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This paper presents an adaptive peak frequency estimation method using a database that stores PARCOR coefficients as key at-
tributes and the corresponding peak frequencies as nonkey attributes. The least-square lattice algorithm is used to recursively
estimate the PARCOR coefficients to adapt to changing circumstances. The nearest neighbor to the current PARCOR coefficient
is retrieved from the database, and the corresponding peak frequency is regarded as the estimation. A simultaneous execution of
database construction and peak estimation with database update is performed to accelerate the processing time and to improve

the estimation accuracy.
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1. INTRODUCTION

Estimation of peak frequency of the power spectrum plays
an important role in direction-of-arrival estimation, com-
munication system, fault diagnosis, and speech processing.
Direction-of-arrival of multiple wave sources arriving on a
linear array antenna can be estimated by finding local max-
ima of the space spectrum obtained from the array inputs
[1]. Also in biological signals such as electroencephalogram,
blood pressure, heart rate, and laser Doppler flow, peak fre-
quencies provide important information on the diagnosis of
diseases [2, 3, 4, 5]. Peak frequencies of speech signals are an
important cue in the characterization of speech sounds since
they have a close relation to the phonetic content. Therefore,
extensive studies on peak frequency estimation have been
conducted for many years [6, 7, 8, 9, 10, 11, 12, 13].

There are two approaches to power spectrum estima-
tion: nonparametric estimation methods and parametric es-
timation methods. The FFT (fast Fourier transform) method
is a representative one of the nonparametric methods, and
the AR (autoregressive) method is a representative one of
the nonparametric methods. The FFT method estimates the
power spectrum directly from the data. The FFT method is
very fast, however, the estimation error variance increases
as the number of observations decreases. Moreover, the

computationally expensive peak picking is necessary for ex-
tracting peak frequencies from the FFT spectrum. The AR
method estimates the AR parameters and characterizes the
power spectrum by the AR parameters. The AR method pro-
vides high-resolution spectrum even with a small number of
observations [14]. However, polynomial root finding or peak
picking is necessary for extracting peak frequencies from the
AR spectrum.

When signal statistics change with time as often happen
in real applications, adaptive estimation of peak frequencies
is required to adapt to the change. The short-time FFT uses a
sliding data window with a constant duration to accommo-
date nonstationary data. The sliding window technique can
also be employed in the AR method. However, the iterative
computation of FFT spectrum or AR spectrum is computa-
tionally expensive.

In the AR spectrum method, the peak frequency is usu-
ally estimated by tracking roots of the AR polynomial rather
than AR parameters. Several root-finding algorithms have
been derived based on the LMS (least mean squares) algo-
rithm [15, 16, 17] and the RLS (recursive least squares) al-
gorithm [18]. The AR model constructed as a cascade of
2nd-order sections has also been designed to estimate the
roots of the AR polynomial, because the roots can be eas-
ily obtained by solving 2nd-order polynomial equations [19].
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Several adaptive algorithms for estimating coefficients of the
cascade AR model have been derived [20, 21]. However, the
adaptive algorithms require much computation time. More-
over, the cost function to be minimized is unimodal, and thus
the adaptive algorithms may get stuck at local minima.

There is a one-to-one correspondence between AR coef-
ficients and partial autocorrelation (PARCOR) coefficients,
and therefore we can characterize the AR spectrum by the
PARCOR coefficients instead of the AR coefficients. The LSL
(least-square lattice) algorithm can recursively estimate the
PARCOR coefficient in a computationally efficient manner
[22]. The LSL algorithm is derived based on the least-square-
criterion, nevertheless, the computation time is very fast. The
PARCOR coefficients are well suited for fixed-point arith-
metic, because they are robust against rounding errors and
the absolute value is assured to be less than unity.

This paper proposes a fast and recursive peak frequency
estimation method using a database of PARCOR coefficients.
In database construction process, we estimate the PARCOR
coefficients from real speech signals by the LSL algorithm,
and compute the corresponding peak frequencies by using
either root-finding or peak-picking technique. We put the
quantized PARCOR coefficients as key attributes and the cor-
responding peak frequencies as nonkey attributes, and then
enter a pair of the quantized PARCOR coefficients and the
peak frequencies into a database. In estimation process, we
estimate the PARCOR coefficients from new observations by
the LSL algorithm, retrieve a record with a key nearest to the
current key from the database, and use the corresponding
peak frequency as the estimation. This estimation method
requires neither root finding nor peak picking.

The estimation accuracy strongly depends on the
database contents. The database size would become in-
tractably large if we would store a large number of records
obtained under many different circumstances. Such a large
database requires large computation time and memory. We
thus perform database construction and peak frequency es-
timation simultaneously. More precisely, we estimate the
current PARCOR coefficient and enter it into the database
only when the database does not contain a record with a
key close to the current one. The simultaneous execution of
database construction and estimation is useful for decreasing
processing time and increasing estimation accuracy. More-
over, we update database contents according to timestamp
so that the number of records does not exceed the predeter-
mined threshold. The database update procedure prevents a
monotonous increase of database size and thus resulting in
reduction of processing time. We apply the proposed estima-
tion method to real speech signals to evaluate the estimation
accuracy, the processing speed, and the storage space.

2. ARSPECTRUM ESTIMATION
2.1. AR model and AR spectrum

We define a signal at time 7 as s,,, a white noise with mean
zero and variance o7 as ey, and the ith AR coefficient as a;.

The Pth AR model is then represented by

P
Sp = — Z a;iSy—i + e. (1)
i=1

The AR model can be regarded as the system that inputs e,,
outputs sy, and has the transfer function

1
H(z) = e (2)
with
P
A(z) =1+ z aiz”". (3)

i=1
The AR spectrum of the signal s, is described by

o2
P((A)) = ? > (4)
|A(er) |

where the sampling period is assumed to be unity for sim-
plicity. It is evident that the peak frequencies depend only on
the values of the AR coefficients {a,-}le. We here consider the
problem of finding peak frequencies that provide local max-
ima of P(w).

2.2. Conventional peak frequency estimation method

There are two methods for finding peak frequencies from AR
coefficients: peak picking and root finding. The peak-picking
method finds local maxima of P(w) by regularly sampling it
with a constant sampling interval. Therefore, it is computa-
tionally expensive. The root-finding method computes peak
frequencies from roots of the AR polynomial equation, de-
fined by A(z) = 0. Putting the roots as z, (p = 1,2,...,P),
we can compute the resonance frequency and the bandwidth
by [14]

Z
fo = Sk [Hal, (5)
B, = _logﬂ|;p| [Hz], 6)

respectively, where T is the sampling period. The root-
finding method is also computationally expensive and is not
suited for real-time processing.

Using 2nd-order polynomials, we can express the Pth-
order AR polynomial as

P2
Al =] (1 +al'z7 1+ a(zi)z’z), (7)

i=1

where a(li) and ag) are the 2nd-order coefficients in the ith
section. Using the AR model constructed as a cascade of
2nd-order sections, we can easily get the roots of A(z) = 0
by solving 2nd-order polynomial equations 1 + al'z! +
agi)z‘2 = 0 [19]. Several adaptive algorithms for estimating
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the 2nd-order coefficients have been proposed [20, 21], but
they require much more computation time than the stan-
dard AR parameter estimation algorithms. Moreover, the
cost function to be minimized is unimodal, and thus they
may get stuck at local minima.

2.3. Recursive estimation of model coefficients

There are batch-type and recursive-type algorithms for es-
timating the AR coefficients {a;}¥ . Recursive-type algo-
rithms are suited for processing nonstationary signals. The
representative ones are the LMS and RLS algorithms. The
LMS algorithm updates the AR coefficients based on the
gradient-descent technique. Unfortunately, it has a drawback
that the convergence performance is very sensitive to the
eigenvalue spread of the input data covariance matrix [23].
The RLS algorithm updates them based on the least-square
method, and therefore it converges faster than the LMS al-
gorithm. However, the RLS algorithm requires O(P?) oper-
ations per iteration, while the LMS algorithm requires only
O(P) operations per iteration.

There is a one-to-one correspondence between AR
coefficients (ai,as,...,ap) and PARCOR coefficients
(ph,p%...,pF). Therefore, the peak frequencies can be
uniquely characterized by the PARCOR coefficients {p? }1;:1.
The LSL algorithm recursively computes the optimal PAR-
COR coefficients, in least-squares sense, in O(P) operations.
The convergence speeds of the LSL and RLS algorithms
are exactly the same since they are derived based on the
same least-square criterion. Nevertheless, the computational
complexity of the LSL algorithm is almost equal to that of
the LMS algorithm. This is an advantage of updating the
PARCOR coefficients with the LSL algorithm.

Algorithm 1 summarizes the LSL algorithm, where A is
the exponential forgetting parameter such that 1 — 1 <« 1.
The influence of past signal values decays exponentially faster
as the size of A is smaller. The LSL algorithm recursively up-
dates the PARCOR coefficient pﬁ“ from the observation x,,.
The absolute value of the PARCOR coefficient is assured to
be less than unity. The PARCOR coefficients can be converted
into the AR coefficients by using the following recursion [23]:

(p+1) (p) (p) .
a” = af +pp+1api1,,» (i=12,...,p), (8)

where aﬁ" " denotes the ith AR coefficient of order p. In the

following, we simply denote a,(P) as a;.

3. PEAKFREQUENCY ESTIMATION USING
A DATABASE

We will explain a peak frequency estimation method that
uses a database of PARCOR coefficients. We first describe
how to construct the database from observations, and then
show how to estimate peak frequencies by database search-
ing.

1129
R,1 = 0,
n=0,1,...,
R, = AR, +x2,
0 _ 0 _ *n
fn rn \/E’
p=0,1,...,min(n,P) - 1,
2 2
Ph =L ()L ()P -
fP“ _ f"P +P£Hrﬁ—l
VI (1= (F)
1
7’;117“ _ 75—1 "'PﬁJr f"p )
Vi=E L= ()

ArgoriTHM 1: LSL algorithm.

3.1. Database construction using training data

3.1.1. Quantization of PARCOR coefficients

The LSL algorithm is used to recursively estimate the PAR-
COR coefficient p} from observation x;,. Since the PARCOR
coefficients are assured to be less than unity in magnitude,
we can efficiently quantize them with a uniform quantizer.
It is known that the AR spectrum becomes more sensitive to
changes in PARCOR coefficient as |p?| approaches to unity
[24, 25]. Moreover, the first and second PARCOR coefficients
of speech signals are relatively larger in magnitude than the
others. We thus transform (p!, p?) into (g',g?) by

1+p?
gP =log . _I;p (p=12), (9)

and quantize g? uniformly, so that the quantization interval
of p? becomes smaller as |p?| approaches to unity. On the
other hand, we quantize p?,p*,.. ., p? uniformly. We denote
the quantized value of p? as p?, and then define a vector of
the quantized PARCOR coefficients as p = (p',p2,...,pP).
We further define the number of bits allocated to the pth
PARCOR coefficient as a,. It is known that spectrum distor-
tion caused by rounding errors of high-order coefficients is
relatively small [24, 25]. We thus put P = 10, and choose «,,
as

{ap};o:l ={o,a—lLa-—lLa—lLa—1l,a—1l,a—1,

(10)
a—2,00— 2,0 — 2},

so that higher-order coefficients are more coarsely quantized.

3.1.2. Computation of peak frequencies

We transform the quantized PARCOR coefficients {ﬁP}gz .

into the AR coefficients {afp)}le by using (8), and then de-

fine a vector of the AR coefficients as @ = (c“z(lp), 55”’, e E}P)).

We put the peak frequency of the AR spectrum P(w) as f;,
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F1GURE 1: AR specturms with and without quantization.

and then define a vector of the peak frequencies as f =
(fi> f25...). We here use the peak-picking (PP) method or the
Jenkins-Traub (JT) method to compute f from a.

The PP method finds local maxima of P(w) by sam-
pling it with a constant sampling interval. We applied the PP
method with a sampling interval of 1 [Hz] to a set of real
speech signals. Then we have f = (507,1114,2467,3349)
(Hz). Next we quantized the AR coefficient by using a quan-
tizer with &« = 6. Then we have f = (462,2429,3349) (Hz).
Figure 1 shows the AR spectrums, where the solid line de-
notes the true AR spectrum and the dashed line denotes the
AR spectrum obtained with the quantized AR coefficients.
We see that the second peak labeled “ f,” has disappeared due
to rounding errors of the AR coefficients. This phenomenon
often occurs in a dull peak such as f;.

The JT method finds the roots of the AR polynomial
equation A(z) = 0. The resonance frequency f, and the
bandwidth B, are then computed from the roots by us-
ing (5) and (6), respectively. As B, is smaller, the corre-
sponding peak at frequency f, becomes sharper. Therefore,
in the JT method, we can easily find sharp peaks accord-
ing to the bandwidth. Therefore, the peak selection method
is effective in overcoming the problem of peak disappear-
ance.

3.1.3. Database construction

We put p and f as key and data (nonkey), respectively, and
enter a record consisting of key and data items into a database
at each time step. The kd trie (k-dimensional digital search
tree) is used as the data structure to allow efficient range
searching [26, 27]. The average computation time for range
searching is only O(log N), where N is the number of records
contained in the database. When the database has contained
a record with a key equal to the current key, the current
record is discarded without being entered into the database.

3.2. Peak frequency estimation using test data

When evaluating the estimation performance, we used a dif-
ferent set of speech signals from the ones used for database
construction. We recursively compute pﬁ from x,, by the LSL
algorithm to adapt to changing statistics of signals. We then
obtain a coefficient vector p by quantizing pﬁ in the same way
as in Section 3.1. We choose p as a query, and retrieve a co-
efficient vector nearest to p, defined by p, from the database
by range search. More concretely, we retrieve records with
keys lying in the space {(p1,p2,...,pp) | lpp — ppl < d, Vp}
from the database, where d is the range size, and increase the
value of d from 0 by one until more than or equal to one
record is retrieved. When more than one record is retrieved,
the nearest neighbor to the query p is selected out of them
and the corresponding data value (peak frequency) is used as
the estimation. In this way, we can recursively estimate peak
frequencies without solving A(z) = 0 nor sampling P(w).

3.3. Experimental results

A speech signal of L seconds from a male is sampled at
8 [kHz] to obtain 8000L records. We then constructed the
database consisting of 8000L records. Throughout the sim-
ulations, we put A = 0.995 in the LSL algorithm so that good
performance is achieved. We evaluated the estimation per-
formance by using ten sets of speech signals of one second.

We denote the peak frequency estimation method that
directly computes f from d by using the PP and JT meth-
ods as PP1 and JT1, respectively. Algorithm 2 summarizes
the JT1 and PP1 methods without using a database. We de-
note the proposed estimation method that uses the PP and
JT methods to compute f from a as PP2 and JT2, respec-
tively. Algorithm 3 summarizes the JT2 and PP2 methods
with using a database. We can estimate degradation of es-
timation accuracy due to rounding errors of PARCOR coeffi-
cients by comparing the results of the PP1 (JT1) method and
PP2 (JT2) method.

We generated several databases by putting & = 5, 6, 7 [bit]
and changing L from 10 [s] to 500 [s], and measured the es-
timation accuracies of the PP2 and JT2 methods. Figures 2
and 3 show the results of the PP2 and JT2 methods, respec-
tively. We can measure the estimation accuracy of the PP2
and JT2 methods by the difference between fk and f, where
fx is the peak frequency estimated by the PP1 (JT1) method
and f’k is the one by the PP2 (JT2) method. Spectrum dis-
tortion caused by rounding errors of high order coefficients
is relatively small. We thus evaluated the estimation accuracy
by checking whether the relative error | f; — fi |/ fi < 0.1 is sat-
isfied or not. When using the JT2 method, we selected sharp
peaks of bandwidth less than 500 [Hz]. In both methods, bet-
ter results are obtained by putting « = 6 and L = 500, and
the PP2 and JT2 methods achieve accuracies of 78.8% and
76.8%, respectively. The estimation accuracy seems to be im-
proved as L is larger.

One may think that the use of a finer quantizer improves
the estimation accuracy, but Figures 2 and 3 show that the
estimation accuracies for « = 6 and & = 7 are almost the
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Peak frequency estimation
(a) Estimate p from x, by the LSL algorithm.
(b) Transform p into a.
(c) Compute f corresponding to a with
the PP (JT) method.
(d) Go to step (a).

ArLGoriTHM 2: JT1 (PP1) method.

Database construction using training data

(a) Estimate p from x, by the LSL algorithm.

(b) Quantize p into p, and then transform
p into a.

(c) Compute f corresponding to @ with the
PP (JT) method.

(d) Enter (p, f) into a database.

(e) Go to step (a).

Peak frequency estimation using test data

(a) Estimate p from x, by the LSL algorithm.

(b) Quantize p into p.

(c) Find p by range search, where the range
size is increased by one until more than
or equal to one record is retrieved.

(d) Choose f corresponding to p as the
estimation.

(e) Go to step (a).

ALGORITHM 3: JT2 (PP2) method.

same. We can explain the reason as follows: if a record of
(p, f) is stored for each bin distributed in p-space, a finer
quantization of PARCOR coefficients results in a higher esti-
mation accuracy. However, the database size would become
extremely large, because the number of bins is increased by a
factor of 2P as « is increased by one. The estimation accuracy
improves with an increase of the number of records, only un-
der the assumption that we store a record for each bin. When
the assumption is not satisfied, as is the current case, the im-
provement is not expected.

As mentioned earlier, the current record is discarded
when a record with a key equal to the current key has been
stored in the database. We thus evaluated the number of
records in the database, the rate to the total number of
records, and the storage space. Table 1 summarizes the results
for L = 500. We see that the database size for @ = 7 is large
enough, and the number of records stored in the database
increases as « is larger.

Figures 4a and 4b plot peak frequencies for every 50 time
steps estimated by the JT1 and JT2 methods. We put L = 500
and a = 6 in the JT2 method, because this choice gave good
result as shown in Figures 2 and 3. We see that the results
of the JT1 and JT2 methods are very close to each other, but
differ in some snapshots.

Finally we measured the computation time of the PP1,
PP2, JT1, and JT2 methods on a personal computer with an
Intel Pentium III 1 GHz. Most of the computation time is
spent in range searching in the PP2 and JT2 methods, and
peak finding in the PP1 and JT1 methods. In other words,
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FIGURE 2: Estimation accuracy of PP2 for different values of L and a.
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F1GURE 3: Estimation accuracy of JT2 for different values of L and a.

the computational complexities of the LSL algorithm and (8)
are negligibly small as compared to range searching and peak
finding. The computation times of the PP1, JT1, and JT2
(PP2) methods required for processing signals of one second
are 84.0 seconds, 5.3 seconds, and 5.0 seconds, respectively.
The JT2 (PP2) method is much faster than the PP1 method,
but the computation time is almost the same as that of the
JT1 method, and real-time processing is not possible in ei-
ther case.

4. IMPROVED ESTIMATION METHOD

4.1. Simultaneous execution of database

construction and estimation

Both of the PP2 and JT2 methods are not satisfactory in
terms of processing speed and estimation accuracy. This is
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TaBLE 1: Number of records in the database for different values of a.

a (bit) 5 6 7
Numb ¢ 4 1.9 x 10° 5.8 X 10° 1.2 X 10°
umber of records
(4.7%) (14.5%) (29.2%)
Storage space (MB) 61 108 170
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FIGURE 4: Plots of peak frequencies: (a) JT1 and (b) JT2.

due to the fact that searching in the large database of size
108 (MB) is computationally expensive, and that the range
size is repeatedly increased by one until more than or equal
to one record is retrieved. The repeated range search in-
creases the processing time, and degrades the estimation
accuracy with an increase of range size, because records
with keys far apart from a query are extracted from the
database.

The estimation accuracies of the PP2 and JT2 meth-
ods strongly depend on the database contents, for example,
whether training and test data are from the same speaker or
not, whether acoustic environments in training and testing
phases are the same or not. We have to build a large database
if we would store a large number of records obtained from
different speakers in different acoustic environments. How-
ever, searching in the large database requires large compu-
tation time and memory requirements. As can be seen from
Table 1, the database size is large enough even when we store
speech signals from only one speaker. A further data inser-
tion into the database should be avoided from the view point
of processing speed and storage space.

For the solution, we simultaneously execute database
construction and peak frequency estimation. We first set the
maximum range size as dmax S0 that records with keys far
apart from a query are not retrieved. We then compute the
peak frequency vector f associated with the current PAR-
COR coefficient p by using the JT method, only when no
record is retrieved by range search with d = dpax, we choose
f as the estimation, and then enter a record of (f, p) into the

Database construction & peak frequency estimation

(a) Estimate p from x, by the LSL algorithm.

(b) Quantize p into p.

(c) Find p by range search, where the range size
is increased from 0 to d,x by one until more
than or equal to one record is retrieved.

(d) When more than or equal to one record is
retrieved, choose f corresponding to p as the
estimation, and go to step (a).

(e) When no record is retrieved by range search
with d = dmay,

(1) quantize p into p, and then transform
p into a,

(2) compute f from p with the JT method,

(3) enter (p, f) into the database,

(4) go to step (a).

ALGORITHM 4: T3 method.

database. The simultaneous execution technique decreases
processing time and increases estimation accuracy by appro-
priately choosing dmax. We here denote the improved estima-
tion method using the simultaneous execution as JT3, and
summarize it in Algorithm 4. In JT3, the JT method needs
to be performed when there is no record close to the cur-
rent query in the database. Fortunately, the JT method is sel-
dom performed, because statistical properties of speech sig-
nals slowly vary with time, and the current key is usually very
close to the previous ones.
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TasLE 2: Estimation accuracy and processing time for o = 6.
dmax O 1 2 3
Number of 4 11655 9665 2261 2212
Hmber ot records (14.5%) (12.1%) (2.8%) (2.8%)
Accuracy 91.2% 91.0% 88.0% 88.0%
Time (s) 1.18 0.97 0.55 0.55
TABLE 3: Estimation accuracy and processing time for « = 7.
Aimax 0 2 4 6
Number of 4 22705 6211 1516 1477
Hmber of records (28.4%) (7.8%) (1.9%) (1.8%)
Accuracy 95.6% 94.6% 89.5% 87.4%
Time (s) 1.81 0.79 0.53 0.53
TABLE 4: Estimation accuracy and processing time for « = 8.
dmax O 4 6 8 12
Number of 4 36060 4398 3200 1826 1004
Hmber of records (45.0%) (5.5%) (4.0%) (2.3%) (1.3%)
Accuracy 98.0% 95.4% 95.2% 92.2% 89.1%
Time (s) 2.68 0.70 0.64 0.61 0.63
TABLE 5: Estimation accuracy and processing time for « = 9.
Amax 0 8 16 24
Number of 4 49793 5168 2048 1095
umber ofrecords (62.2%) (6.5%) (2.6%) (1.4%)
Accuracy 99.0% 96.7% 92.6% 89.4%
Time (s) 3.58 0.81 0.74 0.82

4.2. Experimental results

We have applied the JT3 method to ten sets of speech sig-
nals of one second, and have measured the estimation accu-
racy of four peak frequencies (fi, f2, f3, f1), the number of
records in database, and the processing time per 8000 sam-
ples (one second) for different values of a and dy.x. Tables
2, 3, 4, and 5 summarize the results for « = 6,7,8,9, re-
spectively. Since the range size in p-space is represented by
Op = dmax/2%, the actual range sizes for (& = a,dmax = b)
and (@« = a+ 1l,dmax = 2b) are the same. Figure 5 shows
the estimation accuracy and the processing time for different
values of p. We see that the database size and the process-
ing time decrease as dmay is larger, while the estimation ac-
curacy decreases. If we put dma = 0 and & = oo, a perfect
accuracy of 100% is achieved. However, instead of achieving
perfect accuracy, the time-consuming polynomial rooting is
frequently done. A choice of @ = 9 and dia.x = 0 achieves the
best accuracy of 99.0%, but requires a large processing time
of 3.58 seconds. A choice of « = 6 and dy.x = 4 achieves
the fastest processing speed of 0.52 second, but provides poor

accuracy of 71.2%. We have to make a tradeoff between pro-
cessing time and estimation accuracy in choosing « and dp.x.
When the sampling interval is large, we can make « large and
dmax small to improve estimation accuracy. When the sam-
pling interval is small, we should make « small and dp,x small
to reduce processing time. The optimal choice depends on
the application. In the current application, 8000 sample data
must be processed within one second. Therefore, we should
put & = 8 and dmax = 6, because this choice gave a satisfac-
tory accuracy of 95.2% with a processing time of 0.64 second
per 8000 samples. Figure 6 plots the estimated peak frequen-
cies. It is evident that the estimation result is better than the
previous one in Figure 4b.

4.3. Database update procedure

In the JT3 method, the current record is entered into the
database when no record is retrieved by range search with
d = dmax. Therefore, the database size monotonously in-
creases as time passes, and therefore the processing speed gets
slower. This property is not suitable for real-time processing.
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FIGURE 5: Results of the improved estimation method: (a) estimation accuracy and (b) processing time.
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FIGURE 6: Plots of peak frequencies obtained by JT3.

We thus update the database contents according to times-
tamp. More precisely, we determined the maximum num-
ber of records in the database as Np.x, and deleted the old-
est record from the database if the number of records in the
database exceeds N.x. The oldest record in the kd trie can
be easily deleted without adding the time index into the key
field [28].

Table 4 shows that the number of records is about 3200
when we put a = 8 and dp,x = 6. We thus put Nyx = 4000,
and measured the processing time per 8000 samples. Figure 7
plots the result using speech signals of 500 seconds, where
the solid and dashed lines denote the results with and with-
out database update, respectively. We see that the processing
time of the JT3 method without database update becomes
larger as time passes, while the processing time with database
update is almost constant, because the maximum number of
records in the database is fixed at 4000. The estimation ac-
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FIGURE 7: Processing time with and without database update (single
speaker).

curacies with and without database update are 92.7% and
92.3%, respectively. They are found to be almost the same.
We see that the database update procedure can make the pro-
cessing time almost constant with maintaining high estima-
tion accuracy.

Finally, we combined several set of speech signals,
recorded from a radio, into a single file of speech signals of
500 seconds. Figure 8 shows the result. The estimation ac-
curacies with and without database update are 92.9% and
92.4%, respectively, which are almost the same as the pre-
vious ones. We see that the performance of the proposed
method with database update is fairly robust against chang-
ing statistics of signals and environments.
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4.4. Application to LSP estimation

Also LSP (line spectrum pair) can be uniquely characterized
by the PARCOR coefficients, and polynomial root finding
is required to compute LSPs from PARCOR coefficients. We
thus replaced peak frequencies by LSPs in the key field, and
estimated LSPs by using the JT3 method with database up-
date. Figure 9b plots the estimated LSPs for every 50 time
steps, where we put p = 10 and « = 6. The result of the
JT1 method is shown in Figure 9a for comparison purpose.
The processing times of the JT1 and JT3 methods per 8000
samples are 9.2 seconds and 0.96 second, respectively, and
the JT3 method achieves a very good accuracy of 98.4%.

5. CONCLUSION

We have developed the fast and recursive peak frequency es-
timation method using a database of PARCOR coefficients.
We have investigated searching range size and quantization
interval of PARCOR coefficients so that a good tradeoff be-
tween estimation accuracy and processing speed is achieved.
We have simultaneously executed database construction and
peak frequency estimation for decreasing processing time
and increasing estimation accuracy. Moreover, we have up-
dated the database contents according to timestamp so that
processing time is not monotonously increased. We have also
applied the database-based method to LSP estimation, and
have shown the effectiveness.

The concept of the database-based method originally
comes from an intelligent landing system designed previ-
ously by one of authors [29]. It is very difficult to model a
human skill with a simple mathematical equation. We thus
built a database that stores aircraft states as key and con-
trol commands provided by a human expert as nonkey, and
succeeded to generate a control command close to human
operation by database searching. The PARCOR coefficient
and the peak frequency presented in this paper correspond
to the aircraft state and the control command, respectively.
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REFERENCES

(1]

(2]

D. H. Johnson, “The application of spectral estimation meth-
ods to bearing estimation problems,” Proc. IEEE, vol. 70, no.
9, pp. 1018-1028, 1982.

G. Parati, J. P. Saul, D. M. Rienzo, and G. Mancia, “Spectral
analysis of blood pressure and heart rate variability in evalu-
ating cardiovascular regulation: A critical appraisal.,” Hyper-
tension, vol. 25, no. 6, pp. 1276-1286, 1995.

D. W. Rickey and A. Fenster, “Evaluation of an automated
real-time spectral analysis technique,” Ultrasound in Medicine
and Biology, vol. 22, no. 1, pp. 61-73, 1996.

M. Arnold, H. Witte, P. Leger, H. Boccalon, S. Bertuglia, and
A. Colantuoni, “Time-variant spectral analysis of LDF signals
on the basis of multivariate autoregressive modelling,” Tech-
nology and Health Care, vol. 7, no. 2-3, pp. 103—-112, 1999.

L. Giilera, M. K. Kiymikb, M. Akinc, and A. Alkan, “AR spec-
tral analysis of EEG signals by using maximum likelihood es-
timation,” Computers in Biology and Medicine, vol. 31, pp.
441-450, 2001.

B.S. Atal and S. L. Hanaver, “Speech analysis and synthesis by
linear prediction of the speech wave.,” Journal of the Acoustic
Society of America, vol. 50, no. 2, pp. 637-655, 1971.



1136

EURASIP Journal on Applied Signal Processing

(7]

(8]

J. Markel, “Digital inverse filtering-a new tool for formant
trajectory estimation,” IEEE Transactions on Audio and Elec-
troacoustics, vol. 20, no. 2, pp. 129-137, 1972.

S. S. McCandless, “An algorithm for automatic formant ex-
traction using linear prediction spectra,” IEEE Trans. Acous-
tics, Speech, and Signal Processing, vol. 22, no. 2, pp. 135-141,
1974.

N. Ouaaline and L. Radouane, “Pole zero estimation of speech
signal based on zero tracking algorithm,” Advances in Mod-
elling & Analysis B, vol. 30, no. 4, pp. 35-48, 1994.

A. Alwan, “Modeling speech production and perception
mechanisms and their applications to synthesis, recognition,
and coding,” in Proc. IEEE 5th International Symposium on
Signal Processing and Its Applications (ISSPA °99), vol. 1, p. 7,
Brisbane, Queensland, Australia, 1999.

D. W. Guillaume, “A comparison of peak frequency-time plots
produced with Hilbert and wavelet transforms,” Review of
Scientific Instruments, vol. 73, no. 1, pp. 98-101, 2002.

P. E. Assmann and W. E. Katz, “Time-varying spectral change
in the vowels of children and adults,” Journal of the Acoustical
Society of America, vol. 108, no. 4, pp. 1856—1866, 2000.

I. Bazzi, A. Acero, and L. Deng, “An expectation-
maximization approach for formant tracking using a
parameter-free non-linear predictor,” in Proc. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP ’03), vol. 1, pp. 464—-467, Hong Kong, 2003.

S. M. Kay and S. L. Marple Jr., “Spectrum analysis: A modern
perspective,” Proc. IEEE, vol. 69, no. 11, pp. 1380-1419, 1981.
D. Hush, N. Ahmed, and R. David, “Instantaneous frequency
estimation using adaptive linear predictor weights,” IEEE
Trans. on Aerospace and Electronics Systems, vol. AES-22, no.
4, pp. 442-431, 1986.

T. J. Shan and T. Kailath, “Directional signal separation by
adaptive arrays with a root-tracking algorithm,” in Proc. Inter-
national Conference on Acoustics, Speech, and Signal Processing
(ICASSP °87), pp. 2288-2291, Dallas, TX, USA, 1987.

S. Orfanidis and L. Vail, “Zero-tracking adaptive filters,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol.
34, no. 6, pp. 1566-1572, 1986.

A. Nehorai and D. Starer, “Adaptive pole estimation,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol.
38, no. 5, pp. 825-838, 1990.

L. Jackson and S. Wood, “Linear prediction in cascade form,”
IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 26, no. 6, pp. 518-528, 1978.

P. C. Chin, C. C. Goodyear, and D. Phil, “Adaptive cascade
filter for speech analysis,” IEE Proc., vol. 130, no. 1, pp. 11-18,
1983.

G. Rigoll, “A new algorithm for estimation of formant tra-
jectories directly from the speech signal based on an ex-
tended Kalman-filter,” in Proc. IEEE International Conference
on Acoustics, Speech, and Signal Processing, (ICASSP °86), pp.
1229-1232, Tokyo, 1986.

J. Makhoul, “Linear prediction: A tutorial review,” Proc. IEEE,
vol. 63, no. 4, pp. 561-580, 1975.

B. Farhang-Boroujeny, Adaptive Filters: Theory and Applica-
tions, Wiley & Sons, New York, NY, USA, 1998.

N. Kitawaki and F. Itakura, “Efficient coding of speech by
nonlinear quantization and nonuniform sampling of PAR-
COR coefficients,” Transactions of the Institute of Electronics
and Communication Engineers of Japan (IEICE), vol. J61-A,
no. 6, pp. 543-550, 1978.

[25]

[26]
[27]

(28]

[29]

N. Kitawaki, E Ttakura, and S. Saito, “Optimum coding of
transmission parameters in PARCOR speech analysis synthe-
sis system,,” Transactions of the Institute of Electronics and
Communication Engineers of Japan (IEICE), vol. J61-A, no. 2,
pp. 119-126, 1978.

E. Fredkin, “Trie memory,” Comm. ACM, vol. 3, no. 9, pp.
490-499, 1960.

J. A. Orenstein, “Multidimensional tries used for associative
searching,” Inf. Process. Lett., vol. 14, no. 4, pp. 150-157, 1982.
Y. Tiguni, I. Kawamoto, and N. Adachi, “A nonlinear adap-
tive estimation method based on local approximation,” IEEE
Trans. Signal Processing, vol. 45, no. 7, pp. 1831-1841, 1997.
Y. liguni, H. Akiyoshi, and N. Adachi, “An intelligent landing
system based on a human skill model,” IEEE Trans. Aerosp.
Electron. Syst., vol. 34, no. 3, pp. 877-882, 1998.

Tetsuya Watanabe received his B.E. and
M.E. degrees in communications engineer-
ing from Osaka University, Osaka, Japan,
in 2001 and 2003, respectively. Since 2003,
he has been working in Frontier Systems
Group Network Division, NEC TOSHIBA
Space Systems, Ltd., Yokohama, Japan.

Youji Iiguni received his B.E. and M.E. de-
grees in applied mathematics and physics
from Kyoto, University, Kyoto, Japan, in
1982 and 1984, respectively, and the D.E.
degree from Kyoto University in 1990. He
was an Assistant Professor at Kyoto Univer-
sity from 1984 to 1995, and an Associate
Professor at Osaka University from 1995 to
2003. Since 2003, he has been a Professor at
Osaka University. His research interests in-
clude signal and image processing.




	1. INTRODUCTION
	2. AR SPECTRUM ESTIMATION
	2.1. AR model and AR spectrum
	2.2. Conventional peak frequency estimation method
	2.3. Recursive estimation of model coefficients

	3. PEAK FREQUENCY ESTIMATION USING A DATABASE
	3.1. Database construction using training data
	3.1.1. Quantization of PARCOR coefficients
	3.1.2. Computation of peak frequencies
	3.1.3. Database construction

	3.2. Peak frequency estimation using test data
	3.3. Experimental results

	4. IMPROVED ESTIMATION METHOD
	4.1. Simultaneous execution of database construction and estimation
	4.2. Experimental results
	4.3. Database update procedure
	4.4. Application to LSP estimation

	5. CONCLUSION
	REFERENCES

