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The underwater environment can be considered a system with time-varying impulse response, causing time-dependent spectral
changes to a transmitted acoustic signal. This is the result of the interaction of the signal with the water column and ocean
boundaries or the presence of fast moving object scatterers in the ocean. In underwater acoustic communications using medium-
to-high frequencies (0.3—20 kHz), the nonstationary transformation on the transmitted signals can be modeled as multiple time-
delay and Doppler-scaling paths. When estimating the channel, a higher processing performance is thus expected if the techniques
used employ a matched channel model compared to those that only compensate for wideband effects. Following a matched
linear time-varying wideband system representation, we propose two different methods for estimating the underwater acoustic
communication environment. The first method follows a canonical time-scale channel model and is based on estimating the
coefficients of the discrete wideband spreading function. The second method follows a ray system model and is based on extracting
time-scale features for different ray paths using the matching pursuit decomposition algorithm. Both methods are validated and

compared using communication data from actual underwater acoustic communication experiments.

1. Introduction

Most physical systems can be represented by models that
account for the transformations caused on the propagating
signal. Depending on these transformations, linear time-
varying (LTV) systems have been represented using narrow-
band, wideband; or dispersive nonstationary models [1-3].
Although all LTV systems can be characterized by a kernel
representation of their time-varying impulse response [4, 5],
they can also be identified by a matched spreading function
that can provide a physical interpretation of the system
effects on the propagating signal [5-8]. For example, a typical
wireless communication system utilizing electromagnetic
waves over the air can be considered to be a narrowband LTV
system undergoing time shifts (due to multipath propagation
and time dispersion) and frequency shifts (due to relative
motion between transmitters and receivers) [5, 7, 9-11].
The received signal can be described as a superposition of
time and frequency shifted replicas, weighted by the narrow-
band spreading function. Thus, estimating the narrowband

spreading function can provide a means for improving
communication receiver performance [11, 12].
Characterizing acoustic signal propagation through
water is essential for many applications, including under-
water acoustic communications, active and passive sonar,
underwater navigation and tracking, and ocean acoustic
tomography. The highly time-varying nature of the under-
water environment can cause many undesirable distor-
tions to the propagating signal. Time-varying multipath
distortions may be the result of dense reflections from
rough surfaces, fluctuations in sound speed due to inho-
mogeneous mediums, relative motion between transmitters
and receivers, or changes in the propagating medium
[13]. Depending on the transmission frequency and ocean
depth, the time-dependent spectral changes in the signal
can be Doppler scaling (compression or expansion) or
dispersive (nonlinear) transformations [3, 6, 14]. In partic-
ular, medium-to-high frequency (0.3-20 kHz) underwater
acoustic signals are characterized by spreading caused by
multiple time-delay paths and multiple Doppler-scaling



paths [15-17]. As the narrowband LTV model is no
longer suitable to describe these signal transformations, the
matched wideband LTV model should be used for more
effective processing [1, 8, 18-22].

Underwater acoustic signals were characterized using
different techniques in the literature. Specifically, signal char-
acteristics were extracted to evaluate underwater multipath
profiles for use in shallow-water localization and geoacoustic
inversion applications in [23]. In [24], inverse problems with
matched filtering were considered in underwater acoustics.
Specifically, when the motion of the transmitter and receiver,
and the changes in the propagating medium were assumed
not known, the received signal was correlated with a family
of reference signals representing all possible transmissions.
The Dopplerlet transform was used to estimate the range and
speed of a moving source in [25]. In [17], a long range multi-
path profile estimation method was used based on the wide-
band ambiguity plane [26] that resampled the received signal
with the dominant Doppler scale factor. Other recent multi-
path profile estimation methods considered the joint estima-
tion of multiple time delays and Doppler scales [27, 28].

Different processing techniques were developed to esti-
mate the parameters of fast varying communication channels
that compensated for the wideband effect instead of actually
using a model that matched the channel. In [29-31], the
underwater acoustic channel was assumed to have the
same Doppler scale on all propagation paths so that the
estimated Doppler scaling could be mitigated by resampling
the received signal. Although the channel was modeled
with multiple Doppler scale paths in [15, 32, 33], the
channel estimation approach still assumed a single dominant
Doppler scale and compensated for the residual Doppler in
the different arrival paths by assuming different frequency
shifts. In [34], Doppler scale was first compensated for using
a mean scale factor before assuming a narrowband time-
frequency spreading representation of the received signal
and using the matching pursuit decomposition algorithm
to sequentially identify dominant taps of sparse under-
water acoustic communication channels and estimating
their coefficients. Note, however, that although different
frequency shifts were considered for different time delays,
the narrowband model is not valid when the bandwidth-to-
central-frequency ratio becomes larger than 0.1 [18], as is the
case for typical orthogonal frequency-division multiplexing
(OFDM) communication signals.

In this paper, we propose two methods for estimating the
parameters of underwater acoustic communication chan-
nels that characterize signals with multiple time-delay and
Doppler-scaling path propagations. As such, they can be used
to improve the performance of communication channels
over existing underwater acoustic processing algorithms.
Specifically, we directly use the wideband LTV system
representation [1, 18, 19] since the underwater acoustic
environment can exhibit large multipath spreading and
Doppler-scale spreading effects. Using this representation,
the communication channel is characterized by a continu-
ously varying wideband spreading function (WSF) that can
directly describe the physical effect of the channel’s intensity
and spread on the transmitted signal.
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The first proposed characterization method estimates the
coefficients of the smoothed and sampled WSF based on a
discrete version of the wideband LTV system representation.
The discrete canonical model was initially proposed to
improve efficiency in processing and provide improved
performance using model-inherent diversity paths [3, 8, 20,
21]. The model decomposes the received signal into a linear
combination of time-shifted and Doppler-scaled versions of
the transmitted signal, weighted by a smoothed and sampled
version of the WSFE. The second proposed characterization
method is specifically applied to communication channels
that can be represented using the ray theory model. Accord-
ing to this model, the transmitted signal undergoes only
a small number of multipath and Doppler scale changes.
Thus, instead of directly estimating the WSE, we employ
the wideband ambiguity function and the matching pursuit
decomposition (MPD) [35] algorithm, with well-matched
wideband basis functions, to estimate the wideband channel
attribute parameters.

The rest of the paper is organized as follows. In Section 2,
we provide the discrete wideband LTV channel model formu-
lation in terms of the smoothed and sampled WSE. We also
provide a least-squares estimation method for estimating
the WSF coefficients together with a more computationally
efficient method for realistic communication channels based
on warping and time-frequency filtering techniques. An
MPD-based method for estimating the characteristics of
sparse underwater acoustic channels following the ray theory
model is provided in Section 3. Sections 4 and 5 present our
channel estimation results using two sets of real experimental
data.

2. Discrete Time-Scale Channel
Characterization

2.1. Wideband Nonstationary Model. Most underwater
acoustic communication signals are considered to have
wideband properties due to the movement of scatterers in
the channel causing Doppler-scaling signal transformations.
In many cases, the wideband Doppler-scaling effect can be
approximated by frequency shifts. However, this narrowband
approximation only holds when underwater scatterers move
slowly and when the transmitted signal bandwidth is much
smaller than its central frequency. As wideband underwater
acoustic signals with spectral components in the 300 to
20,000 Hz frequency range have bandwidths that are com-
parable to their central frequencies, they are characterized by
time-delay and Doppler-scale changes.

The wideband LTV channel model represents the channel
output in terms of continuous time-delay and Doppler-scale
change transformations on the transmitted signal, weighted
by the WSE. Specifically, the noiseless received signal x(t) can
be represented as [1, 3, 8, 18-20]

Tdelay (Hmax
s = [ ) st - o)dndr, )

Hmin

where 7 and # are the continuous time-delay and Doppler-
scale parameters, respectively, and s(¢) is the transmitted
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signal. The WSE, X (7,#), represents the random phase
change and attenuation of underwater scatterers correspond-
ing to different values of 7 and #. Due to path loss or velocity
limit restrictions of realistic underwater acoustic channels,
we assume that the WSF support regions are 7 € [0, Tqelay]
and 77 € [#min> fimax], Where Telay is the channel’s time-delay
spread, and the range of possible scaling values is given by
[ﬂmim ﬂmax] .

In [8, 20], we derived a discrete version of the time-
scale representation in (1) for use in real-time processing. We
obtained the discrete formulation by geometrically sampling
the scaling parameters using the Mellin transform [20, 36]
and by uniformly sampling the time-delay parameters. The
discrete time-scale representation is given by [20]

M, N(m) "
0= 3 3 (it -1p) @

m=M;, n=0

where ¥,,,, are smoothed and sampled versions of the WSF
coefficients, My = In(#min)/In(10), Mi = In(Hmax)/ In(o),
N(m) = ng'WTdelay, and m is an integer. Here, W is the
frequency-domain bandwidth of s(t), 0 = ef and S,
is the Mellin-domain support of s(¢). Thus, the time-delay
7 = n/(ny'W), n = 0,1,...,N(m), is uniformly sampled
for each given scaling factor #y'. Note that the number of
time-delay parameters is not the same for all scaling factors
since it is a function of the scale factor m in (2). Specifically,
the number of canonical time-scale components is N =
Zﬁf‘: , (N (m)+1). In realistic underwater environments, due
to large multipath spreads, even if only a few scale factors
are considered, the number of time-scale components can
be large. For example, using nine scale factors and a channel
with time-delay spread Tgclay = 0.15 s, the number of time-
scale paths is 3,000.

2.2. Direct WSF Estimation. Using the discrete time-scale
channel representation in (2), we can estimate the WSF coef-
ficients W, using a least-squares estimation approach. Spe-
cifically, we uniformly sample the received signal x(¢) and
form the vector x. We also uniformly sample the time-
shifted and Doppler-scaled version of the transmitted signal,
116”/25(116"t — n/W), and form ¢,,,. We concatenate ¢y,
to form the data matrix D = (oM, D1, = - °
ON MM Poott * * * DN Mot ** + Doty + - Nl
where T denotes transpose. We similarly concatenate the
coefficients ¥, ,, to form the WSF coefficient vector ¥ =
(Yo, Yraty -+ Inotos *+ Poar, + - ¥noaan )’ The
discrete time-scale system representation can then be
rewritten in matrix form as x = DY, and the WSF
coefficients can be estimated using the least-squares
estimation method to yield

v = (DTD>71DTX. (3)

Note that D can be formed from a dictionary containing
all possible time-delay and Doppler-scale transformations on
the transmitted signal.

2.3. WSF Estimation with Reduced Computational Complex-
ity. In realistic scenarios, the propagating paths have been
observed to arrive in groups of similar time-delay and
Doppler-scale components due to physical constraints in the
propagation medium [17, 26]. Hence, in order to reduce
the computational complexity in estimating the WSF at the
receiver, we detect and separate each major path group by
first applying a warping based filtering technique in the
wideband ambiguity function (WAF) lag-Doppler plane and
then by estimating the WSF coefficients corresponding to
each path group using a least-squares approach.

The warping lag-Doppler filtering (WALF) approach
aims to provide an efficient way of separating the different
path groups in the WAF plane. We start by computing the
WAF of the received signal using a dictionary of time-shifted
and scaled versions of the transmitted signal. Given the
transmitted signal s(#), we define a signal dictionary O that
consists of all possible signals received after propagating over
the wideband channel, as in (1). These signals in D are given
by

gmn(t) = Ws(;ym(t ~ 7)), Am#0, (4)

with all possible 7, and 7, chosen to represent the appropri-
ate range of time delays and scale changes, respectively. The
WAF of the received signal x(t), defined over the same ranges,
is given by

Ry(Tus 1) = (x, g<m’">> = ﬁo x(0)g™M*(t)dt.  (5)

The steps of the WALF iterative algorithm are summa-
rized as follows. We first initialize the algorithm by setting
x(t) = by(t). Then, at the ith iteration, i = 0,1,...,M — 1,
we compute the projection A™" of the residue b;(f) onto
every dictionary element g7 (t) € D as the WAF of

the residue. That is, we obtain the projection as A/™" =
Ry, (Tn, 1) in (5). As a result, the local maxima of the WAF
are reached for each path group. Specifically, for the ith path
group, the WAF reaches a local maxima when the reference
and analyzed signals have a match in their time-delay and
Doppler-scaling factors [17]. More precisely, the absolute
maximum is reached when the reference signal matches the
signal received for the most energetic propagation path of the
corresponding path group. Hence, we select the dictionary

signal g™ (t), with time-shift 7, and scale #,,, which
maximizes the magnitude of the projection
(mi,n;) (m,n)
g (t) =arg max |A; . (6)
gmn (H)eD

For realistic applications, we can assume that the deriva-
tive of the phase function ¢(t) of s(¢) exists and is positive.
We also assume that ¢(t) is known as s(¢) is assumed known,
and we let 9;(t) = @(#,(t—Ty,)) represent the phase function
of gl-(m"’"")(t). As we need to separate each arrival path group,
and the different arrival path groups will have different phase
functions according to ¢;(t), a different time-varying filtering
approach needs to be applied in the WAF plane. Thus, due



to their different nonstationary patterns, the different arrival
path groups are not linearly separated in time frequency
(TF). As a result, TF-based filtering cannot be used directly.
Hence, we propose to use TF-based filtering that operates
in the warped TF domain, where the path families can be
separated [28, 37].

Warping is a method to nonlinearly map one domain
onto a new domain, where processing can be more easily
applied [38—41]. We use the linear and unitary warping
operator ‘W, with associated warping function u(t) that
transforms a square-integrable signal g(f) € £2(R) as [39,
42]

1/2

ut) |0 o)), )

(Wug)(t) = dt

We warp the residue b;(t) using the time warping operator
W, with u(t) = @; 1(t) in (7) to obtain

Qi(t) = (W, i) (8), (8)

where ¢;(¢;'(t)) = t for all t. Since b;(t) follows from (4)
and (6), and the phase of b;(t) is ¢;(t), then the warped signal
Qi(t) in (8) is a sinusoid. As such, it can be filtered out easily
in the warped time domain, as desired. According to the
propagation properties, ¢; # ¢;, forall j#4, j = 0,1,...,M~—
1. As a result, only the signal received for the ith path group
is filtered out using the passband filter 8 to remove the
narrowband function received for the ith path group after the
WALF operation U;(t) = $Q;(t). The projection is unwarped
in the time domain and the signal of the next WALF iteration
is obtained as

bici (1) = (WyiUi) (8). 9)

The WALF method provides path groups with similar
time-delay and Doppler-scaling factors. Thus, it will require
a much smaller set of time-scale parameters for the WSF
estimation, resulting in a computationally much less expen-
sive procedure. The dictionary data matrix will be much
smaller than the dictionary built without prior knowledge
in the least-squares estimation approach. Specifically, once
the path groups are identified and extracted using the WALF
algorithm, we estimate the WSF coefficients within each
path group using the least-squares approach described in
Section 2.2. If x;(¢) denotes the signal extracted from the ith
path group, i = 1,...,L, then we can rewrite the received
signal as

L
x(t) = in(t). (10)

Applying the discrete time-scale representation of the chan-
nel in (2) within each path group leads to

s = 3 S was(ge- L),
m=M;, n=0

where W), are the ith path group WSF coefficients and
Ni(m) depends on the time-delay spread Teeny(i) of the
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ith path group. One advantage of this approach is that
each path group corresponds to a time-delay spread that
is much smaller than the overall channel time-delay spread
Tqclay- Relation (11) can be rewritten in matrix form as
x; = D;¥Y, where D; is a signal matrix whose columns
consist of time-shifted and scale-changed versions of the
transmitted signal s(¢), and ¥ is a row vector whose values
are the WSF coefficients of the ith path group. In order
to minimize the received signal reconstruction error, we
propose to estimate the WSF coefficients using the least-
squares estimation method

~ (i) -1
¥" = (D/D;) Dlx, (12)

where ‘i’(i) is the estimate of W7, Using (2), (10), and (11),
the overall WSF estimate of the received signal is given by

A

Vm g (13)

‘Mh

1

1

Note that the signal dictionaries used for estimating the WSF
coefficients of the path groups are actually part of the larger
dictionary that represents all the transformations undergone
by the received signal whose elements are expressed in (2).
Thus, only one signal dictionary has to be computed to
complete the received signal WSF coefficients estimation.

3. Ray Theory Model Channel Characterization

3.1. Ray Theory Model. When the communication channel
is sparse, we expect a lot of the discrete WSF values V),
in (2) to be zero. As a result, it would be computationally
intensive to try and estimate the WSEF, even for multiple ray
groups. Following the ray theory model, the received signal
is characterized by a summation of propagating rays, where
each ray arrives with a distinctive time delay and a distinctive
Doppler scale due to the channel’s physical propagation
properties [17, 28]. Specifically, using ray theory, the
(noiseless) received signal can be represented as [17]

N
x(t) = D> aifmis(ni(t — 1)), (14)
i=1

where N is the number of propagating ray paths, and
ai, T, and #; are the attenuation factor, time-delay, and
Doppler-scale change parameters associated with the ith ray,
respectively. When the source is moving at a constant speed
V, the Doppler scale of the ith ray satisfies

1
= = (Vo) cos(8)]

where 0; is the declination angle of the ith ray and ¢ is the
speed of sound in the medium [17]. Note that the ray theory
based signal representation in (14) can be shown to be a spe-
cial case of the time-scale system characterization in (1), with
a highly localized WSF in the time-scale plane that is given by

(15)

Za Sr—1)d(n—mn),  (16)

i=1

X(T, 11) = ray T)
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where &(-) is the Dirac delta function. For realistic
underwater acoustic channels, the WSF can be approximated
to have the form in (16) for high frequency cases. In general,
however, the time-scale representation in (1) and its discrete
version in (2) provide more accurate models for received
signals.

3.2. MPD-Based WSF Estimation. Due to the highly localized
WSF assumption in (16), the MPD can be used to determine
the time-scale features associated with the channel. The
MPD is an iterative algorithm that expands a signal into
a weighted linear combination of elementary functions (or
atoms) chosen from a complete dictionary. It was originally
proposed to decompose any finite energy signal as a linear
expansion of time-shifted, frequency-shifted, and scaled
Gaussian functions [35]. The MPD was later modified to
adapt to the analysis signal by changing the atoms to match
the analysis signals or by changing the time-frequency signal
transformations, as long as the transformations are complete
[43]. For this application, the atoms need to match the
wideband signal basis functions so that the MPD can provide
information on the channel reduced attribute parameters
in terms of time shifts, scale changes, and attenuation
factors.

The MPD is an iterative algorithm that expands the
received finite energy signal x(t) as

L-1

x(t) = D aigi(t) +ri(t), (17)
i=0

where gi(t) is the basis function selected at the ith iteration
and «; is the corresponding expansion coefficient. After
L MPD iterations, the residue signal r;(f) is such that
the original signal energy is preserved, that is ||x||§ =
ZiL;Ol lo; | + IIrLHg where ||x||§ = J\x(t)lzdt. In order to
best fit the underwater acoustic model with matched time-
scale transformations, the dictionary atoms g (t) € D are
designed to match time-delayed and Doppler-scaled versions
of the transmitted signal s(t) as in (4).

At the beginning of the iterative process, ro(t) = x(t).
At the ith iteration, i = 0,1,...,L — 1, the projections of
the residue r;(¢) onto every dictionary element g™ (¢) are
computed. The selected dictionary atom g;(t), with param-
eters #; and 7;, is the one that maximizes the magnitude
of the projection; its corresponding expansion coefficient is
given by o; = (r,-,g,-(m’n)) = f:rf: ri(t) gi(m’")*(t)dt. Note that
the residues at the ith and (i + 1)th iterations are related
as rip1(t) = ri(t) — aigi(t). The extracted sparse underwater
acoustic signal characteristics are then the MPD parameters
((X,‘,I’],‘,Ti), i= 0,...,L - 1.

In order to obtain a compact MPD representation for
characterizing underwater acoustic channels, it is important
to compute the dictionary D for the appropriate range of
time delays and scale changes. Thus, we consider the Doppler
tolerance (i.e., half-power contour) of known signals prop-
agating in the channel and then decide on the range of
the scale change parameter according to this tolerance. For

example, if a linear frequency-modulated (LFM) signal is
transmitted, the Doppler tolerance is [17, 44, 45]

Vp = i2610# knots, (18)

where T is the duration and W is the bandwidth of the LEM
signal. As the scale change parameter is affected by the source
velocity, the velocity sampling rate is chosen as

)

ov >

(19)
We assume that the expected velocities are bounded by v €
[ Vinin> Vimax] and the expected time delays are bounded by
7 € [0, Tqelay], where Tqepay is the time delay spread of the
channel. Then, the signals in the dictionary O are obtained
to match the transmitted signal s(t) according to

= 1) o

1—vu/c

(t-m), @0

where v, = Viin + 0.5mVp, 7, = n/f;, f; is the sampling
frequency, and the integers m and n satisfy m € [1,2(Viax —
Vmin)/VD] and n € [1) fsTdelay]-

As the MPD is recursive, the residual energy can be
used to determine the algorithm’s stopping criteria. If the
signal-to-noise ratio (SNR) is known, then the MPD can
stop iterating when the ratio of the signal energy to the
residual energy reaches the SNR. Other plausible stopping
criteria include the rate of decrease of the residual energy or
a fixed number of iterations based on prior knowledge of the
range of values of the channel parameters. When a known
OFDM signal is transmitted, the same implementation is
applied for signal characterization, and we empirically use
the velocity parameter sampling rate obtained from an LFM
signal, which has the same time duration and frequency
bandwidth as the OFDM signal. As this velocity parameter
sampling rate is much finer than the sampling rate obtained
from the discrete time-scale representation approach, we
conclude that this dictionary £ is complete for decomposing
the received signal.

4. Underwater Acoustic Channel Estimation for
the KAMO08 Experiment

4.1. KAMOS8 Experiment Description. The experimental data
were collected during the KAMO08 experiment [46], which
was conducted in shallow water off the western coast of
Kauai, Hawaii, in June 2008. We present results for a towed-
source scenario immersed at depth spanning 20-50 m and
towed at a constant speed of 3 knots (about 1.5m/s). The
receiver was a fixed 16-element vertical array, as illustrated
in Figure 1, with a 50kHz sampling rate. The interelement
spacing was 3.75m, with the top element deployed at a
nominal depth of 42.5 m. We focus on the results obtained
by processing the data recorded at the 5th receiving element,
whose depth was 83.5m, for a source moving toward the
fixed receiver at about 24 m depth. The source receiver
separation was approximately 1.5 km. The bathymetry of the
operation area is shown in Figure 2 [46].
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F1Gurke 1: Scheme of the vertical array receiver adapted in the KAMO08 experiment [46].

The transmitted waveforms are OFDM signals mod-
ulated with binary phase shift keying (BPSK) symbols
and LFM probing signals. Both LFM and OFDM signals
have a 16 kHz central frequency and an 8 kHz bandwidth.
These are wideband signals as their central frequencies are
comparable to their bandwidth. The LFM signal has 100 ms
time duration and starts at the end of the communication
blocks. The OFDM signals incorporate 1024 subcarriers,
with a 7.8 Hz subcarrier spacing, a 256 ms frame length,
and a 20 ms cyclic prefix. The communication blocks consist
of 8 frames, followed by one LFM probing signal. The
spectrogram of a received communication frame consisting
of 8 communication blocks and followed by an LEM signal is
demonstrated in Figure 3.

4.2. WSF Estimation Using the Discrete Time-Scale Represen-
tation Approach. As we discussed in Section 2, the WSF of
an underwater acoustic channel can be estimated using the
discrete time-scale representation either directly, using the

least-squares approach or using the WALF method if the
WSF forms path groups. Figure 4 shows the WAF of the
received LEM probing signal. Here, the speed parameter is
plotted instead of the scale parameter as the two parameters
are related (see, e.g., their relationship in (20)). Applying the
WALF algorithm to the received LFM probing signal, we were
able to identify and estimate three path groups. The three
detected path groups are marked by crosses representing the
delay speed coordinates in the WAF domain in Figure 4.
The estimated WSF coefficients of the three path groups
are shown in Figure 5. The WALF algorithm estimated and
extracted three arrivals path groups in the received signal,
representing 73.2% of the total signal energy. One WSF was
estimated for each extracted arrival path group with delay
and scaling parameters centered around the WALF estimates.

The Mellin-domain support parameter f3y of the trans-
mitted LFM signal was needed in order to compute the
WSEF coefficients for each path group. This parameter was
computed as By = (fy + W/2)T [47], where f,, W, and T are
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FIGURE 2: Bathymetry of the operation area (with the depth given in meters), receiver and transmitter positions used in the KAMO08

experiment [46].

the LEM signal central frequency, bandwidth, and duration
of the LFM signal. Using (2), we were able to characterize
the discrete WSF of the channel with a minimum number
of time-shifts and Doppler-scaling parameters. The time-
delay spread within each path group was considered to be
10ms, resulting in 81 time shifts. For this experimental
data set, since 79 = 1.008 was close to 1, the number
of time shifts was the same for all different scale factors.
The Doppler spread considered within each path group
was computed using (19) to be év = + 1.6m/s, result-
ing in 2 Doppler scale factors. The WSF recovery errors
within each path group were, respectively, & = 0.91%,
& = 0.42%, and &5 = 0.76%. The overall recovery error of
the signal x, (¢) extracted using the WALF approach was €, =
[ 1x:(t) = 2()1*dt/ [ |x.()|>dt = 0.87%, where X(t) is the
recovered signal using the WSF estimate in (13). Combining
the WALF algorithm extraction percentage and the discrete
WSEF recovery error, the overall recovery error on the received
signal x(t) is € = [ |x(t) — 21t/ [ |1x()*dt = 23.8%,
where X(t) is the recovered signal using the WSF estimate in
(13).

Figures 4 and 5 show that the different path groups have
different time delays and Doppler scales, as indicated by both
the WAF and the discrete WSE. The WSF representation in
Figure 5 also shows that the first direct arrival path group is
well localized in the delay-domain, whereas the next arrival
paths are bouncing off the sea bottom vor sea surface and are
more scattered along the delay domain. This demonstrates
that the discrete WSF is well adapted to the physical nature
of the channel distortions.

Using the discrete WSF and the least-squares estimation
approach with the received OFDM signal, we estimated the
channel WSF coefficients as shown in Figure 6. Note that we
could not use the WALF approach with OFDM signals due
to the discontinuities in their phase functions. For OFDM
signals, the theoretical Mellin-domain support is not known.
However, we experimentally obtained it by computing the
Mellin transform of the OFDM signal to be almost twice
the value of the Mellin-domain support of the LEM signal.
Hence, we considered twice as many Doppler scale factors
(i.e., six scale factors) for the OFDM signal as we did for
the LEM signal for the same Doppler spread. From the
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FIGURE 3: Spectrogram time-frequency representation of the
received communication and probing LFM signals transmitted by
the towed source in the KAMO08 experiment, demonstrating the
effects of the multipath underwater propagation (especially the
time-delayed arrivals of the LFM signal).
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FiGUre 4: Wideband ambiguity function of the received LFM
probing signal in the KAMO8 experimental data. The crosses
represent the delay-speed coordinates of the three detected path
groups.

results obtained with the LFM signal, the channel spread
was estimated to be 20 ms, resulting in 269 time shifts. The
channel WSF estimate obtained using the OFDM signal in
Figure 6 is consistent with that obtained using the LEM
signal. We clearly estimated three main path groups, with
the same time-delay spread characteristics and comparable
Doppler scaling estimates. The recovery error for the whole
signal was ¢ = 24.2% which is consistent with the results
obtained with the LFM signal.

4.3. WSF Estimation Using the MPD. As the channel char-
acteristics are sparse, we also applied the MPD algorithm
to the LFM probing signals to estimate the channel. The
towed source speed is considered unknown and is estimated
during the first MPD iteration to be V' = 1.2m/s using
(15). For this application, the signal Doppler tolerance is
computed using (18) to be Vp = =1.6m/s. The speed
range is obtained from Vyi, = V — Vp = —0.4m/s to
Vinax V + Vp = 2.8m/s and the number of scaling
factors is computed using (19), leading to 6v = 0.8 m/s and 5
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FiGure 5: WSF estimated coefficients of the three detected path

groups using the WALF method and the received LFM probing
signal in the KAMO08 experimental data.
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FIGURE 6: WSF estimated coefficients using the least-squares
method and the received OFDM probing signal in the KAMO08
experimental data.

different Doppler scaling factors. Figure 7 shows the WAF of
the received LFM signal together with the sparse and highly
localized channel time-scale features extracted after L =
50 MPD iterations. The estimated delay and Doppler scale
parameters are represented with crosses, thus demonstrating
the sparsity of the channel. The recovery error obtained
after 50 MPD iterations is only ¢ = 13.4%, proving that
the sparse time-scale model is well adapted to characterize
the underwater acoustic propagation. This result is better
than the one obtained using the WSF method (where the
recovery error was & = 23.8%). For the WSF results, we only
considered the first 3 strongest path groups. However, for the
MPD approach, we did not have this constraint; we ended up
using 5 ray groups and thus achieving higher performance.
The MPD underwater acoustic channel estimate is also
very sparse as only 50 dictionary signals were necessary
to characterize the channel properly, while 486 dictionary
signals were used with the WSF characterization. Figure 8
represents a zoomed-in version around the first 3 arrival
groups of Figure 7, showing that the first and direct arrival
group is well localized in delay, whereas the next arrival
groups are bouncing off the sea bottom or sea surface and
are more scattered.
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FIGURE 7: Wideband ambiguity function of the received LEM signal
in the KAMOS experimental data. The crosses represent the maxima
detected after each MPD iteration.
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FIGURE 8: Zoomed-in version of Figure 7 around the first three
arrival arrival groups in the wideband ambiguity function of the
received LFM signal in the KAMO08 experimental data. The crosses
represent the maxima detected after each MPD iteration.

Using the sparse time-scale channel representation for
the received OFDM signal, we estimated the sparse channel
time-scale features as shown in Figure 9. The speed estimate
and the range of possible speeds considered for the OFDM
signal are the same as the ones chosen for the LFM signal. As
the Doppler tolerance of the OFDM signals was not known,
we used the WSF Mellin-based approach [20] to determine
the number of Doppler scaling factors; this resulted in dv
0.3m/s and 12 Doppler scales. Figure 9 shows the WAF of
the received OFDM signal together with the sparse channel
time-scale features extracted after L = 130 MPD iterations.
The recovery error was € = 24% after 50 MPD iterations and
e = 14.7% after 130 MPD iterations. The results obtained
with OFDM signals are consistent with the LFM results even
though the OFDM signals required more MPD iterations to
obtain the same recovery error. Note that only 130 dictionary
signals were needed to characterize the channel properly;
when the WSF discrete time-scale model was used, 1345
dictionary signals were used to estimate the WSF coefficients.
Figure 10 shows a zoomed-in version of Figure 9 around
the third arrival group, illustrating the channel time-scale
feature spread of one arrival group.
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FIGURE 9: Wideband ambiguity function of the received OFDM
signal in the KAMO8 experimental data. The crosses represent the
maxima detected after each MPD iteration.

16.5 — T T T T T T T T
17 +
17.5 |
18
18.5
19

H A
+
4
+

Delay (ms)

20
20.5

-1 -0.5 0 0.5 1 1.5 2 2.5 3
Speed (m/s)

FIGURE 10: Zoomed-in version of Figure 9 around the third arrival
path group in the wideband ambiguity function of the received
OFDM signal in the KAMO8 experimental data. The crosses
represent the maxima detected after each MPD iteration.

4.4. Multipath Profile Extracted from Signal Characteristics.
Another central challenge in shallow underwater acoustic
communications is the temporal evolution of the underwater
acoustic channel. Recently, in [34], underwater acoustic
channel rapid fluctuations were estimated over time using
the time-frequency spreading function and the MPD, fol-
lowing the narrowband approximation. Here, we no longer
assume narrowband conditions and we use the wideband
MPD-based channel characterization in order to illustrate
the source motion effects on the channel multipath profile.
Figure 11 presents the three-dimensional (3D) channel
profile evolution over time, and Figure 12 shows its 2D
projection on the time-delay domain for clarity. It was
computed using the MPD-based channel characterization
for communication and LEM signals from the KAMO8
experiment. We considered a signal consisting of 8 frames,
each followed by one LFM probing signal and a 0.1s of
silence. For each transmission frame, the signal characteristic
parameters were provided by 50 MPD iterations for the LFM
signals, and by 130 MPD iterations for the OFDM signals.
As we can see, the multipath profile evolves over time as
the range between the transmitter and the receiver changes.
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FiGUure 11: Three-dimensional representation of the underwater
acoustic channel estimation over time, zoomed-in around the first
three arrival path groups for the KAMO08 experiment.
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Figure 12: Two-dimensional representation of the underwater
acoustic channel estimation over time, zoomed-in around the first
three arrival path groups for the KAMO08 experiment.

Hence, the time delays associated with the different arrival
path groups evolve over time, as illustrated in Figure 12. In
our example, the source is approaching at a constant speed so
the source receiver separation decreases linearly, explaining
the linear time-delay variations in Figure 12. Figure 11 also
exhibits attenuation coefficient variations over time due to
the time-varying changes of the propagation environment as
the source moves.

5. Underwater Acoustic Channel Estimation for
the BASE(Q7 Experiment

5.1. BASEO7 Experiment Description. The BASE07 experi-
ment was jointly conducted by the NATO Undersea Research
Center (NURC), the Forschungsanstalt der Bundeswehr fur
Wasserschall und Geophysik (FWG), the Applied Research
Laboratory (ARL), and the Service Hydrographique et
Ocanographique de la Marine (SHOM). The main objective
of the experiment was to investigate broadband adaptive
sonar techniques in shallow water [17, 27, 37]. The campaign
took place on the Malta Plateau in shallow water (130 m
depth). Underwater acoustic LEM signals, as illustrated in
Figure 13, were transmitted by a source moving rectilinearly
at a constant speed, from 2 to 12 knots and at different
depths. The transmitted LFM signals had a 2 kHz bandwidth,
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FIGURE 13: Spectrogram of the LFM signal transmitted by the
towed source, demonstrating the multipath effects of underwater
propagation for the BASEQ7 experiment.

1.3kHz central frequency, and 4s duration; the effects
of the multipath propagation can be seen in Figure 13.
The bandwidths of the transmitted signals were very large
compared to the central frequency. Thus, the signals were
Doppler sensitive and had a very low Doppler tolerance.
The transmitter-receiver range varied from 400 to 25,000 m
and the transmitted signals were recorded by an array of six
hydrophones located at different depths (from 9 to 94 m). As
shown in Figure 14, the array of hydrophones had its own
global positioning system (GPS) and clock for localization
and was not anchored so it could move freely with currents
and avoid additional flow noise. The boat had a GPS which
was used to obtain the position of the towed transmitter.
Both position and speed of the source and the hydrophone
array were known at any moment so the results could be
compared and analyzed. In the following, the presented
scenario was recorded on the hydrophone located at 42m
depth, with a 490 m source receiver separation. Also, both the
source and the receiver were moving with a relative velocity
of about 0.95 m/s.

5.2. WSF Estimation Using the Discrete Time-Scale Represen-
tation Approach. The WAF of the received LEM signal is
illustrated in Figure 15. The WALF algorithm was applied
to the received LEM signal to estimate the WSF coefficients,
and the crosses in Figure 15 indicate the parameters of
the four estimated path groups. The towed source speed
is considered unknown and is estimated during the first
WALF iteration to be V' = 0.9m/s using (15). Figure 16
shows the resulting estimated WSF coefficients from the four
path groups. The WALF algorithm estimated and extracted 4
arrival path groups in the received signal with 80.76% of the
total signal energy. The time-delay spread considered within
each path group was 30 ms, leading to 61 time shifts. For this
experimental data set, the number of time shifts was also the
same for all different scale factors since 79 = 1.0001 is very
close to 1. Hence, the dictionary necessary to characterize the
received LFM signal consisted of 488 time-delayed and scaled
versions of the transmitted signal.

The Doppler-scale spread considered within each path
group was computed using (19) to be dv = +0.16 m/s,
resulting in 2 Doppler scale factors. The WSF recovery
error within each path group was & = 3.59%, & = 6.04%,
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FIGURe 15: Wideband ambiguity function of the received LFM
signal in the BASEQ7 experimental data. The crosses represent the
positions of the four detected path groups.

€3 =26.12%, and &4 = 18.31%j; the total recovery error was € =
5.27% on the extracted signals. Note that most of the received
signal energy was contained within the first two arrival paths;
the last two arrival paths had a lower SNR and thus were
more difficult to characterize. The total recovery error was
found to be € = 24.51%. Figures 15 and 16 show that the
different path groups had different time-delay and Doppler-
scale factors; this was taken into account in the discrete WSF
signal characterization.
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FIGURE 16: WSF estimated coefficients of the four detected path
groups using the WALF method and the received LFM signal in the
BASEQ7 experimental data.

5.3. WSF Estimation Using the MPD. The MPD-based
algorithm was also applied to characterize the underwater
acoustic signals from the BASE07 experiment, as shown in
Figure 17. The towed source speed was considered unknown
and was estimated during the first MPD iteration to be V =
0.9 m/s using (15). For this application, the signal Doppler
tolerance was low and was computed using (18) to be Vp =
+0.16 m/s. The speed range was chosen from Vi, = V-2V)p
= 0.58m/s t0 Viax = V + 2Vp = 1.22m/s. The number
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FiGUre 17: Wideband ambiguity function of the received LFM
signal in the BASEQ7 experimental data. The crosses represent the
maxima detected after the first 20 MPD iterations.

of scaling factors was computed to be dv = 0.08 m/s with
nine different Doppler scaling factors using (19). Note that
the LFM signals transmitted during the BASE07 experiment
had low Doppler tolerance and required numerous scaling
factors to provide good signal characterization. In fact,
for short range and high speed scenarios, the Doppler
scaling factors were often very different between arrival ray
groups; this implies that a large dictionary must be used
to obtain accurate WSF estimation results. Figure 17 shows
the WAF of the received LEM signal together with the
highly localized channel time-scale features extracted after
20 MPD iterations. The estimated time-delay and Doppler-
scale parameters are represented by crosses, emphasizing the
channel sparsity. The recovery error after 50 MPD iterations
was ¢ = 13.32%. Thus, the highly localized WSF model is
well adapted to this experimental scenario. The underwater
acoustic signal characterization is also very sparse as only 50
dictionary signals were needed to characterize the channel
properly, whereas 488 dictionary signals were used with the
WAF estimation method.

6. Conclusions

We investigated two approaches for characterizing wideband
channels for underwater acoustic communications. Our
approaches demonstrate that underwater acoustic signals
in the medium-to-high frequency range are characterized
by transformations with multiple time delays and multi-
ple Doppler scales, and the parameters for these trans-
formations can be extracted to accurately describe the
received signal. The first method employs a discrete time-
scale system model that represents the received signal in
terms of time-shifted and Doppler-scaled versions of the
transmitted signal, weighted by the wideband spreading
function (WSF). The second method assumes a highly
localized wideband spreading function representation and
extracts signal characteristics using a matched MPD algo-
rithm. Both methods were successfully validated using
OFDM communication signals and LEM signals from two
recent experiments. Our results indicate that when the
WSEF characterization of a wideband underwater acoustic

EURASIP Journal on Advances in Signal Processing

communication channel can be sparsely represented in the
lag-Doppler plane, then a time-scale matched representa-
tion can provide an accurate and fast channel estimation
procedure.
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