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ipProjector stands for interactive portable projector which is a project trying to make a smart projection system while retaining
absolute portability of the devices and setups. In this paper, an ipProjector framework is proposed for unsupervised real-time
object augmentation applications. Scene-independent projector-camera geometric calibration is introduced so that the projected
augmentation always appears in the desired geometry despite an unconstrained surface. Using nonintrusive projection, the system
can ensure correct vision-based analysis because external appearances of the environment and object (as seen by the camera) are
hardly changed by the overlaid projected content. Finally, an unsupervised visual detector is used to guarantee robustness of the
detection regardless of lighting variations. Several image processing algorithms are applied in the framework, including image
warping using perspective transformation, color conversion using the nearest-neighbor search algorithm, and multiscale visual
detection. Based on a small-scale laboratory setting, experiments were conducted to evaluate the proposed approaches, and one

example was built to prove the proposed concept in object augmentation.

1. Introduction

Because of the trend in mobile projector phones, people have
started to imagine using mobile projectors ubiquitously in
the same way as mobile phones. A good ubiquitous system is
a matter of mobility and intelligence. While the mobility of a
projector has recently been successfully proposed, intelligent
mobile projection has not yet been accomplished in practice.
In this paper, we focus on a vision-based ubiquitous
projection system that is able to perform real-time object
augmentation in a robust manner. Only geometry aspect is
concerned, and our goal is to create a system that can project
2-D augmentations at the desired position corresponding to
the target object in a 3-D environment.

Object augmentation using a projector has been pro-
posed continuously in the past decade. This trend has
become more prominent with the recent proposal of the
SixthSense project [1] that uses a wearable projector to

augment the physical world with virtual information pro-
jected from a projector. The vision-based projector-camera
(i.e., pro-cam) system is often the choice for researchers in
this field because it allows object augmentation everywhere
without relying on separate tracking hardware, and a user
can interact directly with the projection.

There are two main problems encountered when making
a pro-cam system aware of its surrounding objects, while still
retaining ubiquity. First, ubiquitous projection implies use in
an unknown environment that has not been prepared. How-
ever, geometrically calibrating the pro-cam system requires
creating a strong geometric relationship between projector,
camera, and surface. Hence, the unconstrained surface
becomes an important factor that makes the calibration
become very difficult. The second problem, which we call
“projective interference”, is caused by the projected contents
being captured by the camera. Suppose that the camera is
working in the visible spectrum at a standard shutter speed,



the projected contents overlaid on the environment are also
seen by the camera. For vision-based systems, this leads to
false detections of the environment and object unless the
system has a way to deal with the interference effectively.

Apart from the two mentioned problems, there is no
doubt that the key success of object augmentation is to detect
the target object correctly in the first place. This means
that a visual object detector used in the system must be
robust enough in a real-world scenario. However, there is a
fundamental conflict using projection and visual detection
together in the visible light spectrum. Namely, projection
requires a dark environment for better visualization of the
projected images on the surface whereas the visual object
detection algorithm usually prefers input images captured in
a bright environment so that the sharp details of objects are
obtained with few additive noises. Combined with the fact
that visual appearances of the object can be changed easily
by the environment lightings, the problem of visual object
detection becomes more challenging for a ubiquitous pro-
cam system.

All proposed approaches are designed to be robust to
unknown geometries, textures, and variations of lightingin a
real-world scenario of ubiquitous projection. Contributions
of this paper can be applied to other vision-based pro-cam
systems to ensure robust geometry-based object augmen-
tation whose accuracies are barely affected by environment
lightings or appearances of the surface and object. Flexibility
is another advantage of this framework. Any off-the-shelf
digital light processing (DLP) projector can be used to imple-
ment a system following this framework. A representative
detector used in this paper can also be replaced by an
other visual object detector with no internal modification
to the detector. Finally, this framework supports integration
of other vision algorithms (e.g., tracking algorithm, gesture
recognition, adaptive learning, etc.), enabling realistic object
augmentation to achieve in an actual application.

The rest of this paper is laid out as follows. Section 2
explains recent advances in object augmentation using a
projector and then discusses related research in the three
problem areas as mentioned earlier. Section 3 introduces the
proposed framework and the overall system configuration.
Section 4 presents a self-contained and portable pro-cam
design whose geometric calibration can be achieved on both
planar and nonplanar surfaces with no prior knowledge of
their geometry. Section 5 describes problems of variation
of lighting regarding the proposed design and presents our
solution of the unsupervised visual object detection. Sec-
tion 6 then explains the nonintrusive projection technique
using a DLP projector to solve the projective interference
problem. A simple program is built and shown in Section 7 to
demonstrate the overall concept of the proposed framework.
In Section 8, performances of the proposed approaches are
experimentally confirmed. Finally, Section 9 concludes this
article.

2. Related Work

As mentioned, our achievement is related to three types
of problems. In the following sections, we explain recent
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advances in object augmentation using a projector and then
discuss related research in the three areas.

2.1. Object Augmentation by Projection. So far, researchers in
the field of ubiquitous pro-cam systems focus on developing
new interactive techniques but pay scant attention to the
fundamental problems (as mentioned in Section 1) in a
real-world scenario. Previous works of augmenting objects
by projection tend to neglect or simplify these problems
with various alternatives that do not meet the goal of being
ubiquitous. Paper-based fiducials are attached to the target
object in SixthSense [1], iLamps [2], and Shelf Torchlight
[3]. The rectangular handheld display screen is recognized
and tracked by its black border in [4] and by four light
sensors attached to its corners in [5]. Three infrared LEDs
forming a triangular shape are placed on the robot allowing
robot manipulation using a mobile projector in CoGAME
[6]. So far, it can be said that using a visual marker is the
most popular solution for a ubiquitous pro-cam system. It
significantly simplifies the problems of a ubiquitous pro-cam
system, enabling creation of a system that can extract only
the desired information and disregard the others (including
information suffering from the projective interference).
Nevertheless, these works are not ideally ubiquitous yet,
because they either modify or engineer external appearances
of the object or surface beforehand.

Other works that do not incorporate with alternation of
object appearances are shown in [7-9]. The work of Kanbara
et al. [7] uses a projector to project invisible markers which
can only be seen by the specific camera. An environment-
aware display system proposed by [8] embeds the imper-
ceptible stripe pattern into the normal projection, and
real-time object detection is achieved without any marker.
A commercial 3-D tracking unit is used in [9], enabling
physical object annotation to be performed based on the 3-D
position tracking strategy. All these works can solve the early
problem of using visual markers by not modifying external
appearances of the object (as seen by users). However, none
of them retains absolute ubiquity and portability in their
implementation [7] requires the invisible markers to be
projected steadily onto a wall or ceiling, and moving the
projector or object is not allowed. The system in [8] is limited
to fixed projectors and fixed cameras mounted on a ceiling,
and projection surfaces are restricted to flat table surfaces
whose distance to the ceiling is unchanged. In [9], one
stationary camera is needed in the workspace for assisting the
3-D tracking unit. The cooperative augmentation proposed
by [10] seems to be the appropriate solution for real-time
object augmentation in ubiquitous projection. Their pro-
cam system dynamically configures its visual object detection
based on four different detection algorithms that ensure
detection coverage in a real-world scenario. Nonetheless,
this system relies on an assumption of the smart object
where object-model knowledge must be embedded during
manufacture.

Unlike these systems, our proposed framework and
design allow creating a markerless system that is truly self-
contained and well calibrated despite the unconstrained
environment and dynamic objects. Besides, the framework
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is automatic and involves no user feedback, training, or
supervision during online execution.

2.2. Pro-Cam Geometric Calibration. So far, researchers have
tried proposing a new approach to calibrating the pro-cam
system precisely on different surfaces. When a projector and
a camera are rigidly fixed to each other, some have assumed
that the geometric registration between them is roughly
constant [4]. However, as the angle of the projector moves
from the perpendicular, or as a surface becomes nonplanar,
this approach will no longer guarantee good geometric
registration. In Map TorchLight [11], a mobile phone is
fixed to a mobile projector, and a known paper-based map
(containing visible black dots arranged in a regular grid) is
used to assist real-time geometric calibration. Projecting a
known pattern onto a surface is a classical approach to solve
this problem that gives precise calibrations for both planar
surfaces [12—14] and nonplanar surfaces [2, 15, 16]. How-
ever, the computational cost is high for a complex surface,
and the pattern must be reprojected when any component
of the system (e.g., a projector, camera, or surface) moves. A
similar approach is applied in the catadioptric projectors [17]
whose projected light is refracted and reflected by refractors
and reflectors, respectively. Geometric registration between
the two devices is obtained by projecting a series of known
patterns and allowing the camera to sense them. A real-
time approach that does not interrupt normal projection
was proposed in [18] by attaching four laser pens to a
handheld pro-cam device. Although detecting bright laser
points sounds easy, locating small laser points in a complex
camera image is still difficult in practice. In [19], Johnson
and Fuchs proposed a real-time approach that does not
interrupt the normal projection, requires no fixed marker,
and can be applied to a complex surface. By matching
feature points found in the projected image and the predicted
captured image, the pose of the projector is tracked and the
calibration is achieved in real time. However, the camera is
stationary and separated from the projector in their system.

Unlike these systems, our proposed calibration is truly
ubiquitous. It can perform the calibration in real time
without interrupting the normal projection or requiring any
stationary device in the workspace. Besides, both planar and
nonplanar surface can be used as the projection surface with
no prior knowledge of their geometry.

2.3. Nonintrusive Projection. Nonintrusive projection can be
seen as an inverse problem of the embedded imperceptible
pattern projection whose projected pattern is invisible to
users and normal cameras but visible to the calibrated cam-
era. There are many solutions proposed for the imperceptible
pattern projection but few for the nonintrusive projection.
Fortunately, some solutions can be shared between these
two problems with slight modifications. In the office of the
future [20], structured light can be embedded into a DLP
projector by making significant changes to the projection
hardware. However, this implementation is impossible unless
it is incorporated into the design of the projector or full
access to the projection hardware is available. In [21-23], a

code image is projected at high speed with its neutralized
image which integrates the coded patterns invisibly due to
limitations of the human visual system. According to these
papers, projecting and capturing at 120 Hz can guarantee
a hidden code, but commonly available projectors usually
perform projections at a maximum rate of 87 Hz. These
previous works try to invisibly embed the binary pattern to
the normal projection. By changing the embedded pattern
to the uniform white image (the reason regarding this will
be explained at the end of Section 6.2), some of them can
perform nonintrusive projection.

For this paper, we apply an approach based on the DLP
characteristics. Recently, internal characteristics of a DLP
projector have received attentions from research commu-
nities. In [24, 25], two approaches utilizing the internal
characteristics of a DLP projector are proposed. First, the
dithered illumination pattern corresponding to the DMD
chip (which operates at 10,000 Hz) is observed and utilized
using a very high-speed camera (whose maximum speed is
3000 fps). Second, characteristics of the color wheel (which
rotate at 120Hz) is investigated and used by a camera
with slower capturing speed. Our nonintrusive projection
is based on the color wheel solution and has three main
advantages: it requires no internal change to the projector
or the camera, it can be applied to any off-the-shelf DLP
projector, and it supports embedded variable light patterns
(i.e., imperceptible pattern projection) in the future without
further hardware modifications.

2.4. Robust Visual Object Detection. Variations in lighting are
the classic problems that have been discussed in computer
vision communities for decades, particularly for surveillance,
cognitive, or mobile systems where a specific environment
cannot be assumed. Recent researches of robust object detec-
tion have focused on applying visual learning or statistical
modeling so that a specific object or a specific class of objects
can be detected in all possible scenarios. For model-based
approaches, many works try to build a generic model of
the target object applicable for all lighting scenarios. For
example, face detection under variant illumination video
sequences is solved in [26] by building a skin-tone model and
segmenting each video frame into skin and nonskin regions.
The idea of the model-based approach is to train the system
using an exemplar set representing appearances of the target
object under all scenarios. Two drawbacks of this approach
are that the exemplar set may not be available or adequate
for some applications, and this approach does not support
detecting an unknown object. Instead of building a model
of the target object, researches in [27, 28] reduce sensitivity
to variations of lighting by modeling the background and
then using background subtraction to extract the foreground
(including the target object). Although these systems are
adaptive to variations of lighting and allow detection of an
unknown object, they assume uses in the specific background
only. A similar idea is applied in [29] for a cognitive
mobile robot system. Assume that the robot acts in a
closed environment and repeatedly returns to the same
place, the statistical model of lighting behaviors is built,
enabling the robot to predict lighting of the environment at a
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specific location. Using a model limits the system to perform
detection only where the model is available as discussed. To
solve this problem, a robust adaptive object detection that
does not rely on a model created offline is shown in [30].
By using an online learning algorithm, the system can adapt
to changing environments with no need for the predefined
background model. Nevertheless, this system also requires
environment-specific information to reduce the number of
false alarms. Therefore, it cannot be applied in a portable
system.

It can be seen that detecting an unknown object in
variations of lighting is still a challenging problem in
computer vision. Fortunately, our proposed system is barely
affected by the unpredictable environment lighting because
the projector’s red light is the only light source illuminating
the environment as seen by the camera (as detailed in
Section 6). Therefore, variations of lighting can be simply
explained as an inverse relationship of the distance from
the projector to the object (please refer to Figure 5(a)). In
other words, variations of lighting in our system are not
as complex as the related works in this field. Hence, we
decided to apply the multiscale concept to ensure detection
coverage in our system. Other reasons that we chose this
multiscale concept are as follows: (1) it requires no internal
modification in the base detector, (2) it is flexible because
the base detector can be replaced easily with another visual
detector to match individual requirements, and (3) increases
in computation can be easily offset by the recent growth of
multicore processors and parallel programming languages.

In this paper, we propose a complete vision-based
framework and a portable pro-cam design for ubiquitous
object augmentation applications. The goal is to accomplish
a pro-cam system that (1) retains absolute ubiquity despite
the projection environment, (2) allows projecting real-time
augmentation everywhere, and (3) is able to reliably detect
objects inside the projector’s frustum without supervision.
The framework consists of three main parts as the solutions
for the two mentioned problems and the robust visual object
detection. Experiments were conducted to evaluate the pro-
posed approaches in a small-scale laboratory setting. Actual
object augmentation application has not been implemented

EURASIP Journal on Advances in Signal Processing

VGA@plitter

Camera
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in this paper, and only one program projecting simple
augmentation is shown as the proof of concept.

3. Framework Overview and
System Configuration

In this section, we briefly explain the proposed framework
and the system configuration used in the paper. As illustrated
in Figure 1, our proposed framework for real-time object
augmentation consists of five main tasks (written inside
the rounded rectangles) during the online execution. First,
the projection frustum appearing inside a camera image is
located (Geometric calibration 1). Then, the target object
existing inside the frustum area is detected (Object detection).
After that, interactive augmentation is calculated for each
detected object (Response generation). A nonintrusive projec-
tion is applied in this step to guarantee that all augmentations
are drawn using the correct colors. Up to this point, all
calculations are done in camera coordinates. Finally, another
calibration is performed to convert every projection content
to projector coordinates (Geometric calibration 2) so that it
appears in our desired geometry on the actual surface; this
task is sometimes referred to as image warping.

Information regarding geometric calibration 1 and 2,
object detection, and nonintrusive projection are shown in
Sections 4, 5, and 6, respectively. The response generation
is performed using different algorithms (depending on
the application), so a detailed explanation of it is not
considered here. Following this framework, the system is able
to detect the target object and project the corresponding
augmentation in our desired geometry. Note that this
framework focuses only on the fundamental tasks based on
the frame-by-frame analysis strategy. Additional algorithms
can be added before the response generation step, enabling
accurate detection or realistic augmentation in a real-
world application. For example, adding a tracking algorithm
will help a system to augment with the target object(s)
in a continuous manner, using gesture recognition will
support direct user interaction with the projected image, and
applying object recognition will allow recognizing a specific
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object or a specific class of objects whose appearances match
requirements.

Our system configuration is shown in Figure 2. A camera,
beam splitter and DLP projector are fixed firmly on a
wooden base forming a single self-contained device (see
Section 4 for details) whereas a VGA splitter is added for
pro-cam synchronization (see Section 6 for details). The
device is completely self-contained and portable; however,
re-engineering is required to make it more compact for
ubiquitous uses.

4. Scene-Independent
Pro-Cam Geometric Calibration

Any pro-cam system is related to three pairs of geometric cal-
ibration: projector-camera, projector-surface, and camera-
surface calibration. For an application such as the automatic
keystone correction (using a vision-based solution), all three
calibrations have to be performed concurrently. However,
for projecting 2-D augmentations at the desired location
regardless of the 3-D shapes of the surface, only pro-cam
calibration is adequate. Geometric mapping between camera
and projector coordinates is used to find corresponding
positions between the two coordinate systems and to project
images back to desired locations on an actual surface.
These two tasks refer to the geometric calibration 1 and 2,
respectively, as illustrated in Figure 1.

Pro-cam geometric calibration is one of the problems of
most concern in a ubiquitous projection system. Because,
although the projector and the camera are fixed together,
poses and orientations of the surface (compared to the two
devices) are still unknown. On a planar surface, when the
angle of a projector moves away from perpendicular, the
geometric mapping changes. On a nonplanar surface, there
is an additional problem as 3-D shapes of the surface create
parallax effects between projector and camera coordinates.
This nonoverlapping fields of view between the projector
and the camera may make geometric mapping impossible

in some positions. Using a 3-D scanner to render the 3-D
model of the surface is an ideal solution that tracks relative
positions and orientations of the projector compared to
the surface in real time. However, this is still difficult to
perform accurately in real time using a portable device in
an unknown environment, particularly when the reference
device (i.e., projector and camera) and the target object are
not stationary.

Figure 3 shows the summary of our calibration approach.
The offline processes (shown inside the dashed-line rectan-
gle) consist of setting up the beam splitter and computing
geometric mapping between projector and camera coordi-
nates. The outcome of these offline processes is the homogra-
phy matrix representing the geometric transformation from
camera coordinates to projector coordinates and vice versa.
During the online execution, there is no need to recalculate
this matrix, and the geometric calibration can be achieved
regardless of 3-D geometry of the projection surface.

In the following sections, we explain in detail how to
achieve the mentioned geometric calibration using a single
self-contained device. Section 4.1 (which refers to the initial
setup step in Figure 3) shows a colocating pro-cam design
whose geometric calibration is considered to be independent
of the surface. Section 4.2 (which refers to the rest of the
offline processes and the online processes written in Figure 3)
then describes how to use perspective transformation model
to calculate pro-cam geometric mapping based on the design
presented in Section 4.1.

4.1. Colocating the Projector and Camera. Previous researches
on mobile projection have assumed projections on a uniform
planar surface, which is the most primitive projection sur-
face. The reason behind this assumption is to eliminate any
effects due to the surface geometry. In previous researches,
although a camera was firmly fixed to a mobile projector,
their optical axes were not exactly aligned. Therefore,
geometric conversions between them were affected by the
geometry of the projection surface. Using 3-D surface
rendering is an indirect solution of this problem; however,



EURASIP Journal on Advances in Signal Processing

(b)

(c)

(d)

FiGure 4: Comparison between the noncolocated (b, d) and colocated (a, ¢) pro-cam devices. (a, b) show comparisons on a planar surface.

(¢, d) show comparisons on a curved surface.

it is still difficult to perform in real time for a mobile system.
To achieve a robust pro-cam system, we use a straightforward
solution by colocating the projector and camera so that the
surface factor is eliminated from the calibration process. As
a result, geometric conversions between the two coordinates
hardly change and can be said as being independent of the
surface.

A beam splitter is an optical device that reflects half of the
incoming light and transmits the other half. There are few
researches concerning a beam splitter for pro-cam systems.
Our design proposed in this section was inspired by the
work of Fujii et al. [31] which briefly described the idea
of scene-independent geometric calibration using a plate
beam splitter attached to an off-the-shelf projector. Both
their research and ours operate in the visible light spectrum;
however, the camera settings are completely different. In
their research, a camera uses a standard shutter speed
and works independently to a projector. In our research
(as described later in Section 6), the camera is accurately
synchronized with the DLP projector and its shutter is
opened for only 0.55 ms.

By colocating the two devices using a beam splitter
(as shown in Figure 2), the camera sees exactly what a
projector is projecting, and 3-D geometry of the surface
hardly affects the geometric conversions or causes parallax
between projector and camera coordinates. An example
is shown in Figure 4. There is parallax between the two
coordinates when using a noncolocated pro-cam device on
a nonplanar surface (Figure 4(d)) so that some parts of the
projected surface cannot be seen by the camera. Compared

with Figure 4(c) of the colocating design, the shape of the
surface does not cause significant distortion of the projected
pattern and shadowing is also reduced.

In summary, this design is very useful for geometric
calibration that requires high conversion accuracy between
the two coordinates. An example is shown in [24] where
the colocating design is used for direct-global separation in
order to accurately map camera pixels to the corresponding
projected intensities. For ubiquitous projection, this design
is very interesting because (1) it requires no external device
stationary in the workspace, (2) precise geometric calibration
is possible on any surface, (3) no additional computations are
required, (4) it ensures that any surface visible to the camera
can be projected upon, and (5) it eliminates shadows in
camera images. Nevertheless, this approach is not suitable for
pro-cam applications that utilize distortions of the projected
images on the surface. For example, as occurs with 3-D
reconstruction using projected structured light.

4.2. Perspective Transformation Model. In this paper, geo-
metric mapping between camera and projector coordinates
is computed by perspective transformation [32] whose
computation effort is lighter than Euclidean calculation,
suitable for real-time interactive applications. Based on
the fact that all points seen by the camera lay on some
unknown plane, the perspective transformation between the
two coordinates can be established by a 3 X 3 homography
matrix. Suppose that (X, Y) is a pixel in projector coordinates
whose corresponding pixel in camera coordinates is (x, y),
the perspective transformation from (x, y) to (X, Y) can be
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expressed with eight degrees of freedom in homogeneous
coordinates as

Xw h] h2 I’l3 X
Yw = h4 h5 h6 Y, (1)
w h7 hs hy 1

where Hep = (hy - - - hg)T is constrained by condition
[Hcpl = 1 and can be computed from four corresponding
pixels between the two coordinates (four correspondences
ensure that no three points is collinear). When there are
more than four corresponding pixels found between the two

coordinates (§ > 4 in (2)), the RANSAC method is applied
for estimating the values of Hcp in the following equation:

X1W X2W . X(SW hl h2 h3 X1 X3 - Xs

Yiw Yow Yow |=|hs hs he |-|y1 y2 -+ ys

woow W h; hg he I 1 -1
(2

During the offline processes, the system collects at least
four corresponding pixels between the two coordinates (e.g.,
by projecting a known pattern on the surface) and uses them

to compute Hep values following (2). After that, geometric
mapping from any (x, y) to (X, Y) and vice versa is achieved

using ﬁcp and [Hcp] , respectively. Combined with the
colocating pro-cam design (presented in Section 4.1) whose
geometric transformation is not affected by the geometry
of the surface, recomputation of this homography matrix is
not necessary if there is no change in the relative positions
or orientations among the projector, camera, and beam
splitter. In this way, scene-independent geometric calibration
is accomplished while ubiquity of the device is retained.

5. Multiscale Visual Object Detection

Because of the colocating design shown in Section 4 and the
short-exposure setting as described later in Section 6, the
fundamental lighting difficulties of our vision-based system
are significantly underlined. Available light as seen by the
camera is very limited, and the projector’s red light is the
only light source illuminating the projection surface. Small
changes in distance from the projector to the object or slight
depth variation of the surface can result in considerably
increasing or decreasing the amount of light as seen by the
camera.

Figure 5 shows luminance of the projection as seen by
the camera in three setups, namely, Setup 1 for direct camera
capture with no beam splitter, Setup 2 for direct camera
capture with the beam splitter in front of the projector, and
Setup 3 for our pro-cam setup using indirect camera capture
via the beam splitter. Using the camera setting as written
in Section 6.1, we constantly projected a uniform red image
onto a whiteboard located at different distances and allowed
the camera to sense these red projections in the three setups.
According to the result shown in Figure 5(a), it is clear that
the amount of light seen by the camera in our setup is

7
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FIGURE 5: (a) Luminance values seen by the camera at different
distances to the surface in three different setups. Note that the
maximum possible luminance here is 255. (b) The three setups used
in the experiment.

very limited and sharply decreased with the increase of the
distance. Note that the distance written in this context refers
to a distance from the planar surface to the front edge of the
wooden base (as shown in Figure 2).

This significant decrease of luminance makes a visual
object detection become difficult for a conventional stan-
dalone detection algorithm, as the detector tends to miss
some true objects (a.k.a. undersegmentation) or include false
information belonging to noises (a.k.a. oversegmentation).
Considering a single input image, it is always possible to
achieve a good detection result by fine-tuning parameters of
the detector. However, adjusting these parameters manually
during real-time object augmentation is not preferred in
our system. Therefore, we decided to use the multiscale
concept to compensate the oversegmented result with the
undersegmented result and to ensure that acceptable detec-
tion results will always be achieved with a single set of
predefined parameters, regardless of different or limited
lighting conditions.

In the following sections, we explain in detail how
to develop our proposed multiscale detection. Section 5.1
explains the overall concept of the proposed detection
scheme. Section 5.2 presents additional information regard-
ing appropriate image simplification filters for the proposed
detection and the proposed pro-cam design.

Unlike color and texture, edges generally present across
any type of visual content. Hence, Canny edge detection
provided by the OpenCV library [33] is used in the following
sections as a representative base detector where, A1, A,, and o
represent values of two Canny thresholds and aperture size,
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FiGgure 7: Comparison between the sequential and parallel multiscale detection. Gaussian smooth filter and Canny edge detector are used as
the simplification filter and base detector, respectively.

respectively. Note that all input images used in these sections  5.1. Overall Concept. An overview of the investigated detec-
are unsigned 8-bit RGB images. We strongly recommend the ~ tion scheme is shown in Figure 6. It starts by converting
reader to look at the digital copy of these sections because  the image to YUV format and using only the Y (lumi-
some fine details cannot be seen when printed onto a paper. nance) component in further calculations. This is related
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to the observation that human eyes are far more sensitive
to luminance than color. Then, histogram equalization is
applied to enhance visibility and to standardize the input
image so that it is ready for the next multiscale detection
step. From our experiments, using only the multiscale
concept (explained in the next paragraph) is not enough to
achieve an unsupervised detection and adjusting parameters
of the base detector is still required when dealing with
differently illuminated input images. Because our input
images (as well as other pro-cam systems operating in a
dark environment) suffer from insufficient amounts of light,
using histogram equalization is a straightforward solution to
improve the overall appearance of the images, as shown in
Figure 7.

Generally, the multiscale detection refers to a hierar-
chy of detections where an original image is simplified
through iterations of a simplification filter as illustrated
in Figure 6(a). The idea is to use an image simplification
filter (with constant parameters) to decrease iteratively “too
detailed” information from the original image so that only
the information belonging to the true objects survives in the
last scale. By applying the base detector with the constant set
of parameters to the simplified image in each scale, we can
combine the detection result from all scales to a single scale-
map output using a weighted summation. Suppose that N
is the number of scales and i is an index of each scale, in
this paper, i equals to 1 refers to the highest scale (maximum
detail but least importance), i equals to N refers to the lowest
scale (minimum detail but highest importance), and the
weight assigned to each scale is equal to i. Consequently, the
high magnitude (black) in the combined scale map reflects
the high probability that this pixel belongs to the true edges,
as shown in Figure 7.

Nevertheless, using the sequential implementation
means that the total number of scales is the key factor
to determine the computational time of the detection.
Considering recent growth in multicore processors and
parallel programming languages, we changed the sequential
implementation to the equivalent parallel implementation
as illustrated in Figure 6(b). The histogram-equalized image
is distributed to all scales simultaneously, allowing multiple
simplifications to be performed in a parallel manner. Instead
of using the same simplification parameters iteratively as
the sequential implementation, our parallel implementation
increases the simplification effect by directly enlarging the
parameters that control the strength of simplification in each
scale. The experimental results presented in Figure 7 show
that the parallel implementation offers similar scale-map
outcomes compared with the sequential implementation. In
this way, speed of the detection can be improved significantly
with few modifications.

After the multiscale detection step, the scale map image
(grayscale) is converted to a binary image using a fixed
threshold value so that low-magnitude pixels, which usually
belong to noises, are eliminated from the final detection
result. The investigated detection scheme is automatic and
involves no user feedback, training, or supervision during
online execution. By simply replacing the representative
detector used in this section (Canny edge detector) with

a preferred visual detector, various object detections can be
achieved for further use in object augmentation. The pro-
posed detection scheme can also be applied to other pro-cam
systems regardless of our colocating and nonintrusive design.
However, some parameters may need to be reconsidered
offline to ensure that the simplification strength and the
detector’s sensitivity are set appropriately.

5.2. Image Simplification Filter. In addition to the detection
scheme mentioned in Section 5.1, there is an additional
issue of increasing textural noises caused by the histogram
equalization. The textural noise in this context refers to
textures that are hardly recognized in an original image
but become noticeable when strongly enhancing the image
with the histogram equalization. The more the histogram
is changed, the clearer textural noises become and can
result in false positive visual detection. Therefore, using an
appropriate filter to simplify the image is important to ensure
that these textural noises are not emphasized in the detection
output. For this section, we experimented on five smooth
filters: mean shift, conventional bilateral, real-time O(1)
bilateral [34], median, and Gaussian filters. Meanshift and
bilateral filters are edge-preserving smooth filters that offer
“posterized” or “cartoonized” effects over an input image.
Median and Gaussian filters are well-known smooth filters
usually used to reduce noises in an image.

Assuming that parameters of each filter are adjusted so
that the best detection result is achieved, Figure 8 shows
the scale maps obtained by applying the five filters over the
same histogram-equalized image in the parallel multiscale
manner. The number of scales (N) is 4, and the parameters
of the base Canny edge detector are set to A; = 127, A, =
1000 and ¢ = 5 in all experiments. From Figure 8, it
is obvious that the meanshift and median smooth filters
emphasize the textural noises in the scale maps whereas the
conventional bilateral and Gaussian smooth filters offer the
cleanest and nicest edges. Compared with the conventional
bilateral filter, the real-time O(1) bilateral filter [34] can
equally filter out the textural noises, but does better in
preserving edges and enhancing image contrast (the result
regarding this issue is not shown in this paper). However, its
results are distracted by noise pixels inside the object so that
continuous contours of an object are barely achieved. Note
that only the area inside the projector frustum is considered
here.

Furthermore, we examined the computational time used
by each filter. Under the same constraints, the computation
time used per one smoothing execution (without iteration)
is 30, 63, 65, 18, and 15ms for meanshift, conventional
bilateral, real-time O(1) bilateral [34], median, and Gaussian
filters, respectively. Because our input image here requires
strong smoothing effects to reduce the textural noises caused
by the histogram equalization, it costs much time in the
simplification processes. When dealing with other scenarios
of less severe light conditions (not too dark), reducing
strength of the simplification filter is allowed and less
computation is required. Nevertheless, considering the time
as well as the resulting scale map, the Gaussian smooth
filter is the best choice that is not too sensitive to textural
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FiGURrE 8: The scale maps of the multiscale Canny edge detection (N = 4) using different simplification filters. Top left is the histogram-

equalized image before the multiscale detection is applied.

noises, provides nice contours of the true objects, and uses
reasonable computational times.

6. Nonintrusive Projection

In order to achieve smart ubiquitous projection, the projec-
tion environment must be aware and recognized in real time
so that projected augmentations can be generated in the most
appropriate manner. Real-time environment analysis is not
new in research communities but, it is not straightforward
for a real-time projection system. In vision-based systems,
it is still difficult to differentiate projected contents from
actual objects in camera images, particularly when the
projection surface is not planar and uniformly colored.
This problem is hardly mentioned in the work of previous
researchers investigating mobile projectors. Previously, the
focus was on the projection functions or the use of markers
to easily extract environmental information (as discussed
earlier in Section 2). In the electronic sticky notes and
projected augmented reality approaches proposed in [18],
environment analysis is performed to detect an object in
the environment whose appearances match the preregistered
values. The interesting point here is that they seem to avoid
projecting anything over the target object because projected
contents superimposed on the target object will affect the
visual matching process. In [3, 35], projecting over the target
object is allowed but the projected information is reduced
to a minimum to avoid significant changes in the object
appearances as seen by the camera.

Generally, there are two alternatives to deal with projec-
tive interference so that environment analysis and projection
can be performed simultaneously. One alternative creates
a system that can be aware of all projected content at all

times. Handling projected contents in camera images is not
so difficult if they do not overlap with physical objects.
The SixthSense project [1] utilizes this concept and keeps
tracking the projected content so that the system can handle
it correctly. This alternative certainly requires additional
computation for tracking and handling with the projected
content. However, as the projection surface contains many
details or textures, tracking the overlaid projected content
and handling with it should become much more difficult.
The other alternative is to prevent the projected content
from being seen by the camera in the first place. The
straightforward approach to achieve this is to observe the
environment using a sensing device insensitive to light (e.g.,
depth camera, laser scanner). For this paper, we selected the
second alternative in order not to risk system inefficiencies
due to the surface complexity. The light sensing camera
is used but in a specific setting, allowing the projected
content to be invisible to the camera. Our approach is called
“nonintrusive projection” which refers to the projection
approach whose projected contents are visible to humans and
normal cameras but invisible to the synchronized camera,
as an example shown in Figure 9(E). Therefore, the vision-
based system can avoid projective interference (as seen by the
camera) that may lead to an incorrect environment analysis
like that shown in Figure 9(C).

Figure 10 shows the summary of our nonintrusive
projection approach. The offline processes (shown inside the
dashed-line rectangle) consist of synchronizing the projector
and the camera, analyzing the color wheel characteristics of
a DLP projector, and classifying the RGB color space into
three categories. The outcomes of these offline processes are
the specific camera settings and three sets of classified colors.
During the online execution, only the color conversion is
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FIGURE 9: (A) is an environment seen by the normal camera. (C)
and (E) show environment (A) as seen by the normal camera
and the synchronized camera (according to the nonintrusive
projection), respectively, while (G) is being projected from the
projector. (B), (D), and (F) are Canny edge detection results of (A),
(C), and (E), respectively.
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F1Ggure 10: Procedural flow of the proposed nonintrusive projection
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performed to ensure projecting only colors in the set whose
visibility cannot be sensed by the synchronized camera.

Section 6.1 shows in detail how to perform the first two
steps of the offline processes (as written in Figure 10) which
mainly involve DLP color wheel analysis. Then, Section 6.2
explains the utilization of Section 6.1 for nonintrusive
projection; this section refers to the remaining step of
the offline processes and the online processes, as shown
in Figure 10. Note that a beam splitter (as described in
Section 4) has not yet been applied in these sections.

6.1. Color Wheel Analysis of a DLP Projector. In this section,
characteristics of the color wheels are analyzed for further
uses in Section 6.2. Because each DLP projector model owns
unique characteristics of the inside color wheel, color wheel
analysis has to be performed before using an unknown DLP
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FiGure 11: Color wheel analysis of the Acer P3250 DLP projector.
(a) is the overall color-wheel sequences as seen by the synchronized
camera with starting exposure times ranging from 0 to 10 ms. (b) is
detailed mirror flip sequences for all 256 values in the red channel
with the starting exposure times ranging from 0 to 2.5ms. (c) is
mirror flip sequences at the selected starting exposure time.

projector model for nonintrusive projection. To understand
the overall characteristics of the color wheels without full
access to a DLP chip and its controller, we applied the
camera-based classification method proposed in [36]. This
section briefly explains the color-wheel analysis steps and
shows the results regarding our DLP projector model.

First, this analysis method requires a camera with
an external trigger feature to synchronize it with a DLP
projector. Synchronization between the projector and the
camera is performed here by tapping the vertical sync signal
(5V, 60 Hz) from the computer to the projector and using
it to trigger the camera. In addition, the aperture size of the
camera must be increased whereas the shutter of the camera
must be set to open for a very short period (i.e., 0.55 ms in
our setup) in order to sense the fast characteristics of the
color wheel properly with no effect from the ambient light.
All these settings refer to the initial camera setup step written
in Figure 10.

Second, we analyzed the overall sequences of the color
wheel inside our DLP projector by projecting single-color
images (corresponding to the colors of each available color
wheel of the projector) at maximum intensity through all
possible starting exposure times. Figure 11(a) was created by
allowing the synchronized camera to sense these projected
colors with different starting exposure times. Then, we
analyzed detailed mirror flip sequences for all 256 values in
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the selected color channel (i.e., red, green, or blue) within
a narrow starting exposure period. From Figure 11(a), we
selected the red channel, which is the first channel appearing
in the sequences; other color channels can be selected too, but
it will result in a longer synchronization delay time. Mirror
flip sequences were then obtained by projecting uniform red
images with intensity values ranging from 0 to 255, and
with the starting exposure times ranging from 0 to 2.5 ms.
Figure 11(b) was created by allowing the camera to sense
these red projections. A starting exposure time of 0.8 ms was
finally chosen because it provides the best distributed red
ramps, as shown in Figure 11(c).

Up to this point, the color wheel analysis step written in
Figure 10 is done and we are able to synchronize the camera
with the projector at the appropriate starting exposure time.
For our selected starting exposure time, the camera can
only see the red light of the DLP projector (correspondences
between projected red intensities and red intensities seen by
the camera are shown in Figures 11(b) and 11(c)).

6.2. Color Classification and Color Conversion. In [36], the
256 red intensities in the selected time slot were classified
into three sets: WHITE, BLACK, and GRAY. WHITE refers
to colors whose projection fully turns mirrors inside the
DLP projector and transmits lights toward a surface (i.e.,
bright red light as seen by the camera). BLACK refers
to colors whose projection does not flip the mirrors and
transmits no light toward a surface (i.e., no light seen by the
camera). GRAY refers to unreliable states between WHITE
and BLACK. By converting each projected color to its most
similar color in the WHITE or BLACK set, the work of [36]
can imperceptibly embed the binary pattern to the normal
projection. Based on the same idea of three sets of colors,
our nonintrusive projection is performed by projecting only
the contents whose colors share the same classified set so that
they blend across the projection area seamlessly as seen by the
camera. In this way, the camera is deceived and cannot see
the projected contents because they cannot be differentiated
from their background.

Nevertheless, the method of projecting only colors whose
red intensity contained in the specific set works only for
a DLP projector model that does not have interdependent
color channels in mirror flipping. Instead of depending on
the red channel and risking effects from the other color
channels, we propose a DLP-model-independent classifica-
tion that involves all color channels (i.e., red, green and
blue) of projected images. Each color in the RGB color
space was projected onto the white surface (locating in a
static environment) and sensed by the camera. The projected
colors were then classified into the three sets previously
discussed. These projection and classification refer to the last
step of the offline processes according to Figure 10.

To use the three classified sets of colors during online
nonintrusive projection, we applied an approximate nearest-
neighbor search algorithm called best bin first (BBF) [37] so
that an arbitrary color is converted into our preferred set and
visibility of the projected contents (as seen by the camera)
can be controlled. However, as mentioned in Section 6.1,
the exposure time of the camera is significantly decreased

EURASIP Journal on Advances in Signal Processing

in this approach. Therefore, the camera cannot sense the
environment properly unless there is light emitting from the
projector. This effect can be seen in Figure 9(E) where no
ambient light is seen by the camera and the environment is
only revealed inside the projector frustum area. For, further
environment analysis purpose, this means that we need to
illuminate the environment while projecting nonintrusive
contents. Hence, all projected colors must be converted to the
WHITE set to ensure both seamless visibility in the camera
image and proper environment illumination. The final result
of our nonintrusive projection is shown in Figures 9(E)and
9(F). It can be seen that the Canny edge detection result is
similar to that of a conventional vision-based system where
there is no projection (as shown in Figures 9(A)and 9(B)).

7. Proof of Concept

To prove the proposed framework, we implemented a basic
program in a small-scale laboratory setting to demonstrate
the concept of real-time object augmentation in a 3-D
environment using the procedural flow as illustrated in
Figure 1. The projector and camera were colocated and then
calibrated by projecting a known pattern onto a planar white
surface placed at a distance of 60 cm from the front edge of
the wooden base. The calibration was performed offline by
manually locating 25 pairs of correspondences (§ = 25 in
(2)) and computed the homography matrix as described in
Section 4.2.

In the program, 2-D Gabor filter [38], known to be useful
in segregating textural regions, is used as the base detector
and any area whose Gabor filter response magnitude is low
will be considered the target object for augmentation. In
other words, the target objects for this program are textural
regions or surfaces that have either nonuniform reflections
or discontinuities. Based on this assumption, we detected
areas of the target object inside the projector frustum and
drew bounding rectangles around each detected area using
a randomly assigned nonintrusive color. The detection is
performed here in a single-frame analysis style and the raw
detection data is utilized without further refinement. The
purpose of this program is to show that our framework
enables a visual detector to be used in the same way
as nonprojector systems and can solve the fundamental
problems of a vision- and geometry-based pro-cam system
regardless of 3-D shape of the object or a multidepth
plane. Nevertheless, despite the simple object detection, this
program completely neglects other vision-based algorithms
for eliminating noises, identifying an object’s shape, tracking
the target object, and so forth. Therefore, existing noises are
not eliminated and the target object may not be perfectly
extracted.

Figure 12 shows the program in action with the yellow
drawn over the camera image representing the multiscale
Gabor detection result. The snapshot images of the actual
surface were also shot from an asynchronous separate camera
in order to show how a human actually saw the projected
augmentations. Figures 12(a) and 12(b) show results on
nonplanar surfaces whereas Figures 12(c) and 12(d) display
results on slanted and angled surfaces. Finally, Figures 12(e)
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FIGURE 12: Demonstration of the proposed framework using 2-D Gabor filter as the base detector. Left images are images captured by the
system camera with the multiscale detection result drawn in yellow. Right images are snapshots of the surface taken by a separate camera.

All camera images were equally enhanced here for better visualization.

and 12(f) demonstrate results on multiple planes with differ-
ent distances to the surface. Using the proposed framework,
most blue-texture areas were detected and bounding rectan-
gles were drawn around them regardless of their geometry
and distance to the surface (the distance reflects the amount
of light as seen by the camera as illustrated in Figure 5). Col-
ors of the object also influent the detection result. As shown
in Figure 12(e) the program failed to detect the brown stitch
on the doll. This is because brown is the color that blends
across the projector light (i.e., the red light illuminating
the environment) when being seen by the camera (detailed
explanation as written in Section 6). Therefore, the program
could not distinguish it from the background in camera
images.

The same procedure can be repeated when developing
applications in a real-world scenario. Instead of the simple
visual detector used in this paper, human detector, gesture
recognition or motion analysis algorithms might be used to
carefully refine the raw data and detect a user or interpret
his actions accurately in real time. Final robustness of the
application regarding object or human detection will depend
on the selected visual detector and additional refinement
algorithms. Our framework finishes its tasks here for solving
problems of a pro-cam system, leaving problems of a
conventional vision system to be solved by other appropriate
vision-based algorithms.

8. Experimental Results

In this section, we discuss experiments conducted to evaluate
the three proposed approaches. All experiments were per-
formed using an HP Pavilion dv5 Notebook PC with an Intel
Core2 Duo CPU P8600 running at 2.40 GHz. The following
devices were used in the experiments: a TechSpec plate beam
splitter 48904-], an Acer P3250 DLP projector (Native XGA
1024 x 768 projection resolution with standard brightness
at 2000 ANSI lumens), a Dragonfly Express camera (VGA
640 x 480 captured resolution), and an ELECOM VSP-
A2 VGA splitter. The camera is equipped with a Tamron
13VM308AS lens, and the projector’s focus was adjusted
manually in all experiments.

Scene-Independent Pro-Cam Geometric Calibration. To de-
termine the accuracy of the proposed pro-cam geometric
calibration, we conducted experiments on both planar and
nonplanar surfaces. The offline calibration was performed
using only one sample image containing 25 calibrated points
(8 = 25 according to (2)). In the experiments, camera
coordinates generated by our approach were compared with
actual camera coordinates located manually. For the planar
and slanted surface, five experiments were conducted with
different distances of the projector, and each experiment
was performed using 25 tested points (the number of tested
points written here is not the § value used in the offline
calibration). The same experiment with 25 tested points
was repeated on five nonplanar surfaces which are difficult
to be calibrated in real time using other noncolocating
designs. Figure 13(a) shows the experimental results on the
planar and slanted surfaces whereas Figure 13(b) shows the
experimental results on the nonplanar surfaces. Snapshots
of the nonplanar experimental surface are captured by a
separate camera and shown in Figure 13(c).

According to the experimental results shown in Fig-
ure 13(a), the proposed calibration provides the narrow
range of geometric errors in both axes. In the fourth and
fifth experiments, geometric errors are higher than those of
the first three experiments. This is because the fourth and
fifth experiments were conducted on a slanted surface and
depth variation of the surface slightly affected accuracy of the
calibration. Detail regarding this will be explained in the next
paragraph.

According to Figure 13(b), the geometric errors for these
nonplanar surfaces are similar to those of the planar and
slanted surfaces, except for the third and fourth experiments.
In the two mentioned experiments, the errors along the
X axis are higher than the others, but still less than 3%
compared with the width of the captured resolution. These
increases of errors are caused by the significant depth
variation of these two experimental surfaces; the variation
makes the projected image become slightly distorted when
being seen by the camera. Hence, points lying on the
same straight line but different depth planes are not ideally
collinear in the camera image and results in geometric errors
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FIGURE 13: (a) Geometric error (camera coordinates) of the proposed pro-cam geometric calibration approach on planar and slanted

surfaces. (b) Geometric error (camera coordinates) of the proposed

pro-cam geometric calibration approach on nonplanar surfaces. (c)

Snapshots of the nonplanar experimental surfaces. (d, e) are the captured images of the third and fifth nonplanar experiments, respectively.

of the calibration. This is shown in Figure 13(d) where there
are two groups of tested points: 8 and 17 points with and
without bounding circles, respectively. The first group of
points lying on the whiteboard has small geometric errors
whereas the second group of points projected onto the doll
in front of the whiteboard provides larger geometric errors.
However, if the depth variation of the projection surface is

not high, as shown in Figure 13(e), 3-D shapes of the surface
barely cause distortion of the projected image as seen by the
colocated camera.

In conclusion, the proposed calibration approach pro-
vides reasonably accurate results for the purpose of ubiqui-
tous object augmentation, particularly when dealing with a
surface whose geometries are not known. The accuracy of
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F1GURE 14: Images in the top row were captured by the proposed pro-cam design. Images in the bottom row result from Canny edge detection
using the proposed multiscale visual detection scheme with parallel implementation.
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FiGgure 15: Relationship between the computational time (per one
input image) and the number of scales (N) using the sequential and
parallel implementation of the proposed detection scheme.

the calibration does not fall over time but may be slightly
decreased when the projection surface has significant depth
variation.

Multiscale Visual Object Detection. For the proposed detec-
tion scheme, first, we investigated its performance using the
parallel implementation in differently illuminated images.
Figure 14 shows the experimental results using Canny edge
as a representative detector. All experiments share the same
settings and no further parameter adjusting is performed
in each experiment. According to Figure 14, it can be seen
that the proposed scheme is capable of detecting true edges
inside the projector frustum area in all images. Noise edges
are visible inside the detected objects given the reflection of
the projector’s light upon the object’s surface.

To determine the speed efficiency of the parallel imple-
mentation, Figure 15 shows the computational time used
during the multiscale detection in the sequential and parallel

implementations versus the number of scales (N). Our
parallel implementation used the OpenMP parallel pro-
gramming architecture. Therefore, the parallel capability is
limited to our Core2 Duo CPU. According to Figure 15,
the times used by the sequential implementation increase
linearly while the times seem to increase exponentially in
the parallel implementation. The parallel implementation
uses less time than the sequential does when the number of
scales is less than 8. This can be explained by the concept
of parallel programming in which the ratio of the number
of data transfers to the number of executed commands
must be small; otherwise, executing in a sequential manner
on a single CPU is faster. From our experiments, the
number of scales from four to six is adequate. Hence, using
OpenMP programming with a recent processor providing
more than two cores should allow for easy acceleration.
Another alternative is to use GPU programming, but major
reimplementation of the existing program may be required.

Nonintrusive Projection. To evaluate the nonintrusive projec-
tion, we randomly generated 64 colors and converted them
into the WHITE set using the proposed color conversion
approach. The converted image was then projected and
sensed by the synchronized camera. Figure 16 shows the
experimental results including conversion of the same image
to the BLACK set for comparison. From images captured
by the camera shown in Figure 16, our classification and
conversion approach can perform efficiently and the surface
remains well illuminated when projecting colors in the
WHITE set. However, the projection area as seen by the
system camera is not ideally seamless when projecting colors
in the WHITE set. This is due to the range of the threshold set
during the color classification (Section 6.2). By the way, these
traces are not clear enough to intrude on visual environment
analysis.

9. Conclusion

In this paper, we proposed a complete vision-based frame-
work for real-time object augmentation applications using
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F1Gure 16: Color conversion using the proposed approach. (a) is the randomly generated 64 colors before conversion. (b, ¢) are (a) images
after converted to the WHITE and BLACK set, respectively. Images in (b) represent the concept of nonintrusive projection used in this paper.
Note that for each paired image, the right image shows the environment as seen by the synchronized camera when the left image is being

projected from the projector.

a portable pro-cam device. Only the geometric aspect of the
system is concerned in order to detect the target object and
project real-time 2-D augmentation in the desired geometry.
The framework consists of colocating the projector and
camera using a beam splitter so that scene-independent
geometric calibration can be accomplished using perspective
transformation model. Projective interference problem is
solved by synchronizing the camera with the DLP projector
at a specific time slot, allowing real-time projection and
real-time visual object detection to be done simultaneously
without visually interfering with each other. Finally, the
problem of variations of lighting introduced by our proposed
design is solved using the multiscale visual detection scheme
together with parallel programming.

The proposed framework is truly portable, requires no
stationary device in the workspace, and attaches no marker
to the target object or the projection surface. Additional
algorithms can be added to allow more realistic and smooth
object augmentation in an actual application.
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