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High-level synthesis (HLS) currently seems to be an interesting process to reduce the design time substantially. HLS tools actually
map algorithms to architectures. Conventional HLS techniques usually focus on uniform-width resources according to the worst-
case data requirements, that is, the largest word length. HLS techniques have been reviewed for the last few years to benefit from
multiple word-length fixed point description of the algorithms to be implemented. Aims were to save design area and power
consumption. Unfortunately, data-width timing issues over the operation’s latency have not been taken into account accurately.
In this paper, an HLS process that takes care of the delay of the operators according to the data width is presented. Experimental
results show that our approach achieves significant design latency saving or area decrease compared to a conventional synthesis.

1. Introduction

Multimedia, communications, and, more generally, con-
sumer electronics applications are witnessing a rapid devel-
opment towards integrating a complex system on a chip
(SoC). The increasingly demanding requirements for digital
signal processing applications (like multimedia, new genera-
tions of wireless systems, etc.) lead to the implementation of
more and more complex algorithms and systems. To handle
this increase in complexity and the time-to-market pressure,
design methodologies based on high-level synthesis (HLS)
are nowadays required [1–3]. These methodologies allow
to generate circuits from the behavior of the application
to implement and from a set of constraints. Digital signal
and video processing applications usually require a large
number of computations. Data-width requirements are not
the same during the processing. When an ASIC or a
FPGA implementation is targeted, area cost, latency, and
power consumption can be reduced if redundant bits are
identified. Efficient usage of resources requires efficient
synthesis methods. However, previous related works usually
consider area optimizations. Data width impacts resource
area but also impacts the delay of the operators.

In this paper, an HLS process that takes into account
operators with variable latency is proposed. It makes it
possible to save computation clock cycles, that is, to reduce
the design latency when the synthesis is constrained by the
number of resources. When the synthesis is constrained for
latency, it makes it possible to save area. Themethodology we
propose manages both area- and time-constrained syntheses.
ASIC and FPGA technologies can be targeted.

The paper is organized as follows. Section 2 presents
related works about multiple word-length high-level syn-
thesis. Section 3 presents our motivations with an example.
Section 4 is dedicated to the proposed methodology. The
models and the techniques we use are presented in this
section. Experimental results are reported in Section 5.

2. RelatedWorks

Fixed point DSP algorithm implementation based on high-
level synthesis mainly consists of two steps: word-length
allocation and high-level synthesis. In [4], the benefits of
the multiple word-length design approach over the tradi-
tional uniform word-length design approach are presented.
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Implementation cost may be notably reduced with multiple
word-length fixed point description of the algorithms.
Several high-level synthesis techniques have been proposed
during the last two decades. Conventional HLS techniques
usually focus on uniform-width resources. Worst-case data
size, that is, the largest word length, is thus considered.
Although operation scheduling and resource binding are
more complex, optimizations are achieved when multiple
word-length HLS is performed. It is due to the fact that
resource costs depend on the size of the handled data. Com-
bining both word-length allocation and high-level synthesis
makes it possible to explore the dependencies between word
lengths, resources, and the quantization error criteria. As
shown in [5–7], significant area reduction and latency saving
can be achieved, but complexity, which impacts runtime, is
increased. Sequential or two-step design approaches firstly
perform word-length allocation then high-level synthesis.
Provided designs may be optimized, but the overall com-
plexity is reduced. In this paper, we address such design
approaches, and we focus on multiple word-length HLS.

Multiple word-length high-level synthesis usually focuses
on area optimization [8–12]. For example, in [11], a bit-
aware design flow, including data-width analysis, scheduling,
and binding, is proposed. The data range analysis introduced
in [13] is used to determine the minimum data width
required for each operation andmemorization. In the second
step, MCAS architectural synthesis system [14] performs
scheduling, binding, and placement without considering
data-width information. In the final step, data-width-aware
operation rescheduling and rebinding are performed to
minimize the area cost of the processing units.

Pipeline design syntheses are addressed in [15, 16].
The authors [15] perform scheduling and binding in order
to minimize interconnection resource cost without first
considering data-width information. Based on a data range
analysis, resource word-length optimization is performed
later during the hardware architecture generation process.
This approach has been extended in [16] taking symbolic
resource costs into account during scheduling and binding.

In [17], operations are handled at the bit level. One
operation can be decomposed into several smaller ones that
may be executed in several inconsecutive cycles and over
several functional units.

Except [17], previous works assume a fixed propagation
delay for an operator whatever the size of the data it handles.
Worst-case delay is thus always considered. Our work intro-
duces a formalized way to deal with variable propagation
delays when resources process multiple data widths. The flow
is based on the fact that the delay required to execute an
operation depends on the width of the input data whereas
the most significant bits (MSB) of the result are discarded.

3. Problem Formulation

3.1. Hardware Design and Performance. For a general pur-
pose or DSP processor, each operation requires a fixed
latency (number of clock cycles) to be executed disregarding
the input data width; for example, computing a 11-bit fixed
point operation takes the same number of clock cycles as

computing a 16-bit one because, in practice, short integers
are used in the source code. This characteristic is linked with
the single computing resource-based structure of micropro-
cessor datapath that is still reused all over the computations.
In contrast, hardware designs are specifically designed. On
ASIC or FPGA technologies, resources can be sized depend-
ing on the requirements. Furthermore, an operator can have
various implementations providing different performance
tradeoffs (propagation delay, area, power consumption, etc.).
For example, for addition computations, the designer may
choose between various architectural possibilities [18, 19].
Propagation delay comes from the critical path that is to
say the MSB computation due to carry propagation. For
example, Ripple Carry Adder implementation is cheaper
but quite slow while Carry Select Adder is faster but area
expensive. This remark on adders can be made also for many
other operators such as multipliers which are based on adder
trees [20]. Although implementation characteristics depend
on architectural choices, the larger the word length is, the
slower the operators with binary representation. To increase
the clock frequency, that is, to increase the throughput
and/or the usage ratio, a commonly used technique is to
consider multi cycle operations: slower operations require
more than one clock cycle to be executed. The required
number of clock cycles is computed according to the
propagation delay of the resource and the clock frequency.
However, the operation’s latency depends on the width of
the data. Let us consider for example an adder. If a 16-bit
addition is executed on a 32-bit adder, the useful 16-bit result
(15 down to 0) is available before the useless MSBs (31 down
to 16) are computed. Delay can be saved according to the
data-width. Efficiency can thus be improved if the number
of clock cycles required to compute an operation is not taken
the same whatever the data width. This number of clock
cycles depends on both the operator and the data width.

Figure 1 shows the delay required to get the result on
the output for 32-bit adders and 32-bit multipliers on an
ASIC standard cell 65 nm technology (CORE65LPLVT
NOM 1.00 25C from ST Microelectronics). Results show
that the delay is approximately linear to the data width for
these two operators. Figure 2 shows the delay for the same
operators on the Altera Cyclone-III FPGA technology. Delay
increases by step depending on the data width. This is due
to the internal structure of FPGA devices based on look-up
table (LUT) elements.

3.2. Performance Impact on Delay Modeling. In this section,
we present an example to show the interest of an efficient
delay modeling during the synthesis process.

3.2.1. Impact on Resource-Constrained Syntheses. Figure 3
presents a basic specification that handles multiple data
widths. In this example, a, b, and c are 16-bit data. t (×1)
and q (×2) computations require 16-bit multipliers whereas
y (×3) require a 32-bit multiplier.

Let us assume a single multiplier is used for the design
and the clock period is 5 ns while targeting an Altera
Cyclone-III FPGA platform. Because the multiplier is shared,
the largest data-width is to be used for the multiplier’s
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Figure 1: Delay for 32-bit resources (65 nm ASIC).
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Figure 2: Delay for 32-bit resources (Altera Cyclone-III).

word-length. A 32-bit multiplier is thus required. With a
Cyclone-III platform, the 32-bit multiplier delay is 6,9 ns.

With a conventional approach, data width is not taken
into account for the delay, so the computation delay depends
only on the operator’s word length. The multiplier is seen
as a multi-cycle operator requiring two clock cycles for
a multiplication. Figure 4(a) shows the scheduling of the
specification. Multiplications are sequentially scheduled on
the multiplier: the two 16-bit multiplications ×1 and ×2 are
scheduled, respectively, at clock cycles {1, 2} and clock cycles
{3, 4}. The 32-bit multiplication ×3 is scheduled at clock
cycles {5, 6}. Design latency is thus 6 clock cycles.

Using accurate timingmodels for the operators, propaga-
tion delay can be considered individually for each operation
depending on its data width. A 16-bit multiplication requires
one clock cycle whereas a 32-bit multiplication requires two
clock cycles. Figure 4(b) shows the scheduling obtained using
accurate delays. The two 16-bit multiplications (×1 and ×2)
are scheduled, respectively, at clock cycles {1} and {2}. The

(1) a, b, c = 16 bits

(2) t = a× a; (×1)

(3) q = b × c; (×2)

(4) y = t × q; (×3)

Figure 3: Specification with multiple data-width requirements.
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Figure 4: Resource-constrained syntheses: (a) scheduling assuming
operators with fixed delay, (b) scheduling assuming operators with
variable delays depending on data width.

32-bit multiplication (×3) is scheduled at clock cycles {3, 4}.
Design latency is thus reduced to 4 cycles.

3.2.2. Impact on Time Constrained Syntheses. Area reduction
may also be achieved when the synthesis is constrained for
latency. Let us still consider the specification presented in
Figure 3. We assume the design latency constraint is 4 clock
cycles. Using a conventional approach, every multiplication
requires two clock cycles. The two 16-bit multiplications (×1

and ×2) are thus scheduled at clock cycles {1, 2} as shown in
Figure 5(a) and the 32-bit multiplication (×3) is scheduled
at cycles {3, 4}. Two multipliers are required: one 16-bit
multiplier to compute ×1 for example and one 32-bit shared
multiplier to compute ×2 and ×3.

Using accurate timingmodels for the operators according
to the width of the data they handle, fewer operators are
required. In our case, only one 32-bit multiplier is required.
A first 16-bit multiplication (×1) is scheduled at clock cycle
{1} and the second one (×2) is scheduled at clock cycle {2}.
The 32-bit multiplication (×3) is scheduled at clock cycles
{3, 4} (Figure 5(b)). The utilization rate of the operators is
increased so the area is reduced.

Moreover, compared to a conventional approach where
data width is not taken into account for the delay, minimum
latency can be reduced. With a conventional approach, mini-
mum latency is 4 clock cycles because multiplications require
2 clock cycles (Figure 5(a)). With the proposed approach,
minimum latency is 3 clock cycles (Figure 5(c)). The two 16-
bit multiplications (×1 and ×2) are scheduled at clock cycle
{1} and the 32-bit multiplication (×3) is scheduled at cycles
{2, 3}. In both cases, operator’s requirements are the same
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Figure 5: Time-constrained syntheses. (a) scheduling assuming
operators with fixed delay, (b) Scheduling assuming operators with
variable delays depending on data width, and (c) minimum latency
scheduling assuming operators with variable delays depending on
data width.

(one 16-bit multiplier and one 32-bit shared multiplier) but
design latency is reduced with the proposed approach.

3.2.3. Characterized Library. The high-level synthesis steps
make use of a characterized library dedicated to the tech-
nology the designer targets. This library includes data about
delay and area of the resources. With our approach, because
the delays of the operators are not fixed, for each operator,
a propagation delay function that links the propagation
delay to the data width is required (see Section 4.1). The
propagation delay function can be automatically extracted
from an automated process, based on logic synthesis and
simulation tools.

It should be noticed that some operations cannot take
advantage of the proposed approach; for example, for the
divider operation, the delay is associated to the least signif-
icant bit (LSB) computation. In such cases, delay is taken as
a constant so a propagation delay function is not required.

4. HLS Design Flow

Our work has been integrated in the GraphLab high-level
synthesis tool (http://www.enseirb.fr/∼legal/wp graphlab).
This CAD tool is based on a usual high-level synthesis
design flow. Its starting point is a MATLAB behavioral
description of the algorithm to implement. The synthesis
process can be constrained by the designer using different
parameters: the target technology, the clock frequency, the
design latency, and so forth. The synthesis process initially
takes operation’s data width into account but to size the
resources and minimize area only, that is, the propagation
delay of an operator is fixed whatever the width of the data
it handles [21]. In order to generate area-efficient designs,
a join scheduling and binding algorithm is used during the
synthesis process based on accurate area cost models that
depend on data width.

4.1. Path Delay Computation. In HLS, the behavioral de-
scription of the application to synthesize is usually translated
into an internal representation such as trees or graphs. Data
flow graph (DFG) or signal flow graph (SFG) are often used

for DSP applications. It is assumed a data-width analysis of
the specification has been previously performed such that
each node of the graph can be annotated with its data width
w(n) → Z, that is, the minimum number of bits required to
implement node n without loss of precision.

For example, if the extreme values (minima andmaxima)
are known, data width w(n) required for a signed integer
variable node n in two’s complement representation can be
calculated based on the following equation:

w(n) =
⌊
log2

(
max

(
abs
(
βmin(n)

)− 1, abs
(
βmax(n)

)))⌋
+ 2,

(1)

where βmin(n) and βmax(n) are the minimum and maximum
values that the variable can be worth.

In the proposed approach, fixed point representation
is considered. Data width is thus made up of an integer
part plus a fractional part. To avoid binary point alignment,
uniform fractional part word length is used.

Assuming f is the operator that implements node n,
the characterized library includes, for each operator f , a
function Γ f (w(n)) → R such that Γ f (w(n)) corresponds
to the propagation delay required by f to compute node
n whose data width is w(n). We assume d f ∈ [true, false]
indicates, for each operator f , if node n implemented on
operator f may be delay optimized or not. The propagation
delay δ(n) of operator f that implements operation node n
can be computed using the following

δ(n) =
⎧⎪⎨
⎪⎩
Γ f (w(n)) if d f = true

Γ f

(
wop

)
if d f = false,

(2)

where wop is the operator word length. Γ f (wop) is thus the
delay of operator f when it is assumed operator’s delay is
fixed.

According to the architecture model targeted by
GraphLab tool, the usual computation path from register to
register after the logical synthesis is made of an operator and
two multiplexers. Equation (3) provides a first estimate of
the computation path delay δpath(n) required for the com-
putation of node n on operator f . δmux is the propagation
delay of a 2-to-1 multiplexer, and δreg is the register load
delay. (For multiplexer and register resources, propagation
delay does not depend on data-width. It should be noticed
that propagation delays depend on the load capacitance for
each output. In (3), delays take it into account based on the
usual computation path);

δpath(n) = δ(n) + 2× δmux + δreg. (3)

In practice, the computation path delay is not only due
to logical gates. Part of the computation path delay is also
due to interconnection wires. Equation (4) provides the com-
putation path delay θpath(n) required for the computation
of node n on operator f and including wire delay cost. ε
is a routing weight which users can adjust based on their
knowledge about the target technology and the complexity
of the design (0 ≤ ε ≤ 1 usually);

θpath(n) = (1 + ε)× δpath(n). (4)
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Finally, the following equation gives the number of clock
cycles λ(n) required for the execution of operation node n;

λ(n) =
⌈

θpath(n)

clock period

⌉
. (5)

4.2. Resource Allocation. The proposed methodology sup-
ports both area- and time-constrained syntheses. For an area
constrained synthesis, the designer performs the allocation
itself giving the number of each type of operator. For a
time-constrained synthesis, the allocation is performed by
the HLS tool. The main objective of the resource allocation
step is to calculate the right number of each type of operator
while meeting the timing constraint. With GraphLab tool,
the timing constraint is given as the design latency T to
get the result. T is given in number of clock cycles. Two
methods are commonly used for the allocation: the average
allocation and the interval-based one [22]. We extend these
two methods for our proposed approach.

For the average allocation-based approach, an average
parallelism is assumed. The minimum number of resources
of type f required to implement the operation nodes
resource f can execute is given by

N
(
f
) =

⌈
η
(
f
)

T

⌉
where η

(
f
) = ∑

n∈Gf

λ(n) . (6)

η( f ) represents the number of clock cycles required to
compute sequentially all nodes n ∈ Gf . Gf is a subgraph of
graph G including the set of nodes operator f can execute.

For the interval-based technique, the minimum number
of resources required for a time interval is calculated using
the ASAP(n) and ALAP(n) times. (ASAP(n)/ALAP(n): as
soon as possible/as late as possible time operation n can
be computed.) Such as in our extended average allocation
approach, the accurate number of clock cycles λ(n) required
for the execution of operation node n is taken into account,
for example, to compute ASAP(n) and ALAP(n). For a time
interval [p, q] ∈ [1,T], the minimum overlap between the
execution of operation n and the interval is denoted as
W(n, p, q) and is calculated as follows:

W
(
n, p, q

)

= min

(
|ASAP(n), ASAP(n) + λ(n)| ∩ [p, q],

∣∣[ALAP(n), ALAP(n) + λ(n)]∩ [p, q]∣∣
)
.

(7)

The overlap valueW(n, p, q) is added to the list Af (p, q)
that gives the rate of operators f required at time interval
[p, q]. When every overlap value has been computed, the
minimum number of each type of operator required during
time interval [p, q] is given by

Nf
(
p, q
) =

⌈
Af
(
p, q
)

(
q − p + 1

)
⌉
. (8)

4.3. Combined Scheduling and Binding. The join scheduling
and binding approach we use is based on the list-scheduling
algorithm. A list-based scheduling algorithm maintains a
priority list of ready nodes. A ready node represents an oper-
ation which can be scheduled, that is, whose predecessors
have already been scheduled. A priority function is used to
sort the ready operation nodes: nodes with highest priorities
are scheduled first. Thus, the priority function resolves the
resource contention among operations. The algorithm goal is
to consider in the same time an efficient use of the parallelism
of the application, data-width information, and datapath
cost. The scheduling priority function is based on the fol-
lowing metrics: the operation mobility, the operation data-
width to favor first the scheduling of operations associated
with costly datapath, and the number of operations which
can be fired (immediate successors waiting for the result of
the current operation; see [21] for details).

To reduce the area of the overall architecture, including
registers and interconnection resources, scheduling and
binding are processed concurrently. The binding cost of a
particular node over a particular operator is thus required.
Binding an operation to an operator involves the operator
itself as well as the resources required to drive the input
data to this operator (see computation path in Section 4.1).
Binding cost thus includes the operator cost, the register cost,
and the interconnection cost. When scheduling and binding
are performed concurrently, these costs can be accurately
computed from previously scheduled nodes and previously
bound resources. Weighted bipartite graphs are used to
efficiently select minimum binding cost taking data width
into account.

The join-scheduling and binding algorithm has been
reviewed to support variable latency operations. Main
change comes from the computation of the ready to schedule
time. When an operation node has been scheduled, output
data are tagged as computed and the successors of this node
may become ready nodes. The time operation node ni is
ready is given by

ready(ni) = max
n∈pred(ni)

(exec(n) + λ(n)), (9)

where exec(n) is the time (clock cycle) operation node n, is
executed, ni is a successor of node n and predni is the set of
nodes which are predecessors of node ni.

With a conventional synthesis process that takes into
account operators with fixed propagation delay, data width
w(n) is not taken into account to compute the number
of clock cycles λ(n) required to compute n (5) because
propagation delay δ(n) of operator f that implements
operation node n is taken as a constant (Equation 2b).
With our proposed approach, λ(n) is accurately computed
depending on data with.

Moreover, because the priority function used to schedule
the nodes depends on the mobility, priority function results
may be different compared to the approach with fixed latency
operators. Actually, mobility of node n is based on ASAP(n)
and ALAP(n) times. With our approach, these times depend
on n’s data width because they are computed based on (5).
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Both changes make it possible to increase the utilization
rate of the resources avoiding clock cycle waste.

5. Experiments

To evaluate the effectiveness of the proposed methodology,
experiments on a JPEG decompression description were
carried out. Two syntheses have been done.

(i) A conventional approach [21] using a data-width-
aware high-level synthesis flow in which data width
is used to size the resources and minimize area
only, that is, the propagation delay of an operator is
fixed whatever the width of the data it handles. This
approach is denoted EXP1.

(ii) The second one, denoted EXP2, corresponds to the
approach proposed in this paper. It extends the
first approach including variable latency operators
depending on data width during the join scheduling
and binding step.

Two different technologies were targeted: an ASIC stan-
dard cell 65 nm technology (CORE65LPLVT NOM 1.00
25C from ST Microelectronics.) and an Altera Cyclone-III
FPGA platform. Synthesis libraries were characterized using
Design Compiler from Synopsys for the ASIC technology
and Quartus II v9.01 for the FPGA platform.

5.1. JPEG Decompression Description. The JPEG compres-
sion process is a well-known technique used to compress
pictures. JPEG compression and decompression algorithms
are parts of most video compression standards like MPEG-x
and h26x. The processing requires more than five thousand
computations. Input data comes from the arithmetic coding
bloc and red, green, blue data are generated. The following
computations are processed: (1) inverse ZigZag permutation,
(2) invert quantization computation, (3) invert 2D-discrete
cosine transform, and (4) color space conversion (YCbCr to
RGB color space). Input data (three 8 × 8 data blocs for Y,
Cb, Cr) are signed and are coded using 12 bits. The constant
coefficients are 12-bit signed. Output data are unsigned and
are coded with 8 bits.

Two data-width profiles for the JPEG decompression
core have been generated to evaluate the performance of the
proposed methodology.

(i) A first profile with small data-width requirements;
data widths range from 16 bits up to 41 bits. This
experiment is named low-precision profile.

(ii) A second profile with larger data-width require-
ments; data widths range from 16 bits up to 59 bits.
This experiment is named high-precision profile.

Range analysis was processed based on a static method
considering the propagation of data ranges through the
graph [13]. (It should be noticed that this approach leads
to pessimistic results (it is a worst-case analysis) [23]. It

was used because of its ease of implementation. More
accurate data scaling can be used.) The difference between
the two profiles comes from the fixed point data rounding
that is performed only on RGB outputs in the high-
precision profile whereas rounding is also performed all
over the computations for the low-precision profile. (The
JPEG decompression behavioral description is translated
into a data flow graph. The graphs for the low-precision
profile and the high-precision profile are the same except the
annotations of the nodes, data-width requirements.) Figures
6(a) and 6(b) show the distribution of the operation’s word-
length requirements for the low-precision profile and the
high-precision profile, respectively.

5.2. Resource-Constrained Synthesis. Figures 7(a) and 7(b)
show the distributions of the computation path delay θpath(n)
required to compute the operations for the low-precision
profile and the high-precision profile, respectively, for the
65 nm ASIC technology (Figures 7(a) and 7(b); it is assumed
an n-bit operation is executed on an n-bit operator). For
these experiments, routing weight was set to 0, 5. The same
kind of distributions is obtained for the FPGA technology,
but computation path delays range from 4 ns up to 17 ns.
Depending on the clock period and the operator’s word
length, a particular operation requires more or less clock
cycles to be executed. For example, for the high-precision
profile, assuming clock period is 1,5 ns, the computation
path delay of the addition ranges from 1 clock cycle up to
3 clock cycles.

Two resource constraints have been set to implement the
JPEG decompression core.

(1) A small set of operators: 6 adders, 6 subtractors, and
10 multipliers are allocated.

(2) A large set of operators: 20 adders, 20 subtractors,
and 30multipliers. This configuration allows a higher
computation parallelism rate.

Figures 8(a) and 8(b) show the design latency obtained
after the synthesis of the JPEG decompression description
constrained by the small set of operators for the low-
precision profile and the high-precision profile, respectively.
Design latency is the number of clock cycles required to
execute the JPEG processing on 8 × 8 [Y ,Cb,Cr] data blocs.
The clock period is specified by the user. Based on the
computation path delay distribution (Figure 7), the clock
period constraint has been set from 1 ns up to 4,5 ns for
the low-precision profile and from 1 ns up to 6,5 ns for the
high-precision profile. Figures 9(a) and 9(b) show the design
latency when the synthesis is constrained by the large set of
operators.

Compared to the conventional approach [21] for which
the propagation delay of an operator is fixed whatever the
width of the data it handles, the proposed methodology
reduces the design latency from 4% up to 35% for the low-
precision profile (average saving is 16%) and from 17% up to
39% for the high-precision profile (average saving is 30%).
When the clock period is longer than the most important
computation path delay, every operation can be scheduled in
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Figure 6: Operation’s word-length requirements for the JPEG decompression description.
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Figure 7: Computation path delay distribution—65 nm ASIC technology.
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Figure 8: Design latency when the synthesis is constrained by the small set of operators—65 nm ASIC technology.
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Figure 9: Design latency when the synthesis is constrained by the large set of operators—65 nm ASIC technology.

one clock cycle. In this case, there is no design latency saving
as it can be see in Figures 8 and 9 for a 4,5 ns clock period and
a 6,5 ns clock period. (This means clock frequency is not very
well chosen in this case: operator’s utilization rate is low).

It should be noticed that when the clock period is
a little bit shorter than the computation path delay of a
particular operation, there is no clock cycle saving with this
operation. For example, let us consider an operation nwhose
computation path delay on operator f is θpath(n) = 4ns
and maximum computation path delay of operator f is
5 ns. Assuming clock period is chosen to be 3 ns, with the
conventional approach the number of clock cycles required
to compute the operation is λ(n)EXP1 = �5/3� = 2 cycles
whereas with the proposed approach λ(n)EXP2 = �4/3�
is also 2 cycles. In this case, the number of clock cycles
required to compute operation n is the same whatever the
approach. On the contrary, if the clock period is set to 4 ns,
the number of clock cycles is reduced to one clock cycle with
the proposed approach. The choice of the clock period is thus
important.

Similar design latency savings were obtained when
targeting ALTERA Cyclone-III FPGA technology. In these
experiments, the clock period was set from 4 ns up to 27 ns
based on the computation path delay distribution of this
technology. Design latency is reduced from 2% up to 27%
for the low-precision profile (average saving is 7%) and from
6% up to 36% for the high-precision profile (average saving
is 20%).

A logical synthesis has been performed after the high-
level synthesis to get area- and energy-consumption results.
Design Vision from Synopsys was used and the 65 nm
ASIC technology was targeted. Energy consumption was
obtained from power consumption. Power consumption
was estimated using Prime Power from Synopsys using
the statistical-based approach. The complete architectures
have been synthesized, that is, the datapath, its controller,
and the storage elements required for temporary data
and to buffer input and output data. Similar areas are
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Figure 10: Area when the synthesis is constrained by the small set
of operators for low-precision profile—65 nm ASIC technology.
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Figure 12: Area when the synthesis is constrained by a 240-clock cycle latency constraint—65 nm ASIC technology.
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Figure 13: Area when the synthesis is constrained by a 120-clock cycle latency constraint—65 nm ASIC technology.

obtained with EXP1 and EXP2. For example, Figure 10 shows
the area obtained after the logical synthesis of the JPEG
decompression description constrained by the small set of
operators for the low-precision profile. Area is in number of
equivalent NAND gates. On average, the proposed approach
is 2% more expensive, that is, similar areas are obtained
while design latency is reduced. Furthermore, although
resource utilization rate is increased, that is to say switching
activity increases, energy consumption decreases with the
proposed approach. It is due to the design latency saving.
For example, Figure 11 shows the energy consumption of the
JPEG decompression core when the synthesis is constrained
by the small set of operators for the low-precision profile.
Average energy consumption saving is12%.

5.3. Time-Constrained Synthesis. Time constrained synthesis
was also experimented. Low- and high-precision profiles
were used for the JPEG decompression synthesis. Two timing
constraints have been set.

(1) Output data are to be provided under a 240-clock
cycle latency constraint.

(2) Output data are to be provided under a 120-clock
cycle latency constraint, that is to say a faster design
is required.

Figures 12(a) and 12(b) show the area obtained after the
synthesis of the JPEG decompression description constrained
by a 240-clock cycle latency for the low-precision profile and
the high-precision profile, respectively. Target technology is
65 nm ASIC and Design Vision from Synopsys was used
for the logical synthesis we performed after the high-level
synthesis. As it was already done for resource constraint
syntheses, the clock period constraint has been set from 1 ns
up to 4,5 ns for the low-precision profile and from 1 ns up
to 6,5 ns for the high-precision profile based on the com-
putation path delay distribution (Figure 7). Figures 13(a)
and 13(b) show the area when the synthesis is constrained
by a 120-clock cycle latency.
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Compared to the conventional approach [21] for which
the propagation delay of an operator is fixed whatever the
width of the data it handles, area is decreased from 0%
up to 14% with the proposed methodology for the low-
precision profile (average area saving is 6%) and from 2% up
to 22% for the high-precision profile (average area saving is
13%). As it was already observed for the resource constrained
syntheses, when the clock period is longer than the most
important computation path delay, every operation can be
scheduled in one clock cycle. In this case, there is no area
saving (for a 4,5 ns clock period and for a 6,5 ns clock period,
respectively, in Figures 12 and 13).

Similar area savings were obtained when targeting
ALTERA Cyclone-III FPGA technology. The clock period
was set from 4,5 ns up to 27 ns and both the 120- and 240-
clock cycle latency constraints were experimented. Area is
decreased from 0% up to 18% with the proposed method-
ology for the low-precision profile (average area saving is
5%) and from 0% up to 25% for the high-precision profile
(average area saving is 12%).

6. Conclusion

In this paper, we have presented a high-level synthesis
flow that takes into account operators with variable latency
depending on data-width. Both ASIC and FPGA platforms
can be targeted. Accurate computation path delay models
are used for the allocation and scheduling steps. The
synthesis process makes it possible to increase the utilization
rate of the resources avoiding clock cycle waste. Design
latency can be reduced for resource constrained syntheses.
In our experiments, design latency saving is about 19%
in comparison to a conventional approach for which the
propagation delay of an operator is fixed whatever the width
of the data it handles. Energy consumption is also reduced.
For time-constrained syntheses, area can be reduced. Area
saving is about 9% in comparison to a conventional
approach.
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