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The wavelet-based approach that combines a reversible round-off nonrecursive discrete periodized wavelet transform (RRO-
NRDPWT) and the set partitioning in hierarchical trees (SPIHT) scheme is an efficient ECG data compression. However, this
RRO-NRDPWT-based system suffers from the high complexity of the SPIHT scheme during realization. In this paper, a modified
run-length coding (MRLC) algorithm is proposed towards the realization of a RRO-NRDPWT-based ECG data compression
system. The MRLC with its regularity and low computational complexity is suitable for hardware implementation, but at a cost of
compression performance. This sacrifice is compensated by an efficient quantization scheme. By using the MIT-BIH arrhythmia
database, the experimental results show that the proposed scheme can compete with the SPIHT scheme for a compression ratio
(CR) greater than 8. Hardware simulations are taken using both the Verilog logic simulator with Cadence design platform, and a
Xilinx FPGA EP2C35F672C6.

1. Introduction

An electrocardiogram (ECG) is a non-invasive modality that
senses the electric action of heart motion from the surface
of a body. Since the heart is a three-dimensional organ,
heart disease diagnosis usually requires the use of several
ECG signals sensed at various positions around the heart.
A typical requirement for heart disease diagnosis and health
care is a long-term record of 12-lead ECG signals [1]. To this
end, portable ECG sensing systems associated with wireless
data transmission have been developed for ambulatory
monitoring and recording. ECG data compression is crucial
for creating a reduction in power consumption, efficient data
transmission, and storage [2, 3].

In many ECG data compression methods, wavelet-
based approaches with high compression performance have
attracted much attention from researchers [4–7]. These
approaches that attempt to optimize the compromise
between CR and distortion all employ the lossy compression
method in which the percentage root-mean-square differ-
ence (PRD) is usually used as the distortion measure. Lossy
ECG data compression can be meaningful only if clinical
information and reconstruction quality can be preserved and

maintained. Quality maintenance is usually time consuming
due to the recursive process of compression and reconstruc-
tion error measurement. For this reason, realizing wavelet-
based data compression with hardware is required to create
real-time recoding of multilead ECG signals. In realization,
high compression performance, low complexity, and rapid
convergence in reconstruction quality control are important
considerations.

With low complexity, threshold-based schemes [2, 5–7]
are one optimal option. The SPIHT scheme incorporating
thresholding into tree coding provides progressive mode
ECG compression [2]. In [5], thresholding was first used
to maintain a fixed percentage of wavelet coefficients at
zeros followed by an entropy coding. The filter bank-
based method [6] uses target PRD as the criterion for
threshold value determination. Recently, a method based on
orthogonal wavelet filters was proposed for efficient ECG
data compression [7]. This approach combines nonrecursive
1-D discrete periodized wavelet transform (1-D NRDPWT)
and a reversible round-off linear transformation (RROLT)
theorem in order to eliminate the word-length-growth
effect. This DPWT, referred to as the 1-D RRO-NRDPWT,
facilitates a real-time process and a design of linear distortion
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control. The RRO-NRDPWT-based ECG data compression
also applies the SPIHT scheme for the coding of quantized
wavelet coefficients.

The SPIHT scheme can be very efficient for data inherent
in hierarchical self similarities. However, this scheme exploits
the self similarities in terms of dynamic data structures
that will impose practical limitation on hardware imple-
mentation [8–12], especially for large-size data sequences.
In order to save the three intermediate data sets, list of
insignificant sets (LIS), list of insignificant pixels (LIP),
and list of significant pixels (LSP), the SPIHT encoder
should reserve a buffer size of 4.5 log2 L bits where L is
the image width. This buffer size is even larger than the
image itself [9]. A simulation using Xilinx Virtex 2000E
FPGA [10] shows that for encoding a 16 × 16 image, SPIHT
scheme needs 61531 gates. The RRO-NRDPWT-based ECG
data compression system was also simulated on the Xilinx
FPGA, EP2C35F672C6 [12]. The system is composed of
three functional blocks RRO-NRDPWT, quantization, and
the SPIHT coding in which the RRO-NRDPWT block is
performed with 21-bit precision. The evaluation result shows
that for 1024 ECG samples, the first two blocks require
6254 and 2383 logic elements, respectively. On the other
hand, for only 32 ECG samples, the SPIHT block will need
25480 logic elements, which occupy (254180/33216)×100 =
76.7(%) of total logic elements. Note that with the limitation
of EP2C35F672C6, we cannot evaluate 64-sample case or
larger.

In this paper, towards the realization of RRO-NRDPWT-
based ECG data compression system, a modified run-length
coding (MRLC) method is presented in place of the SPIHT
scheme. The MRLC can effectively reduce computational
complexity at the cost of compression performance. For
compensation, amodified quantization scheme with approx-
imate linear distortion is presented for improving compres-
sion performance. Several experiments are also taken by
using the MIT-BIH arrhythmia database [13].

The rest of this paper is organized as follows. The
nonlinear quantization scheme with the approximate linear
distortion characteristic is developed in Section 2. The
proposed ECG data compression scheme is described in
Section 3. In Section 4, several experiments in ECG data
compression are evaluated. The analysis and synthesis
report of the proposed MRLC architecture are presented
and demonstrated in Section 5. Finally, the conclusion is
provided in Section 6.

2. A Nonlinear Quantization Scheme
with Approximately Linear
Distortion Characteristics

The RRO-NRDPWT is a nonrecursive 1-D DPWT that can
achieve fixed-point computation in terms of error propaga-
tion resistance and a uniform distribution of subband error.
The two mechanisms facilitate the significant normalization
of subband data and a quantization scheme design with
linear distortion characteristics.

Given a negative integer J withN = 2−J , whereN denotes
the number of original sampled data of a finite 1-D signal.
Let d∗j for J < j ≤ 0 be a vector encompassing the reversible
wavelet coefficients of the jth level. The quantization process
can be defined as

s̃∗0 = tr
(

s∗0
bDC

)

, ˜d∗j = tr

(

d∗j
c j

)

, (1)

where tr(d∗j ) denotes the truncation process that truncates
each element of d∗j to an integer, and bDC and c j are the
terminate and jth levels’ quantization scales, respectively. In
the inverse quantization process, each retrieved datum will
be compensated by half of the quantization scale, namely

ŝ∗0 = bDC
(

s̃∗0 + 0.5 · sign(s̃∗0
))

,

̂d∗j = c j
(

˜d∗j + 0.5 · sign
(

˜d∗j
))

,
(2)

where sign(˜d∗j ) denotes the sign vector of ˜d∗j . For the
determination of quantization scales, we define c j as

c j = cp
[

j
]

SNF j
, (3)

where SNF j = maxl{
∑2− j+1

k=2− j |a′kl|} is a significant normal-
ization factor and cp[ j] are adjustable parameters and a′kl is
the kth row and lth column element of the inverse matrix of
RRO-NRDPWT [7].

Equation (2) shows that for each segment (N =
1024 ECG samples), the reconstruction requires 11 cp[ j]
including bDC. It will be efficient to generate cp[ j] with
a single variable. To this end, curve fitting is one simple
approach. The cp[ j] design process is described in the
following.

Step 1. Find seven sets of cp[ j], j = 0, 1, . . . , 10 correspond-
ing to different PRD values ranging from 0 to 7%.

Step 2. Introduce 11 quadratic equations for fitting the 11
cp[ j] curves with single control variable QF. The coefficients
of 11 quadratic equations are found by least square error
criterion.

In Step 1, an exhaustive search of cp[ j] for each PRD
value should be performed in an 11-D space. In so large
a space, it is impossible to find a global solution. Instead,
we optimize the local solution based on the quantization
scheme given in [3]. For minimizing the search area, the
condition cp[i] < cp[ j], for i > j is also applied. In Step 2,
the seven cp[ j] values for each j will be fitted with a quadratic
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Figure 1: The PRD-QF curves of 48 ECG signals derived by the
modified quantization scheme.

function in which the range of PRD is fitted by 16 QF values.
One locally optimal solution is given in the following:

cp[0] = bDC = 0.1 +
q

10
, cp[−1] = 0.1 +

q

7
,

cp[−2] = 0.4 +
q

4
, cp[−3] = 0.5 +

q

2
,

cp
[

j
] =

(

0.5 +
q

2

)

· (1.2)−( j+4) − ( j + 3
) · q

2

for j = −4,−5, . . . , J + 1,

(4)

where q = 10 · ((QF + 1)/16)2. In (4), QF can be an available
variable for desired PRD and CR control.

In order to explore the linear control performance of
QF, all 48 ECG signals recorded in the MIT-BIH arrhythmia
database were investigated. Each signal contains about a 15
minutes length of sampled data. The measurement results are
depicted in Figure 1. Figure 1 reveals that an approximately
linear relationship between PRD and QF can be obtained
for all signals with different gradients. The linear distortion
characteristic will facilitate a rapid reconstruction quality
control.

3. The Proposed ECGData
Compression Scheme with theModified
Run-Length Coding

The proposed RRO-NRDPWT-based ECG data compression
scheme with the modified run-length coding is shown in
Figure 2. In the encoding process, the 1-D RRO-NRDPWT
first produces reversible wavelet coefficients d∗j . From (1),

for a given QF value, we can obtain quantized data ˜d∗j .
The QF and these quantized data will be losslessly encoded
with a differential pulse-code modulation (DPCM) and the

modified run-length method, respectively. The algorithm of
modified run length coding is described in Algorithm 1.

Example 1 (neglecting sign bit representation). Let Block2
= [3 12 0 0 0 0 0 0 0 0 0 7 0 0 0 0]; it can be found that
nmax2 = �log2(12)� + 1 = 4 and there are two zero
segments (i.e., arg 2 = 9 and 4). Both two zero segments
will be represented with Zbit = �log2(z2 − 1)� = 4 bits,
that is, (arg 2− 1)2 = (1000)2 and (0011)2). Consequently,
the output sequence of Block2 is given in Table 3.

In comparison with a specific run-length coding [14],
36 bits are required for Example 1. The proposed method
needs less bits. For representation with sign bits, an example
is given as follows.

Example 2 (considering sign bit representation). Let Block2 =
[3 −12 −7 0 0 0 0 0 0 0 0 0 0 0 0 0]. Both nmax2 and Zbit
are equal to 4. The output sequence will be in Table 4, where
the last three bits are used to represent the signed coefficients
3, −12, and −7, respectively. Note that the eight nmaxi, i =
0, . . . , 7, represented with the same word length will be put at
the beginning of output sequence, that is, a MRLC codec.

The MRLC codec can be decoded real-time block by
block. The decoding process of MRLC is described in
Algorithm 2.

After decoding, the reconstructed data, ̂SJ can be
obtained directly from (2) where the quantization scales are
generated by applying QF into (3) and (4).

4. Experimental Results

For hardware realization, complexity reduction usually leads
to a sacrifice of compression performance. Several exper-
iments were made in order to evaluate the compression
performance of the MRLC-based approach. The original
data compression scheme of [3] and the proposed scheme
are referred to as NRDPWT-6r and NRDPWT-MRLC,
respectively. A dataset comprising 11 ECG signals: 100, 101,
102, 103, 107, 109, 111, 115, 117, 118, and 119, recorded in
the MIT-BIH arrhythmia database (360 samples/sec and 11
bit resolution) was built for the test. With 11 bit resolution,
the word length of nmaxi is defined as WL(nmaxi) = 4.
Each signal contains about a 10-min length of sampled
data. Each segment involves 1024 samples of ECG data. The
experimental result is shown in Table 1 where each value
denotes the average PRD for a specified CR. The value of
PRD is defined by

PRD(%) =
√

√

√

√

∑N
i=1
(

sJ [i]− ŝJ [i]
)2

∑N
i=1
(

sJ [i]
)2 ∗ 100, (5)

where ŝJ [i] and sJ [i] denote the reconstructed and original
signals, respectively. Note that the PRD algorithm acts on
a zero-mean signal. Since a baseline of 1024 is added for
the storage purposed in the MIT-BIH arrhythmia database,
so a level of 1024 is removed from each sample before
processing. Table 1 shows the PRD-CR performances of
several ECG data compression schemes including SPIHT
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Initialization: Divide the quantized wavelet coefficients into k encoding blocks.
For N = 1024, k is defined as k = 8 and

Block0 = {c0, d0, d−1,d−2}, Block1= {d−3},
Block2 = {d−4}, Block3 = {d−5},
Block4 = d−6, Block5 = d−7,
Block6 = d−8, Block7 = d−9,

where the lengths of block, zi for i = 0, . . . , k − 1, are 8, 8, 16, 32, 64, 128, 256, and 512 respectively.
Parameter definition: Let coei, j denote the jth coefficient in Blocki. Define nmaxi =WL(arg 1) and

Zbit =WL(arg2) be the word length of arg1 and arg2 that denote the maximum absolute
value of coei, j and the number of consecutive zeros, respectively. For saving the coding result
of each block, two registers, RL seti and sign seti,
are also introduced with WL(RL seti) = (nmaxi + Zbit) · zi and WL(sign seti) = zi.

Step 1: Find the nmaxi of Blocki.
for i = 0, . . . , k − 1 arg1 = 0;

for j = 0, . . . , zi − 1
if arg 1 < abs(coei, j)

arg 1 = abs(coei, j);
end
if arg 1 == 0

nmaxi = 0;
else

nmaxi = �log2(arg 1)� + 1;
end.

Step 2: Encode the elements of each block.
for i = 0, . . . , k − 1
if nmaxi == 0

Skip this block;
else

for j = 0, . . . , zi − 1
if coei, j /=0
{save (abs(coei, j))2 with nmaxi bits in RL seti and one sign bit in sign seti;}

else
{save (0)2 with nmaxi bits in RL seti; Count the number of consecutive zeros to be arg2
and save (arg 2− 1)2
with Zbit bits in RL seti; j = j + arg 2; }

end
end.
Step 3: Output sequence in the order of [nmaxi=0:k−1,, RL seti=0:k−1, sign set i=0:k−1].

Algorithm 1

[2], NRDPWT-6R [3], NRDPWT-6T [15], and NRDPWT-
MRLC where k denotes the number of blocks. For k =
1, Block0 = {c0, d0, d−1, . . . , d−9}; for k = 2, Block0 =
{c0, d0, d−1, . . . , d−8}, and Block1 = {d−9}, and so forth. For
the five partition modes (i.e., k = 7 to 11), their compression
performances are very close, and k = 8 performs best.
Table 1, also shows that for CR > 8, the NRDPWT-MRLC
(k = 8) can be competitive with the SPIHT scheme [2].
For CR < 8, the average PRD difference between NRDPWT-
6R and NRDPWT-MRLC (k = 8) can be limited to within
1.5%.

For practical application, preserving clinical information
is a crucial requirement for system development of ECG data
compression. A quantitative relation between distortion and
the degree of clinical information preservation was evaluated
in [16]. The evaluation showed that reproduced ECG
waveforms at specified PRDs of 7% and 9% were graded as
“no diagnostic information lost” and “clinically acceptable”,

respectively. A reproduced waveforms at a PRD of 13% was
“notably degenerated in some Q-waves and ST-segments”.
The experimental results show that the proposed system
can be competitive with other wavelet-based approaches for
CR > 8 and feasible for well preserving clinical information
that includes amplitude and duration (PRD � 7% for CR =
20).

Several compression results from the NRDPWT-MRLC
(k = 8) scheme are demonstrated in Figure 3 in which each
signal involves first 2048 samples. Figure 3(a) shows the ECG
signal of record 117 with a nice waveform. For this signal,
the PRD can be lower than 3% when CR reaches 22.2. The
signal from record 232 with a distorted and noisy waveform
is shown in Figure 3(b) where the reconstruction error is
unobservable. The ECG signal shown in Figure 3(c) is record
109 with a waveform containing a wandering baseline and
slight noise coupling. This signal has poor PRD due to the
smoothing effect of the quantization process. However, the
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Step 1: Get nmaxi, i = 0, . . . , k − 1.
Step 2: Decode the elements of each blocks.

for i = 0, . . . , k − 1
if nmaxi == 0

Assign all coefficients of Blocki to be zeros.
else

{for j = 0, . . . , zi − 1
Get nmaxi bits to be arg 1;
if arg 1 /=0
Decode arg 1 to be abs(coei, j);

else
{Decode arg 1 to be zero;
Get Zbit bits to be arg2-1 and decode arg2 to be the number of zeros;
j = j + arg 2;}

end
}

end.
Step 3: Correct the sign of nonzero coefficients using the sign bits.

Algorithm 2

QF

Encoding process

Reversible
round-off 1-D
NRDPWT

Nonlinear
quantization

process

Modified
run length
encoding

Inverse
reversible

round-off 1-D
NRDPWT

Inverse
quantization

process

Modified
run length
decoding

Decoding process

˜d∗j

˜d∗j^d∗j

d∗j

Reconstructed
ECG data

^S∗J

Original
ECG data

SJ

Figure 2: The RRO-NRDPWT-based ECG data compression scheme with modified run length coding.

Table 1: PRD (%) comparison of the three methods SPIHT [2], NRDPWT-6R [3], NRDPWT-6T [15], and NRDPWT-MRLC.

Compression method
CR

4 : 1 5 : 1 6 : 1 8 : 1 10 : 1 12 : 1 14 : 1 16 : 1 18 : 1 20 : 1

SPIHT [2] 1.19 1.56 — 2.46 2.96 3.57 — 4.85 — 6.49

NRDPWT-6R [3] 1.03 1.36 1.65 2.19 2.64 3.11 3.66 4.29 5.00 5.72

NRDPWT-6T [15] 0.98 1.29 1.57 2.07 2.52 3.03 3.60 4.23 4.94 5.74

NRDPWT MRLC (k = 1) 1.95 2.27 2.56 3.21 4 4.97 6.07 7.28 8.41 9.71

NRDPWT MRLC (k = 2) 1.89 2.2 2.48 3.12 3.89 4.83 5.88 7.06 8.14 9.36

NRDPWT MRLC (k = 3) 1.74 2.05 2.34 2.92 3.64 4.53 5.47 6.62 7.73 8.85

NRDPWT MRLC (k = 4) 1.66 1.95 2.23 2.75 3.41 4.14 5.07 6.08 7.21 8.29

NRDPWT MRLC (k = 5) 1.62 1.91 2.17 2.66 3.24 3.93 4.74 5.71 6.69 7.74

NRDPWT MRLC (k = 6) 1.61 1.9 2.14 2.63 3.17 3.8 4.53 5.41 6.34 7.32

NRDPWT MRLC (k = 7) 1.61 1.9 2.14 2.61 3.14 3.76 4.46 5.29 6.19 7.12

NRDPWT MRLC (k = 8) 1.61 1.9 2.14 2.61 3.14 3.75 4.44 5.26 6.15 7.06

NRDPWT MRLC (k = 9) 1.61 1.9 2.14 2.61 3.14 3.75 4.44 5.26 6.15 7.07

NRDPWT MRLC (k = 10) 1.61 1.9 2.14 2.61 3.14 3.76 4.45 5.28 6.17 7.09

NRDPWT MRLC (k = 11) 1.61 1.9 2.14 2.62 3.15 3.76 4.47 5.3 6.2 7.13
∗Both two numbers of iteration were tested in our experiments. The contours generated by the two iterations are minor difference.
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Reconstructed signal; QF = 6 (CR = 8.52, PRD = 1.11%)
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(a) The original and reconstructed ECG signal of MIT-BIH record
117
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Reconstructed signal; QF = 10 (CR = 11.26, PRD = 8.94%)

Reconstructed signal; QF = 15 (CR = 20.76, PRD = 14.44%)

(b) The original and reconstructed ECG signal of MIT-BIH record
232
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Reconstructed signal; QF = 10 (CR = 10.69, PRD = 2.76%)

Reconstructed signal; QF = 15 (CR = 17.37, PRD = 4.53%)

(c) The original and reconstructed ECG signal ofMIT-BIH record 109

Figure 3: The demonstrations of reconstructed signals with MIT-BIH record 117, 232, and 109.

Table 2: The synthesis report of the MRLC encoder with 8-level of Figure 4.

mem1 ∼ mem8 (1024× 11-bit) barrel shifter (32-bit) other Total

Gate count 125188 388 6415 131991

Critical path 9.46 ns

wire load model tsmc18 wl10

technology TSMC 0.18 µm

Table 3

0011 1100 0000 1000 0111 0000 0011

3 12 9 zeros 7 4 zeros Total 28 bits

Table 4

0011 1100 0111 0000 1100 1 0 0

3 12 7 13 zeros sign bits total 23 bits
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Figure 4: Block diagram of the MRLC encoder with k = 8.
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nmaxi-bit 0 s
+

Z bit value
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Figure 5: Circuit of the MRLC block shown in Figure 4.

clinical information, including the amplitude and duration,
can be preserved well.

5. Hardware Simulation

The block diagram of anMRLC encoding circuit is illustrated
in Figure 4 where k = 8 is considered towing to its good
compression performance. For each segment, quantized
wavelet coefficients will be partitioned into 8 blocks which
will be saved inmem1∼mem8, respectively. In themeantime,
the nmaxi for each block will be determined. It should be
noted that once k is fixed, the WL(Zbit) for each block is
determined due to the regularity of block length.

As shown in Figure 5, the MRLC block consists of three
functional circuits, Non-zero coei, j (NZc), zero counter
(ZC), and a packer. The NZc circuit will output a sign bit
and an absolute non-zero coefficient with nmaxi bits. The
ZC circuit driven by the data coming from memi is used
to count the number (denoted by arg2) of consecutive zero
coefficients. The two circuits with opposite functions are also
optioned by the data coming from memi. The output of the

ZC circuit involves an nmaxi-bit zero and arg2-1 where arg2-
1 is represented with Zbit bits. The packer is used to arrange
the outputs of NZc and ZC circuits in sequence.

Because the data in different blocks (memi) will be
encoded with different word lengths, the packer of Figure 4
will pack the outputs of MRLC blocks in order to generate
a 32-bit bitstream. This process is performed by controlling
a 32-bit barrel shifter. The MRLC encoder with k =
8 shown in Figure 4 is simulated in order to validate
its functionality. The simulation was performed using a
Verilog logic simulator with Cadence design platform. The
synthesis result was reported by synopsys logic simulator
using TSMC/Artisan 0.18 µm technology. The simulation
chose tsmc18 wl10 in the slow library as the wire load
model. The H/W specification is summarized in Table 2.
In this simulation, mem1 ∼ mem8 was implemented with
logic instead of a macro cell provided by the memory
compiler of the ASIC vendor. The total gate count of the
MRLC encoder is 131991 where memory and the barrel
shifter occupy 125188 and 388 gates, respectively. Note that
the hardware costs of the various partitions (different k)
show no significant differences because the memories of
different k will have the same cost. The MRLC encoder
was also implemented on the Xilinx FPGA EP2C35F672C6.
This design needs 15946 logic elements. In comparison
with the SPIHT scheme [12], the hardware resource can be
significantly reduced using the MRLC scheme.

6. Conclusion

Realizing ECG data compression is crucial for a real-
time recording of multilead ECG signals. The wavelet-
based approach combining the RRO-NRDPWT and SPIHT
schemes can obtain excellent compression performance, but
suffers from the high complexity of the SPIHT scheme in
realization. For replacing the SPIHT scheme, a new MRLC
scheme has been proposed in this paper. With an efficient
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quantization scheme, the experimental results show that the
new RRO-NRDPWT-based ECG data compression system
can be competitive with the SPIHT scheme and can well
preserve clinical information for practical application. The
MRLC scheme with both regularity and very low complexity
is efficient for hardware realization. The hardware simulation
result shows that with the MRLC scheme, the hardware cost
of realizing the RRO-NRDPWT-based ECG data compres-
sion system can be dramatically reduced.
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