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A bioinspired, evolutionary algorithm for optimizing wavelet transforms oriented to improve image compression in embedded
systems is proposed, modelled, and validated here. A simplified version of an Evolution Strategy, using fixed point arithmetic and
a hardware-friendly mutation operator, has been chosen as the search algorithm. Several cutdowns on the computing requirements
have been done to the original algorithm, adapting it for an FPGA implementation. The work presented in this paper describes
the algorithm as well as the test strategy developed to validate it, showing several results in the effort to find a suitable set of
parameters that assure the success in the evolutionary search. The results show how high-quality transforms are evolved from
scratch with limited precision arithmetic and a simplified algorithm. Since the intended deployment platform is an FPGA, HW/SW
partitioning issues are also considered as well as code profiling accomplished to validate the proposal, showing some preliminary
results of the proposed hardware architecture.

1. Introduction

Wavelet Transform (WT) brought a new way to look
into a signal, allowing for a joint time-frequency analysis
of information. Initially defined and applied through the
Fourier Transform and computed with the subband filtering
scheme, known as Fast Wavelet Transform (FWT), the
Discrete Wavelet Transform (DWT) widened its possibilities
with the proposal of the Lifting Scheme (LS) by Sweldens [1].
Custom construction of wavelets was made possible with this
computation scheme.

Adaptation capabilities are increasingly being brought to
embedded systems, and image processing is, by no means,
the exception to the rule. Compression standard JPEG2000
[2] relies on wavelets for its transform stage. It is a very
useful tool for (adaptive) image compression algorithms,
since it provides a transform framework that can be adapted
to the type of images being handled. This feature allows it to
improve the performance of the transform according to each
particular type of image so that improved compression (in

terms of quality versus size) can be achieved, depending on
the wavelet used.

Having a system able to adapt its compression perfor-
mance, according to the type of images being handled, may
help in, for example, the calibration of image processing
systems. Such a system would be able to self-calibrate when
it is deployed in different environments (even to adapt
through its operational life) and has to deal with different
types of images. Certain tunings to the transform coefficients
may help in increasing the quality of the transform and,
consequently, the quality of the compression.

This paper deals with the implementation of adaptive
wavelet transforms in FPGA devices. The various approaches
previously followed by other authors in the search for this
transform adaptivity will be analysed.Most of these are based
on the mathematical foundations of wavelets and multi-
resolution analysis (MRA). The knowledge domain of the
authors of this paper does not lie within this theoretical
point of view, but, in contrast, the author’s team is composed
of electronic engineers and Evolutionary Computation (EC)
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experts. Therefore, what is being proposed here is the use
of bio-inspired algorithms, such as Evolutionary Algorithms
(EAs), as a design/optimization tool to help find new wavelet
filters adapted to specific kind of images. For this reason, it is
the whole system that is being adapted. No extra computing
effort is added in the transform algorithm, such as what
classical adaptive lifting techniques propose. In contrast, we
are proposing new ways to design completely new wavelet
filters.

The choice of an FPGA as the computing device for
the embedded system comes from the restrictions imposed
by the embedded system itself. The suitability of FPGAs for
high-performance computing systems is nowadays generally
accepted due to their inherent massive parallel processing
capabilities. This reasoning can be extended to embedded
vision systems as shown in [3]. Alternative processing devices
like Graphics Processing Units (GPUs) have a comparable
degree of parallelism producing similar throughput figures
depending on the application at hand, but their power
demands are too high for portable/mobile devices [4–7].

Therefore, the scope of this paper is directed at a
generic artificial vision (embedded) system to be deployed
in an unknown environment during design time, letting the
calibration phase adjust the system parameters so that it
performs efficient signal (image) compression. This allows
the system to efficiently deal with images coming from very
diverse sources such as visual inspections of a manufacturing
line, a portable biometric data compression/analysis system,
a terrestrial satellite image, and. Besides, the proposed
algorithm will be mapped to an FPGA device, as opposed
to other proposals, where these algorithms need to run on
supercomputing machines or, at least, need such a comput-
ing power that makes them unfeasible for an implementation
as an embedded real-time system.

The remainder of this paper is structured as follows.
Sections 2 and 3 show a short introduction to WT and EAs.
After an analysis of previously published works in Section 4,
the proposed method is presented in Section 5. Obtained
results are shown and discussed in Section 6, validating the
proposed algorithm. Section 7 analyses the implementation
in an FPGA device, together with the proposed architecture
able to host this system and the preliminary results obtained.
The paper is concluded in Section 8, featuring a short discus-
sion and commenting on future work to be accomplished.

2. Overview of theWavelet Transform

The DWT is a multiresolution analysis (MRA) tool widely
used in signal processing for the analysis of the frequency
content of a signal at different resolutions.

It concentrates the signal energy into fewer coefficients
to increase the degree of compression when the data is
encoded. The energy of the input signal is redistributed into
a low-resolution trend subsignal (scaling coefficients) and
high-resolution subsignals (wavelet coefficients; horizontal,
vertical, and diagonal subsignals for image transforms). If
the wavelet chosen for the transform is suited for the type
of image being analysed, most of the information of the
signal will be kept in the trend subsignal, while the wavelet
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Figure 1: Lifting scheme.

coefficients (high-frequency details) will have a very low
value. For this reason, the DWT can reduce the number of
bits required to represent the input data.

For a general introduction to wavelet-based multireso-
lution analysis check [8], the Fast Wavelet Transform (FWT)
algorithm computes the wavelet representation via a subband
filtering scheme which recursively filters the input data with a
pair of high-pass and low-pass digital filters, downsampling
the results by a factor of two [9]. A widely known set of filters
that build up the standard D9/7 wavelet (used in JPEG2000
for lossy compression) gets its name because its high-pass
and low-pass filters have 9 and 7 coefficients, respectively.

The FWT algorithm was improved by the Lifting Scheme
(LS), introduced by Sweldens [1], which reduces the com-
putational cost of the transform. It does not rely on the
Fourier Transform for its definition and application and has
given rise to the so-called Second Generation Wavelets [10].
Besides, the research effort put on the LS has simplified
the construction of custom wavelets adapted to specific and
different types of data.

The basic LS, shown in Figure 1, consists of three stages:
“Split”, “Predict”, and “Update”, which try to exploit the
correlation of the input data to obtain a more compact
representation of the signal [11].

The Split stage divides the input data into two smaller
subsets, s j−1 and dj−1, which usually correspond with the
even and odd samples. It is also called the Lazy Wavelet.

To obtain a more compact representation of the input
data, the s j−1 subset is used to predict the dj−1 subset, called
the wavelet subset, which is based on the correlation of the
original data. The difference between the prediction and
the actual samples is stored, also as dj−1, overwriting its
original value. If the prediction operator P is reasonably well
designed, the difference will be very close to 0, so that the two
subsets s j−1 and dj−1 produce amore compact representation
of the original data set s j .

In most cases, it is interesting to maintain some prop-
erties of the original signal after the transform, such as
the mean value. For this reason, the LS proposes a third
stage that not only reuses the computations already done
in the previous stages but also defines an easily invertible
scheme. This is accomplished by updating the s j−1 subset
with the already computed wavelet set dj−1. The wavelet
representation of s j is therefore given by the set of coefficients
{s j−2,dj−2,dj−1}.

This scheme can be iterated up to n levels, so that
an original input data set s0 will have been replaced with
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the wavelet representation {s−n,d−n, . . . ,d−1}. Therefore, the
algorithm for the LS implementation is as follows

for j ← 1,n do

{s j ,dj} ← Split(s j+1)

dj = dj − P(s j)

s j = s j +U(dj)

end for

where j stands for the decomposition level. There exists a
different notation for the transform coefficients {s j−i,dj−i};
for a 2-level image decomposition, it can be expressed as
{LL,LH ,HL,HH}, where L stands for low-pass and H for
high-pass coefficients, respectively.

3. Optimization Techniques Based on
Bioinspired, Evolutionary Approaches

Evolutionary Computation (EC) [12] is a subfield of Artifi-
cial Intelligence (AI) that consists of a series of biologically
inspired search and optimization algorithms that evolve
iteratively better and better solutions. It involves techniques
inspired by biological evolution mechanisms such as repro-
duction, mutation, recombination, natural selection, and
survival of the fittest.

An Evolution Strategy (ES) [13] is one of the fundamen-
tal algorithms among Evolutionary Algorithms (EAs) that
utilize a population of candidate solutions and bio-inspired
operators to search for a target solution. ESs are primarily
used for optimization of real-valued vectors. The algorithm
operators are iteratively applied within a loop, where each
run is called a generation (g), until a termination criterion
is met. Variation is accomplished by the so-called mutation
operator. For real-valued search spaces, mutation is normally
performed by adding a normally (Gaussian) distributed
random value to each component under variation (i.e., to
each parameter encoded in the individuals). Algorithm 1
shows a pseudocode description of a typical ES.

One of the particular features of ESs is that the individual
step sizes of the variation operator for each coordinate
(or correlations between coordinates) is governed by self-
adaptation (or by covariance matrix adaptation (CMA-
ES) [14]). This self-adaptation of the step size σ , also
known as mutation strength (i.e., standard deviation of the
normal distribution), implies that σ is also included in
the chromosomes, undergoing variation and selection itself
(coevolving along with the solutions).

The canonical versions of the ES are denoted by
(μ/ρ, λ)-ES and (μ/ρ + λ)-ES, where μ denotes the number of
parents (parent population, Pμ), ρ ≤ μ the mixing number
(i.e., the number of parents involved in the procreation
of an offspring), and λ the number of offspring (offspring
population, Pλ). The parents are deterministically selected
from the set of either the offspring, referred to as comma
selection (μ < λ), or both the parents and offspring, referred
to as plus selection. This selection is based on the ranking of
the individuals’ fitness (F ) choosing the μ best individuals
out of the whole pool of candidates. Once selected, ρ out of

(1) g ← 0

(2) Initialize P
(g)
μ ← {(ym, sm), m = 1, . . . ,μ}

(3) Evaluate P
(g)
μ

(4) while not termination condition do

(5) for all l ∈ λ do

(6) R ← Draw ρ parents from P
(g)
μ

(7) rl ← recombine (R)

(8) (ỹl , s̃l)← mutate (rl)

(9) Fl ← evaluate (ỹl)

(10) end for

(11) P
(g)
λ ← {(yl , sl), l = 1, . . . , λ}

(12) P
(g+1)
μ ← selection (P

(g)
λ ,P

(g)
μ ,μ, +,)

(13) g ← g + 1

(14) end while

Algorithm 1: (μ/ρ +, λ)-ES.

the μ parents (R) are recombined to produce an offspring
individual (rl) using intermediate recombination, where the
parameters of the selected parents are averaged or randomly
chosen if discrete recombination is used. Each ES individual
a := (y, s) comprises the object parameter vector y to be
optimized and a set of strategy parameters s which coevolve
along with the solution (and are therefore being adapted
themselves). This is a particular feature of ES called self-
adaptation. For a general description of the (μ/ρ +, λ)-ES, see
[13].

4. PreviousWork onWavelets Adaptation

4.1. Introductory Notes. Research on adaptive wavelets has
been taking place during the last two decades. At first,
dictionary-based methods were used for the task. Coifman
and Wickerhauser [15] select the best basis from a set of
predefined functions, modulated waveforms called atoms,
such as wavelet packets. Mallat and Zhang Matching Pursuit
algorithm [16] uses a dictionary of Gabor functions by suc-
cessive scalings, translations, and modulations of a Gaussian
window function. It performs a search in the dictionary in
order to find the best matching element (maximum inner
product of the atom element with the signal). Afterwards,
the signal is decomposed with this atom which leaves a
residual vector of the signal. This algorithm is iteratively
applied over the residual up to n elements. The Matching
Pursuit algorithm is able to decompose a signal into a fixed,
predefined number of atoms with arbitrary time-frequency
windows. This allows for a higher degree of adaptation than
wavelet packets. These dictionary-based methods do not
produce new wavelets but just select the best combination of
atoms to decompose the signal. In some cases, these methods
were combined with EA for adaptive dictionary methods
[17].
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When the LS was proposed, new ways of constructing
adaptive wavelets arose. One remarkable result is the one by
Claypoole et al. [18] which used LS to adapt the prediction
stage to minimize a data-based error criterion, so that this
stage gets adapted to the signal structure. The Update stage
is not adapted, so it is still used to preserve desirable
properties of the wavelet transform. Another work which is
focused on making perfect reconstruction possible without
any overhead cost was proposed by Piella and Heijmans [19]
that makes the update filter utilize local gradient information
to adapt itself to the signal. In this work, a very interesting
survey of the state of the art on the topic is covered.

These brief comments on the current literature proposals
show the trend in the research community which has
mainly involved the adaptation of the transform to the local
properties of the signal on the fly. This implies an extra
computational effort to detect the singularities of the signal
and, afterwards, apply the proposed transform. Besides, a
lot of work has been published on adaptive thresholding
techniques for data compression.

The work being reported on in this paper deals with
finding a complete new set of filters adapted to a given
signal type which is equivalent to changing the whole wavelet
transform itself. Therefore, the general lifting framework still
applies. This has the advantage of keeping the computational
complexity of the transform at a minimum (as defined by
the LS) not being overloaded with extra filtering features to
adapt to these local changes in the signal (as the transform is
being performed).

Therefore, the review of the state of the art covered in
this section will focus on bio-inspired techniques for the
automatic design of new wavelets (or even the optimization
of existing ones). This means that the classical meaning of
adaptive lifting (as mentioned above) does not apply in this
work. Adaptive, within the scope of this work, refers to
the adaptivity of the system as a whole. As a consequence,
this system does not adapt at run time to the signal being
analysed, but, in contrast, it is optimized previously to the
system operation (i.e., during a calibration routine or in a
postfabrication adjustment phase).

4.2. Evolutionary Design of Wavelet Filters. The work
described here gets its original idea from [20] by Grasemann
and Miikkulainen. In their work, the authors proposed the
original idea of combining the lifting technique with EA for
designing wavelets. As it is drawn from [1, 10], the LS is really
well suited for the task of using an EA to encode wavelets,
since any random combination of lifting steps will encode a
valid wavelet which guarantees perfect reconstruction.

The Grasemann and Miikkulainen method [20] is based
on a coevolutionary Genetic Algorithm (GA) that encodes
wavelets as a sequence of lifting steps. The evaluation run
makes combinations of one individual, encoded as a lifting
step, from each subpopulation until each individual had
been evaluated an average of 10 times. Since this is a
highly time-consuming process, in order to save time in the
evaluation of the resulting wavelets, only a certain percentage
of the largest coefficients was used for reconstruction, setting
the rest to zero. A compression ratio of exactly 16 : 1 was

used, which means that 6.25% of the coefficients are kept
for reconstruction. A comparison between the idealized
evaluation function and the performance on a real transform
coder is shown in their work. Peak signal-to-noise ratio
(PSNR) was the fitness figure used as a quality measure after
applying the inverse transform. The fitness for each lifting
step was accumulated each time it was used.

The most original contributions to the state of the art
reported in this work [20] are two. First, they used a GA
to encode wavelets as a sequence of lifting steps (specifically
a coevolutionary GA with parallel evolving populations).
Second, they proposed an idealized version of a transform
coder to save time in the complex evaluation method
that they used which involved computing the PSNR for
one individual combining a number of times with other
individuals from each subpopulation. This involves using
only a certain percentage of the largest coefficients for
reconstruction.

The evaluation consisted of 80 runs, each of which
took approximately 45 minutes on a 3GHz Xeon processor
(total time 80 ∗ 45). The results obtained in this work
outperformed the considered state-of-the-art wavelet for
fingerprint image compression, the FBI standard based on
the D9/7 wavelet, in 0.75 dB. The set of 80 images used was
the same as the one used in this paper, as will be shown in
Section 6.

Works reported by Babb et. al. [21–24] can be considered
the current state of the art in the use of EC for image
transform design. These algorithms are highly computa-
tionally intensive, so the training runs were done using
supercomputing resources, available through the use of the
Arctic Region Supercomputer Center (ARSC) in Fairbanks,
Alaska. The milestones followed in their research, with
references to their first published works, are summarized in
the following list:

(1) evolve the inverse transform for digital photographs
under conditions subject to quantization [25],

(2) evolve matched forward and inverse transform pairs
[26],

(3) evolve coefficients for three- and four-level MRA
transforms [27],

(4) evolve a different set of coefficients for each of level of
MRA transforms [28].

Table 1 shows the most remarkable and up to date
published results in the design of wavelet transforms using
Evolutionary Computation (EC), and Table 2 shows the
settings of the parameters for each reported work. The
authors of these works state that in the cases of MRA the
coefficients evolved for each level were different, since they
obtained better results using this scheme with the exception
of [20].

The use of supercomputing resources and the training
times needed to obtain a solution gives an idea of the
complexity of these algorithms. This issue makes their
implementation as a hardware-embedded system highly
unfeasible.
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Table 1: State of the art in evolutionary wavelets design.

Reference EA Seed Conditions Image set Improvement (dB)

[20] Coevolutionary GA Random Gaussian MRA. 16 : 1 Ta Fingerprints 0.75

[21] GA D9/7 mutations MRA (4). 16 : 1 T Fingerprints 0.76

Satellite 1.79

[22] CMA-ESb D9/7 mutations 64 : 1 Qc Fingerprints 3.00

Photographs 2.39

[23] CMA-ES 0.2 MRA (3). 64 : 1 Q Fingerprints 0.54
a
Thresholding, bCovariance Matrix Adaptation-Evolution Strategy, cquantization.

Table 2: Parameter settings in reported work.

Reference Parameters Platform

[20] Ga = 500 Mb = 150(7)c Nd = 4 + 1e Intel Xeon 3GHz

[21] G = 15000 M = 800 N = 128 ARSCf

[22] G = ?g M = ? N = 16 ARSC

[23] G = ? M = ? N = 96 ARSC
a
Generations, bpopulation size, cparallel subpopulations, dindividuals
length (floating point coefficients), einteger for filter index, fArctic Region
Supercomputer Center, gunknown.

5. Proposed SimplifiedEvolution Strategy for an
Embedded System Implementation

As proposed in the reports by Babb, et al. [22, 23], an ES was
also considered within this paper scope to be the most suited
algorithm to meet the requirements. However, a simpler
one was chosen so that a viable hardware implementation
was possible. Besides, this paper proposes, as Grasemann
and Miikkulainen [20] did, the use of the LS to encode the
wavelets. Therefore, it is being originally proposed here to
combine both proposals from the literature so that

(i) “search algorithm” is set to be a simplified Evolution
Strategy, and

(ii) “encoding of individuals” is done by using the Lifting
Scheme.

Figure 2 shows a graphical representation of the whole
idea of the paper: let an evolutionary algorithm find an
adequate set of parameters in order to maximize the wavelet
transform performance from the compression point of view for
a very specific type of images.

To reduce the computational power requirements, the
whole algorithm complexity must be downscaled. This
involves changing not only the parameters of the evolution
but the EA itself as well. In [29] the decisions made for
simplifying the algorithm as compared to the previously
reported state of the art are described. These proposals,
which constitute the first step in the algorithm simplification,
are summarized as follows:

(1) single evolving population opposed to the parallel
populations of the coevolutionary genetic algorithm
proposed in [20];

s j

s j−1

dj−1

Split P U

−

+

+

p0 p1 p2 p3

P/U
stage

Delays

Coefficients

Figure 2: Idea of the algorithm.

(2) use of uncorrelated mutations with one step size [13]
instead of the overcomplex CMA-ES method in [22,
23];

(3) evolution of one single set of coefficients for all MRA
levels;

(4) ideal evaluation of the transform. Since doing a
complete compression would turn out to be an
unsustainable amount of computing time, the sim-
plified evaluationmethod detailed in [20] was further
improved. For this work, all wavelet coefficients
dj are zeroed, keeping only the trend level of the
transform from the last iteration of the algorithm
s j , as suggested in [30]. Therefore, the evaluation
of the individuals in the population is accomplished
through the computation of the PSNR after setting
entire bands of high-pass coefficients to 0. For 2 levels
of decomposition, this is equivalent to an idealized
16 : 1 compression ratio.

These simplifications produced very positive results, but
constraining the algorithm to evolve a single population of
individuals and to use a simple mutation strategy could
potentially result in a high loss of performance compared
to other works. Since the evaluation of the transform
performance is, by far, the most time-consuming task, this
is the reason to propose the most radical simplification
precisely for this task. Besides, this extreme simplification is
expected to push the algorithm faster towards a reasonable
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solution, which means, from a phenotypic point of view,
to practically discard individuals who do not concentrate
efficiently most of the signal energy in the LL bands.

There were still some complex operations pending in
the algorithm so the complexity relaxation was taken even
further, observing always a tradeoff between performance
and size of the final circuit.

(1) Uniform Random Distribution. Instead of using a
Gaussian distribution for the mutation of the object
parameters, a uniform distribution was tested for
being simpler in terms of the HW resources needed
for its implementation.

(2) Mean Absolute Error (MAE) as Evaluation Figure.
PSNR is the quality measure more widely used for
image processing tasks. But, as previous works in
image filter design via EC show [31], usingMAE gives
almost identical results because the interest lies in
relative comparisons among population members.

5.1. Fixed Point Arithmetic. For the implementation of the
algorithm in an FPGA device, special care with binary
arithmetic has to be taken since floating point representation
is not hardware (FPGA) friendly. Thanks to the LS, the
Integer Wavelet Transform (IWT) [32] turns up as a good
solution for wavelet transforms in embedded systems. But,
since filter coefficients are still represented in floating point
arithmetic, a fixed point implementation is needed.

As shown in [33, 34], for 8 bits per pixel (bpp) integer
inputs from an image, a fixed point fractional format
of Q2.10 for the lifting coefficients and a bit length in
between 10 and 13 bits for a 2- to 5-level MRA transform
for the partial results is enough to keep a rate-distortion
performance almost equal to what is achieved with floating
point arithmetic. This requires Multiply and Accumulate
(MAC) units of 20–23 bits (10 bits for the fractional part of
the coefficients + 10–13 bits for the partial transform results).

5.2. Modelling the Proposal. Prior to the hardware imple-
mentation, modelling and extensive simulations and tests of
the algorithm were done using Python computing language
together with its numerical and scientific extensions, NumPy
and Scipy [35], as well as the plotting library MatPlotlib
[36]. Fixed point arithmetic was modelled with integer types,
defining the required quantization/dequantization and bit-
alignment routines to mimic hardware behaviour. Figure 3
shows the flowgraph of the algorithm.

The standard “representation” of the individuals in ESs is
composed of a set of object parameters to be optimized and
a (set of) strategy parameter(s) which determines the extent
to which the object parameters are modified by the mutation
operator

〈x1, . . . , xn, σ〉 (1)

with xi being the coefficients of the predict and update
stages. Two versions were developed, one targeting floating
point numbers for the first proposal [29] and another
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Figure 3: Flow graph of the algorithm.

one modelling fixed point behaviour in hardware. The
individuals were seeded both randomly and with the D9/7
wavelet.

The “encoding” of each wavelet individual is of the form

〈P1,U1,P2,U2,P3,U3, k1, k2〉, (2)

where each Pi and Ui consists of 4 coefficients and both
ki are single coefficients. Therefore, the total length of each
chromosome is n = 26. As a comparison, the D9/7 wavelet is
defined by 〈P1,U1,P2,U2, k1, k2〉.

The “mutation” operator is defined as an uncorrelated
mutation with one step size, σ . The formulae for the mutation
mechanism is

σ ′ = σ · expτ·N(0,1),

x′i = xi + σ ′ ·Ni(−σ ′, σ ′),
x′i = xi + σ ′ ·Ui(−σ ′, σ ′),

(3)

where N(0, 1) is a draw from the standard normal dis-
tribution and Ni(−σ ′, σ ′) and Ui(−σ ′, σ ′) a separate draw
from the standard normal distribution and a separate draw
from the discrete uniform distribution, respectively, for each
variable i (for each object parameter). The parameter τ
resembles the so-called learning rate of neural networks, and
it is proportional to the square root of the object variable
length n:

τ ∝ 1√
αn

, α = {1, 2}. (4)

The “fitness function” used to evaluate the offspring
individuals, MAE, is defined as

MAE = 1
RC

R−1
∑

i=0

C−1
∑

j=0

∣

∣I
(

i, j
)− K

(

i, j
)∣

∣, (5)
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Table 3: Proposed evolution strategy: summary.

Parameter/operator Value

Individual encoding 〈P1,U1,P2,U2,P3,U3, k1, k2〉

Representation
〈x1, . . . , xn, σ〉
n = 26, floating/fixed point
coefficients

Mutation

Strategy parameters: uncorrelated
mutation, one σ

Object parameters:
Gaussian/uniform

Initial σ : variable

Evaluation MAE

Selection Comma

Recombination Intermediate

Parent population size Variable

Offspring population size Variable

Seed for initial population Random

where R, C are the rows and columns of the image and
I , K the original and transformed images, respectively. In
previous works, the authors used PSNR for this task, but, as
mentioned above, MAE produces the same results. However,
for comparison purposes with other works, the evaluation of
the best evolved individual against a standard image test set
is reported as PSNR, computed as

MSE = 1
RC

R−1
∑

i=0

C−1
∑

j=0

∣

∣I
(

i, j
)− K

(

i, j
)∣

∣
2,

PSNR = 10 log10

(

Imax

MSE

)

,

(6)

where MSE stands for Mean Squared Error and Imax is the
maximum possible value of a pixel, defined for B bpp as
Imax = 2B−1.

For the “survivor selection”, a comma selectionmechanism
has been chosen, which is generally preferred in ESs over
plus selection for being, in principle, able to leave (small)
local optima and not letting misadapted strategy parameters
survive. Therefore, no elitism is allowed.

The “recombination” scheme chosen is intermediate
recombination which averages the parameters (alleles) of the
selected parents.

Table 3 gathers all the information related to the pro-
posed ES.

5.3. Test Strategy to Validate the Algorithm. An incremental
approach has been chosen as the strategy to successively
build the proposed algorithm. First of all, the complete,
software-friendly implementation of the ES in floating point
arithmetic was accomplished. This validated the choice of
a simple ES to design new lifting wavelet filters adapted
to a specific type of signal. Since the target deployment
platform is an FPGA, fixed point arithmetic is desired.
Therefore, the next step was to test the performance of

the fixed point implementation of the algorithm. The next
great simplification to the algorithm was switching from a
Gaussian-based mutation operator for the object parameters
to a uniform-based one.

In order to find the best set of parameters, several tests
for different combinations of them have been done in order
to gather statistics of the evolutionary search performance
for the training image, chosen randomly from the first
set of 80 images of the FVC2000 fingerprint verification
competition [37]. When changing parent population size,
the offspring population size is modified accordingly to keep
the selection pressure as suggested for ESs (μ/λ ≈ 1/7).
Besides, the number of recombinants has been chosen to
match approximately half of the population size.

The authors are aware that more tests can be performed
for different settings of the parameters. Anyway, the results
presented in the next section show how the proposed
algorithm is widely validated within a reasonable number
of computing hours (it has to be reminded here that the
proposed deployment platform is an FPGA, so further tests
have to be done in hardware). However, an extra test was run
to check whether or not introducing elitism was good for the
evolution. The successive simplify, test, and validate steps are
summarized as follows:

(1) begin with the SW-friendly, full precision arithmetic,
simplest ES. Find a suitable initial mutation strength.
Perform several tests for different values of σ ;

(2) HW-friendly arithmetic implementation. Compare
with the result of (1) in fixed point arithmetic;

(3) HW-friendly mutation implementation. Compare
with the result of (2) using uniform mutation;

(4) repeat (1) to check whether the same initial mutation
strengths still apply after the simplifications proposed
in (2) and (3);

(5) HW-friendly population size. Test the performance
for different population sizes;

(6) test performance using plus selection operator.

Tables 4, 5, 6, 7, 8, and 9 compile the information
regarding the five different tests mentioned above. Please
note that when the test comprises variable parameters, the
number of runs shown in the table is done for each parameter
value so that different, independent runs of the algorithm are
executed in order to have a statistical approximation to the
repeatability of the results produced.

6. Results

6.1. Tests Results. The results obtained for each of the tests
can be found in this section. All of them are compared
with the D9/7 (JPEG2000 lossy and FBI fingerprint com-
pression standard) and D5/3 (suitable for integer to integer
transforms, JPEG2000 lossless standard) reference wavelets
implemented in fixed or floating point arithmetic and
evaluated with the proposed method. All the experiments
reported in this paper have also used, as in [20], the first
set of 80 images of the FVC2000 fingerprint verification



8 EURASIP Journal on Advances in Signal Processing

Table 4: Test no. 1. Initial mutation step σ .

Fixed parameters
Arithmetic Floating point

Mutation Gaussian

Population size (10/5, 70)

Variable parameters Mutation strength σ = {0.1, . . . , 2.0},Δσ = 0.1

Runs 10 for each parameter variation step (total 200)

Output
Performance versus σ sweep

Initial mutation strength σB ? for Gaussian mutation

Table 5: Test no. 2. Fixed point arithmetic validation.

Fixed parameters

Arithmetic Fixed point, Qb bits

Mutation Gaussian

Mutation strength σB
Population size (10/5, 70)

Variable parameters Fractional part bit length Qb = {8, 16, 20} bits
Runs 50 for each parameter variation step (total 150)

Output
Fixed point validation

Performance for σB per run

Table 6: Test no. 3a. Uniform mutation validation.

Fixed parameters

Arithmetic Fixed point, 16 bits

Mutation Uniform

Mutation strength σB
Population size (10/5, 70)

Runs 10

Output
Uniform mutation validation

Performance for uniform mutation per run

competition. Images were black and white, sized 300 × 300
pixels at 500 dpi resolution. One random image was used for
training and the whole set of 80 images for testing the best
evolved individual in each optimization process.

Table 10 shows a compilation of the figures produced
during the tests. The performance for each of the standard
wavelet transforms, D9/7 and D5/3, obtained with the
training image is shown in Table 11.

The data collected on the boxplot figures show the
statistical behaviour of the algorithm. Besides the typical
values shown in this kind of graphs, all of them, like Figure 4,
show also numerical annotations for the average (top-most)
and median (bottom-most) values at the top of the figure,
a circle representing the average value in situ (together with
the boxes) and the reference wavelets performance.

For the first step of the proposal, Test no. 1, practically
all the runs (10 runs for each of the 20 σ steps, which
makes a total of 200 independent runs) of the algorithm
evolve towards better solutions than the standard wavelets.
Statistical results of the test are included in Figure 4.

Fixed point validation which is accomplished in Test no.
2 is shown in Figure 5 for Qb = {8, 16, 20} bits. 50 runs
were made for each Qb value. It is clear, as expected from
the comments in Section 5.1, that 8 bits for the fractional
part are not enough to achieve good performance, while the

16 and 20 bits runs behave as expected. Test no. 3a tries to
validate uniform mutation as a valid variation operator for
the EA. Good results are also obtained, as extracted from
Figure 6. The only possible drawback for both tests may be
the extra dispersion as compared with the original floating
point implementation.

When the algorithm is simplified as in Test no. 3b, a
slightly different behaviour from previous tests is observed.
The most remarkable result is the difference in the perfor-
mance obtained for equivalent σ values which can be seen
in Figure 7. For σ ≈ {1.0, . . . , 2.0}, the dispersion of the
results is very high, and a reasonable number of individuals
are not evolving as expected. Therefore, the test was repeated
for σ = {0.01, . . . , 0.1}, in steps of 0.01. This involves doing
another 100 extra runs which are shown in Figure 8, for a
total of 300 independent runs. This σ extended test range
shows how the algorithm is again able to find good candidate
solutions.

Results from Test no. 4 in Figure 9 show the expected
behaviour after changing the population size. Making it
smaller as in the (5/2, 35) run does not help in keeping the
average good performance of the algorithm demonstrated
in previous tests for a population size of (10/5, 70). On the
other hand, increasing the size to (15/5, 100) shows how the
interquartile range is reduced. However, such a reduction
would not justify the increase in the computational power
required to evolve a 1.5 times bigger population.

The different selection mechanism chosen for Test no. 5
led to a slightly increased performance of the evolutionary
search compared with Test no. 3b, as shown in Figures 10
and 11.

6.2. Results for Best Evolved Individual. The whole set of
results obtained for each test show that the algorithm is able
to evolve good solutions (better than the standard wavelets)
for an adequate setting of parameters. However, these results
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Table 7: Test no. 3b. Initial mutation step σ for Uniform mutation.

Fixed parameters
Arithmetic Fixed point, 16 bits

Mutation Uniform

Population size (10/5, 70)

Variable parameters Mutation strength
σ = {0.1, . . . , 2.0},Δσ = 0.1

σa = {0.01, . . . , 0.1},Δσ = 0.01

Runs 10 for each parameter variation step (total 200 + 100)

Output
Performance versus σ sweep

Initial mutation strength σB? for uniform mutation
a
See Section 6.1 for a justification of the extended range of σ .

Table 8: Test no. 4. Effect of the population size.

Fixed parameters
Arithmetic Fixed point, 16 bits

Mutation Uniform

Mutation strength σB

Variable parameters Population size (10/5, 70), (5/2, 35), (15/5, 100)

Runs 10 for each parameter variation step (total 30)

Output Performance versus population size

Table 9: Test no. 5. Plus selection operator.

Fixed parameters
Arithmetic Fixed point, 16 bits

Mutation Uniform

Population size (10/5, 70)

Variable parameters Mutation strength σ = {0.01, . . . , 1.1}
Runs 10 for each parameter variation step (total 200)

Output Performance for plus selection operator versus σ sweep
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Table 10: Tests results figures.

Test no. 1 2 3a 3b 4 5

Figure 4 5 6 7, 8 9 10, 11

are just for the training image. Therefore, how does the best
evolved individual behave for the whole test set?

In this section, the comparisons between the best evolved
individual and the reference wavelets against the whole test
set are shown. Although evolution used MAE as the fitness
function, in order to maximize comparability with other
works, the quality measure is given here as PSNR. Results for
Gaussian mutation in floating point arithmetic and uniform
mutation in fixed point arithmetic, both for comma and
plus selection strategies, respectively, are included. These two
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Table 11: Standard wavelets performance for the training image.

Wavelet D9/7 D5/3

Arithmetic Floating point
Fixed pointa, Qb Floating point

Fixed pointa, Qb

8 bits 16 bits 20 bits 8 bits 16 bits 20 bits

Performance (MAE) 6.6413 7.5625 7.4190 7.4221 7.7271 7.9882 7.9595 7.9577
a
Fixed point arithmetic, Qb bits for the fractional part.
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Figure 10: Test no. 5. σ = {0.01, . . . , 1.0}.

sets of results will assist in the validation of the successive
simplifications made to the originally proposed algorithm.

Figure 12 shows a graph of the evolution run of the
best individual for the whole set of tests for floating point
arithmetic and Gaussianmutation and fixed point arithmetic
and uniform mutation for both, comma and plus selection,
respectively. The best individual has been chosen as the one
averaging the highest performance against the whole test set
(not the one performing best for the training image, as is

shown in previous figures). Equivalently, Figures 13, 14, and
15 show the comparison against the whole test set for each
one of the best individuals of Figure 12. Figure 16 is a direct
comparison of a particular image of the test set showing
how the best evolved individual for plus selection behaves
against a fixed point implementation of D9/7. Error images
and histograms are included in Figure 17 since direct visual
inspection of these images is not easy and will not probably
offer enough information for the human eye to make a fair
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Figure 11: Test no. 5. Zoom-in in Figure 10.

judgement, though some artifacts are clearly visible in the
performance of the D9/7 wavelet as shown in Figure 16(c).
It can be seen from these error images and histograms how,
after applying a forward transform + (ideal) compression +
inverse transform to an image, the result of using the evolved
wavelet generates an image which keeps a higher degree of
similarity with the original one than using the standard D9/7.

6.3. Some Comments on Results. Section 5.3 featured a
discussion on the design validation followed to obtain a
hardware-friendly ES by successively simplifying a previously
validated and much more complex algorithm. Various inde-
pendent test runs have been performed to look for the best
setting of parameters, beginning with a software-friendly,
high-precision floating point arithmetic version which used
Gaussian mutations. After simplifying the algorithm and
validating each of the steps, several conclusions can be
extracted.

Because of its usual influence in EAs, search for an
adequate mutation rate (mutation strength in ESs) has
enjoyed a particular computing effort. It can be said,
however, that, for this particular optimization problem, the
mutation strength is not critical, as long as it belongs to a
reasonable range. Outside of that range, evolution is not able
to find good candidate solutions. Table 12 shows the most
suitable range of values found for σ , chosen as those runs
resulting in average performance values behaving better than
the standard wavelets.

The whole set of tests have validated the proposal and
found a reasonably good set of parameters for the problem
at hand which is

(i) fixed point arithmetic, Qb = 16 bits,

Table 12: Initial mutation strength range.

Conditions Values

Floating point, Gaussian mutation σ = {0.1, . . . , 2.0}
Fixed point, uniform mutation, comma
selection

σ = {0.03, . . . , 0.6}

Fixed point, uniform mutation, plus selection σ = {0.07, . . . , 1.1}

(ii) population sizes: (10/5, 70),

(iii) selection operator with elitism: plus selection,

(iv) uniform mutation with an initial mutation step
contained within the range shown in Table 12.

As can be observed in Figure 12 the algorithm stagnates
soon in every single run, around generation 200 for the
floating point and Gaussian mutation runs and generation
160 for fixed point uniform mutation and comma selection.
In the floating point case, the stagnation is not complete
because it keeps on improving very slowly, but in practical
terms it does not imply a substantial improvement in the
quality of the transform. Although the best individuals
keep on stagnating if elitism is introduced in the evolution,
the worst ones still maintain some degree of variation,
improving the overall algorithm performance as compared
to the nonelitist strategy.

Table 13 shows a comparison of the (best) obtained
results (those corresponding to plus selection, Test no. 5)
against previously reported works. It is clear that an ES
is better suited than a GA for this task of optimizing
real-valued vectors for wavelet filters, as confirmed by
our results and by previous results from other authors as
shown in Section 4. This is an expected result since they
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Figure 12: Best evolution run for (a) floating point arithmetic and Gaussian mutation; (b) fixed point arithmetic and uniform mutation,
comma selection; (c) fixed point arithmetic and uniform mutation, plus selection.

were originally developed for this task (optimizing real-
valued vectors). Compared with [22], where the best evolved
wavelet outperforms the reference wavelet by 3.00 dB, the
performance versus complexity tradeoff in the algorithm
proposed in this paper achieves a good 1.57 dB improvement,
which corresponds to the 30.31 dB performance against the
whole test set as shown in Figure 15. Besides, it should be
noted that for all the runs (140) corresponding to the σ range
shown in Table 12 for Test no. 5, the average performance
obtained was 29.76 dB, where only 4 out of the whole 140
runs were not able to improve existing wavelets.

Table 13: Comparison of best evolved wavelet against state of the
art.

Reference EA Seed Improvement
over D9/7 (dB)

[20] Coevolutionary
GA

Random Gaussian 0.75

[21] GA D9/7 + mutations 0.76

[22] CMA-ES D9/7 + mutations 3.00

This paper ES Random Gaussian 1.57a
a
Improvement over fixed point arithmetic version.
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Figure 13: Performance of the best evolved individual for Floating
point arithmetic and Gaussian mutation against the whole test set:
(a) for D5/3 and (b) for D9/7 wavelets.

7. Hardware Implementation

7.1. Architecture Mapping. HW/SW Partitioning. Typical
implementations of evolutionary optimization engines in
FPGAs place the EA in an embedded processor. With this
approach, some degree of performance is sacrificed to gain
flexibility in the system (needed to fine tune the algorithm),
so that modifications may be easily done to the (software)
implementation of the EA (which is, of course, much easier
than changing its hardware counterpart). Table 14 shows the
partitioning resulting from applying this design philosophy.
According to Algorithm 1, each of the EA operators are
shown in the table together with further actions to be accom-
plished: recombination (of the selected parents), mutation
(of the recombinant individuals to build up a new offspring
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Average fit D97Fxp PSNR: 28.7419
[Fractional bit length: 16]
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Figure 14: Performance of the best evolved individual for fixed
point arithmetic and uniform mutation (comma selection) against
the whole test set: (a) comparison with D9/7 and (b) comparison
with D5/3 wavelets.

Table 14: HW/SW partitioning of the system.

EA operator Further actions HW SW

Recombination —
√

Mutation —
√

Evaluation
Wavelet transform

√
Fitness computation

√

Selection
Sorting population

√
Create parent population

√

population), evaluation (of each offspring individual), and
selection (of the new parent population).

When a new offspring population is ready, each of its
individuals is sequentially sent to the hardware module
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Figure 15: Performance of the best evolved individual for fixed
point arithmetic and uniform mutation (plus selection) against the
whole test set: (a) comparison with D9/7 and (b) comparison with
D5/3 wavelets.

responsible for its evaluation. This comprises the compu-
tation of the fitness as the Mean Absolute Error (MAE)
as shown in (5). To tackle it, the following sequence of
operations has to be done: Forward Wavelet Transform
(fWT), Compression (C), Inverse Wavelet Transform (iWT)
(wavelet transform), and MAE figure computation (fitness
computation). Once each offspring individual has been evalu-
ated, the population is sorted according to the result (sorting
population). At this stage, the microprocessor may close
the evolutionary loop creating the new parent population.
Afterwards, recombination and mutation are applied, and a
new offspring population will be available for evaluation.

Figure 18 shows the proposed conceptual architecture
capable of hosting such a system. The functions which have

(a)

(b)

(c)

Figure 16: Transform performance. (a) Original fingerprint image;
comparison of the performance obtained with (b) D9/7 fixed point
implementation and (c) best evolved individual.

been implemented in hardware work as attached peripherals
to the microprocessor embedded in the FPGA (PowerPC
440).

Since the LS was proposed, several hardware imple-
mentations have been reported both for ASICs and FPGAs
(JPEG2000 adopted LS). This means that good results cen-
tred on exploiting LS features to obtain fast implementations
have already been done. But the objectives at this stage
of the work are just to prove and validate the concepts
and the feasibility of the system as a whole. Therefore,
the implementation of the Wavelet Transform is a direct,
algorithmic mapping of the LS to its hardware equivalent
VHDL description (i.e., no hardware optimizations at the
level of data dependencies are accomplished).
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Figure 17: Transform performance. The top row shows the error introduced by each transform: (a) is the error image for the D97 wavelet
and (b) for the best evolved individual. The bottom row shows the histograms of each image transform, where: (c) is for D97 and (d) for the
best evolved individual.

Taking advantage of the LS features, the fWT and iWT
can be computed by just doing a sign flip and a reversal in the
order of the operations (P andU stages), so bothmodules are
sharing hardware resources in the FPGA. The Compression
block is simple, since it only needs to substitute the fWT
result by zeros for each datum of the details bands. Therefore,
it works in parallel with the fWT. In a similar manner, the
Fitness module computes the difference image as each pixel
is produced by the iWT.

The fWT/iWT module is built up by applying the
sequence of P, U stages dictated by the LS. To mimic
the high-level modelling of the algorithm (see Section 5.2),
6 stages have been implemented (3P and 3U), each one

containing 4 filter coefficients which is enough to implement
the most common wavelets utilized at present. Section 7.3
shows the first preliminary results of the implementation.
The implementation of each P,U stage can be seen in
Figure 19.

The Block RAM modules (BRAMs) embedded in the
FPGA are used as data memory for the wavelet transform
module. During evolution, it hosts the training image so that
the highest memory bandwidth possible is achieved. It has
been overdimensioned to host up to four 256 × 256 pixels
(8 bpp) images to speed up the test phase. Therefore, when
evolution has finished, this extra memory can be used to load
the test images from the systemmemory. In this phase, one of
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Figure 19: Predict/Update stage implementation.

the four sub-banks is used for the actual image being tested,
and the other three are loaded with the following test images
in the meantime, acting as a multi-ping-pong memory.

7.2. HW/SW Partitioning Validation. The model developed
to validate the algorithm has been profiled. Table 15 shows
profiling results for 500 generations for each EA operator.
Table 14 is repeated (for clarity) adding extra columns
with the result values. Absolute values are not of real
interest (although NumPy routines are highly optimized,
a C implementation would be faster), since what is being
checked is the relative amount of time spent in each phase so
that design partitioning is validated as a whole. As expected,
most of the time is consumed evaluating the individuals. In
each generation, 20.479ms (= 1433.56/(500 generations ∗
70 individuals ∗ 2 transforms)) are needed to compute a
single wavelet transform, whether it is a forward or an inverse
one. The obtained results validate the design partitioning
proposed except for the selection operator, which is low
enough to be implemented in SW. The reason to choose an
HW implementation for it is that it can be applied as results
are produced by the fitness computation module, saving
extra time. In contrast, the simulation of the Python model
runs on a single processor thread. Therefore, all operators are
applied sequentially. But in the hardware implementation,
some operators can be easily applied in parallel. For this
reason, and depending on the scope of the system (see
Section 8), some other operator will probably benefit from

Table 15: Algorithm code profiling.

EA operator Further actions HW SW Timea %

Recombination —
√

0.14 0.009

Mutation —
√

0.43 0.029

Evaluation
Wavelet transformb √

1433.56 97.470

Compression
√

4.96 0.337

Fitness computation
√

31.62 2.150

Selection
Sorting population

√
0.040

0.003

Parent population
√

a
All results in seconds.

bResults show computation time for both, forward and inverse wavelet
transform.

being implemented in hardware, as, for example, the muta-
tion. Besides, the subset of the C language used to program
the PowerPC processor in the FPGA imposes restrictions that
will probably cause the percentage of the time each operator
takes to compute to increase.

7.3. Preliminary Hardware Implementation Results. The pro-
totype platform selected is an ML507 development board,
which contains a Xilinx Virtex 5 XC5VFX70T FPGA device
with an embedded PowerPC processor, responsible for
running the ES. Table 16 shows the preliminary implemen-
tation results for an overdimensioned datapath of 32 bits,
using 16 bits for the fractional part representation. This
implementation is directed towards a system level functional
validation in the FPGA, giving higher area results than
expected for the final system.

The current hardware, nonoptimized implementation,
delivers one result each clock cycle. For a 256 × 256 pixels
image, with a clock frequency of 100MHz, the computation
time of a wavelet transform is approximately 0.65ms. This
is a speedup factor of around (20.5/0.65) 31 times, which
would turn into 45 seconds to do all the transforms required
by a population of 70 individuals during 500 generations.

8. Conclusion and FutureWork

A bio-inspired optimization algorithm designed to improve
wavelet transform for image compression in embedded
systems has been proposed and validated. A simpler method
than the standard ES (and simpler than other previously
evolutionary-based reported works) has been developed to
find a suitable set of lifting filter coefficients to be used
in the aforementioned wavelet transformation. Fixed point
arithmetic implementation has been used to validate the
upcoming hardware implementation.

The profiling results of the algorithm simulations have
validated the proposed HW/SWpartitioning, so the resulting
hardware architecture can be implemented in the FPGA
device. A preliminary test implementation has been prepared
to perform a system level functional validation. As these pre-
liminary synthesis results show, the FPGA will be able to host
the complete system. Currently, the rest of the system is being
implemented in the FPGA before functional simulations are
done and an optimized version is implemented if needed.
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Table 16: Preliminary implementation results for the main modules in the system.

Module
Resources

Frequency (MHz)
Slice LUTs Slice registers DSP48Es BRAM (Kb)

fWT/iWT 3077/44800 3905/44800 62/128 — 147

Compression 35/44800 31/44800 — — 426

Fitness function 74/44800 60/44800 — — 348

Population sorting 2913/44800 2140/44800 — — 233

Image memory 333/44800 20/44800 — 2304/5328 —

When the final implementation of the system in the
FPGA is finished and tested, profiling results will be
obtained. This is necessary due to the possible effect that the
C language subset used to program the PowerPC processor
in the FPGA may have, which could impose restrictions that
will probably cause the percentage of time each operator
takes to compute to increase drastically. For example, if this
was the case for the uniform mutation operator (which will
initially be implemented in SW), further simplifications to
this operator could be tested as suggested for ESs in the lit-
erature. Anyway, since the algorithm finds a solution around
generation 200, it can be said, being on the conservative side,
that, if 500 generations are needed to evolve, just 45 seconds
would elapse for the most time-consuming task, making this
a sufficiently fast adaptive system.

The current status of this paper shows how adaptive
compression for embedded systems based on bio-inspired
algorithms can be looked at. Besides, since the process is
sped-up by a large factor in the hardware implementation
as compared to the software, PC-based model, the system
can also be conceived as an accelerator for the optimization
process of wavelet transforms (for the construction of
custom wavelets).

For a generic vision system as in the one mentioned in
the Introduction, this paper allows for the fact that both
approximations to adaptationmentioned in Section 4 can be
combined, firstly defining a new set of wavelets adapted to a
specific type of signals (covered by this paper) and, during
system operation, using some of the proposed methods in
the literature that may help the system to further adapt to
local changes in the signal. However, it can be said that, if
the EA has been successful and the training data set properly
chosen, there should not be a drastic improvement, since the
EA should have acquired enough knowledge of that specific
type of signal. Moreover, in a hypothetical continuously
evolving system, a mechanism that looks for reductions of
performance (EA kept running on the background) can be
implemented and triggered to keep on evolving the wavelet
if relevant changes happen in the input signal (some of them
probably caused by a degradation in the sensing devices that
diminish the acquired signal quality).
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