es/N0 only
slightly.

Figure 6 also shows that the required Es/N0 reduction is
almost saturated when I ≥ 6. Therefore, we will use I = 6 in
the following evaluations.
4.4. Impact of the Number of the Packet Retransmissions on
Average PER Performance. The impact of the number of
packet retransmissions, M, on the average PER performance
is discussed below. The average PER performance of the

proposed scheme is plotted in Figure 7 as a function of
average transmit Es/N0 with M as a parameter. For com-
parison, the PER performance of the conventional scheme
is also plotted. It can be seen from Figure 7 that as M
increases, the proposed scheme provides much better PER
performance than the conventional scheme thanks to the
use of transmit MMSE-FDE for each retransmission. The
reduction in the required Es/N0 for achieving PER = 0.1
from the conventional scheme is about 0.5 dB, 1.0 dB, 2.0 dB,
and 2.7 dB when Nr = 1 (no receive antenna diversity) and is
about 0.1 dB, 0.7 dB, 1.3 dB, and 2.0 dB when Nr = 2 (receive
antenna diversity) for M = 1, 2, 3, and 4, respectively.
Reducing the required Es/N0 leads to achieving the higher
throughput.

4.5. Throughput Performance. The achievable throughput
performance by the proposed scheme is plotted as a function
of average transmit Es/N0 in Figure 8 for QPSK and in
Figure 9 for 16 QAM. Two cases of the decay factor β of
the power delay profile are considered. The throughput
performance achievable by the conventional scheme is also
plotted for comparison. It can be seen from Figures 8 and 9
that the proposed scheme always provides higher throughput
than the conventional scheme except for the channel case
2 when 16 QAM is used (16 QAM is more sensitive than
QPSK to the residual ISI after packet combining and
ISIC).

At first, the case of β = 0 dB (equivalent to the
uniform power delay profile) is discussed. In this case,
larger frequency-diversity gain is obtained and thus, the
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initial packet transmission is likely successful in a high
average transmit Es/N0 region. As the average transmit Es/N0

decreases, the packet error probability at the initial transmis-
sion increases and consequently, the packet retransmission
is likely requested. For the channel case 1 (independent
channel for each retransmission), time-diversity gain can
be achieved through the packet combining. When Nr =
1, most likely the packet can be correctly received after
the first retransmission at around the average transmit
Es/N0 = 0 dB (6 dB) as shown in Figure 8(a) (Figure 9(a));
the flat throughput region is observed with the proposed
scheme. Therefore, the throughput difference between the
proposed and conventional schemes gets larger as the average
transmit Es/N0 decreases. On the other hand, for the channel
case 2 (identical channel for all retransmissions), the time-
diversity gain cannot be obtained through packet combining.
Therefore, the throughput difference is kept at almost the
same irrespective of the average transmit Es/N0. When
Nr = 2 (receive antenna diversity), the residual ISI can
be significantly reduced by the antenna diversity reception.
Therefore, the performance improvement achievable by the
proposed scheme over the conventional scheme becomes
negligible in a high Es/N0 region. However, as already
discussed in Figure 7(b), the proposed scheme can still
obtain larger packet combining gain even when Nr =
2, thereby achieving higher throughput in a low Es/N0

region.
Next, the case of β = 4 dB is discussed. In this case, the

proposed scheme provides the performance improvement
similar to the case of β = 0 dB; however, the flat throughput
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Figure 11: PAPR distribution with m as a parameter for M = 4.

region is not observed. This is because, due to the lower
frequency-diversity gain, the 1st retransmission is not always
sufficient for correct packet reception.

4.6. Peak-to-Average Power Ratio (PAPR) Issue. The comple-
mentary cumulative distribution function (CCDF) of peak-
to-average power ratio (PAPR) with our proposed scheme is
plotted in Figure 10 for 16 QAM with the average transmit
Es/N0 as a parameter when M = 1 (no ARQ is used).
It is assumed that ρtx = 0.8, β = 0 dB (equivalent to
uniform power delay profile), and Nr = 1 (no antenna
diversity). The PAPR is measured by 4-time oversampling
of the transmit SC signals after transmit FDE. The CCDFs
of PAPR for the conventional scheme (equivalent to SC
without transmit FDE) and orthogonal frequency division
multiplexing (OFDM) are also plotted for comparison. The
PAPR distribution of the proposed scheme depends on
the average transmit Es/N0. It can be seen that when the
average transmit Es/N0 = 0 dB, the PAPR level at which
the measured PAPRs exceed with 10% probability (this is
called the PAPR 10% level in this paper) increases by about
0.7 dB compared to SC without transmit FDE. As the average
transmit Es/N0 increases, the PAPR 10% level reduces. When
the average transmit Es/N0 = 30 dB, the PAPR 10% level
with our proposed scheme is about 0.3 dB higher than that
with the conventional scheme. However, the PAPR 10%
level of the proposed scheme is lower than that of OFDM
signals.

The PAPR distribution of the proposed scheme depends
on the number of retransmissions, m, for the fixed value of
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M. Figure 11 plots the PAPR distribution for the different
values of m when M = 4. The channel case 1 and the average
transmit Es/N0 = 8 dB are assumed. The PAPR 10% levels
for the conventional scheme and OFDM are also plotted for
comparison. It can be seen that the PAPR 10% level increases
as m increases. The increase in the PAPR 10% level from the
case of m = 0 (initial transmission) is about 0.6 dB, 0.9 dB,
and 1.1 dB when m = 1, 2, and 3, respectively. However, the
PAPR 10% level of the proposed scheme is still lower than
that of OFDM signals irrespective of m.

As seen from Figures 10 and 11, the introduction of
transmit FDE increases the PAPR level of SC signals. How
the PAPR can be reduced is left as an important future study
topic.

5. Conclusion

In this paper, we proposed the joint iterative Tx/Rx MMSE-
FDE and ISIC suitable for SC-HARQ with CC. Every time
the same packet is received, the receive MMSE-FDE weights
are updated for combining all the retransmitted packets.
The transmit MMSE-FDE weight is determined based on
the prediction of the degree of residual ISI after ISIC
in a receiver. We derived a set of transmit and receive
MMSE-FDE weights. We showed by computer simulation
that the proposed scheme achieves better PER performance
than the conventional iterative Rx MMSE-FDE and ISIC.
When 16 QAM is used, the proposed scheme with M =
3 can reduce the required Es/N0 for achieving PER =
0.1 by about 2.4 dB from the conventional scheme with
M = 3, thanks to the packet combining gain. Also
shown was the throughput performance improvement. The
proposed scheme was shown to be more effective for the
retransmission.

In this paper, we assume perfect knowledge of CSI. How
the imperfect CSI affects the PER and throughput perfor-
mances achievable by the proposed joint iterative Tx/Rx
MMSE-FDE and ISIC is left as an important future study
topic. (R3-1)The introduction of transmit FDE increases the
PAPR level of SC signals. PAPR reduction techniques [20–
23] proposed for OFDM may be applied to the proposed
scheme. This is left as another important future study
topic.

Appendices

A. Derivation of (20)

Using the matrix inversion lemma, we have

{
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H
+
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)−1 · I
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and therefore, (19) can be rewritten as
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(A.2)

Substituting H of (13) into (A.2), we obtain (20).

B. Derivation of (24)

We want to derive the transmit MMSE-FDE weight

|W (M−1)
t (k)|2for the present (M − 1)th retransmission

when the previous transmissions have used the trans-
mit MMSE-FDE weights |W (m)

t (k)|2, m < M − 1. The
MMSE problem for minimizing (23) under the constraint

of tr[W(M−1)
t W(M−1)H

t ] = Nc can be rewritten as

min e(M−1,tx)

=
Nc−1∑

k=0

ρtx

γρtx
∑M−1

m′=0 G
(m′)
t (k)

∑Nr−1
n′=0

∣
∣H(n′,m′)(k)

∣
∣2 + 1

s.t.
Nc−1∑

k=0

G(M−1)
t (k) = Nc, G(M−1)

t (k) ≥ 0,

(B.1)

where {G(m)
t (k); m = 0 ∼M − 1, k = 0 ∼ Nc − 1} represents

{|W (m)
t (k)|2; m = 0 ∼ M − 1, k = 0 ∼ Nc − 1} (i.e.,

|W (m)
t (k)|2 is replaced by G(m)

t (k) to transform the MMSE
problem into a convex optimization problem [24]). For the
given {G(m)

t (k); m < M − 1, k = 0 ∼ Nc − 1}, {H(n,m)(k);
n = 0 ∼ Nr − 1, m = 0 ∼ M − 1, k = 0 ∼ Nc − 1}, γ, and

ρtx, optimal {G(M−1)
t (k); k = 0 ∼ Nc − 1} can be derived. We

define the cost function as

J =
Nc−1∑

k=0

ρtx

ρtxγ
∑M−1

m′=0 G
(m′)
t (k)2 ∑Nr−1

n′=0

∣
∣H(n′,m′)(k)

∣
∣2+ 1

− μ ·
⎧
⎨

⎩

Nc−1∑

k=0

G(M−1)
t (k)−Nc

⎫
⎬

⎭+
Nc−1∑

k=0

ηk ·
{
−G(M−1)

t (k)+ 0
}

,

(B.2)

where μ and {ηk; k = 0 ∼ Nc − 1} are Lagrange

multipliers. The optimal G(M−1)
t (k) is denoted by G(M−1)

t,opt (k).
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The following Karush-Kuhn-Tucker (KKT) condition [24]
must be satisfied:

∂J

∂G(M−1)
t (k)

∣
∣
∣∣
∣
G(M−1)
t (k)=G(M−1)

t,opt (k)

= 0,

−G(M−1)
t,opt (k) ≤ 0,

ηk ≥ 0,

ηkG
(M−1)
t,opt (k) = 0,

(B.3)

for k = 0 ∼ Nc − 1 and

Nc−1∑

k=0

G(M−1)
t,opt (k)−Nc = 0. (B.4)

By solving (B.3) and (B.4), we obtain the MMSE solution,
which is (24).
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