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Voice morphing is the process of producing intermediate or hybrid voices between the utterances of two speakers. It can also be
defined as the process of gradually transforming the voice of one speaker to that of another. The ability to change the speaker’s
individual characteristics and to produce high-quality voices can be used in many applications. Examples include multimedia and
video entertainment, as well as enrichment of speech databases in text-to-speech systems. In this study we present a new technique
which enables production of a given number of intermediate voices or of utterances which gradually change from one voice to
another. This technique is based on two components: (1) creation of a 3D prototype waveform interpolation (PWTI) surface from
the LPC residual signal, to produce an intermediate excitation signal; (2) a representation of the vocal tract by a lossless tube area
function, and an interpolation of the parameters of the two speakers. The resulting synthesized signal sounds like a natural voice

lying between the two original voices.
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1. INTRODUCTION

Voice morphing is the process of producing intermediate or
hybrid voices between the utterances of two speakers. It can
also be defined as the process of smoothly changing speech
identity between two speakers [1], or gradually transforming
the voice of a given speaker to that of another [2, 3]. The abil-
ity to change the speaker’s individual characteristics and pro-
duce high-quality voices can be used in many applications.
For example, in multimedia and video entertainment, voice
morphing is similar to its visual counterpart: while seeing a
face gradually changing from one person’s to another’s, we
can simultaneously hear the voice progressively changing, as
well. Another potential application is forensic voice identifi-
cation: creating a voice bank of different pitches, rates, and
timbres to assist in recognition of a suspect’s voice. In a simi-
lar manner, producing a databank of different voices which
are intermediates between several given speech recordings
can enhance the possibility of synthesizing a given utterance
more naturally. When prerecorded speech data is taken from
different speakers, a natural-sounding new message, created

by concatenation of speech segments taken from these speak-
ers, may be achieved using speech morphing [1]. Speech and
audio morphing can also be a valuable tool for voice and
speaker perception research, for example, in an attempt to
control the emotional content of speech [2]. Within a text-
to-speech (TTS) synthesis framework, voice morphing also
offers the opportunity to generate a variety of voices from a
database containing only a small number of speakers. This is
potentially advantageous since the voice creation process for
a TTS system is quite time consuming, and it can also con-
siderably reduce the memory requirements for storing TTS
voices.

A successful procedure for voice morphing requires a
representation of the speech signal in a parametric space,
using a suitable mathematical model that allows interpola-
tion between the characteristics of the two speakers. In other
words, for the speech characteristics of the source speaker’s
voice to change gradually to those of the target speaker, the
pitch, duration, and spectral parameters must be extracted
from both speakers. Natural-sounding synthetic intermedi-
ates, with a new voice timbre, can then be produced.
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Several studies have explored the subject of speech or
voice morphing to date. Slaney et al. [3] used a represen-
tation of separate time-aligned spectrograms for pitch and
spectral envelope, using MFCC, and modified the spectro-
grams separately to achieve an audio morph. Short vowels
were used to demonstrate the resulting morphs. Morphing
between a woman’s vowel and a short note of an oboe was
also used. A similar approach used smooth spectrographic
representations to interpolate between utterances with differ-
ent emotional contents [2]. In another study, real-time mor-
phing was applied to a singing voice, using an interpolation
of a source voice with a target voice, based on a sinusoidal
model [4]. The same method of sinusoidal analysis was re-
ported in [5]. In the digital music industry, the Morpheus
synthesizer by E-mu [6] introduced a 14-pole dynamically
variable filter which could model different resonant charac-
teristics, perform spectral morphing-like effects between dif-
ferent musical samples, and interpolate between them in real
time.

In this study we present a new technique which enables
the production of a desired number of intermediate voices
between the original voices of two speakers, or the produc-
tion of one voice signal that changes gradually in time from
one speaker to another. The latter means that, at the begin-
ning of the utterance, the voice characteristics are those of
one speaker, and the voice is perceived as belonging to that
speaker. The voice is gradually modified towards the charac-
teristics of another speaker, so that, by the end of the utter-
ance, it is perceived as belonging to the second speaker. This
technique is based on two components. One is the creation of
a 3D prototype waveform interpolation (PWI) surface from
the residual error signal which is obtained by LPC analysis
to produce a new intermediate excitation signal. The second
component is a representation of the vocal tract by a loss-
less tube area function, and interpolation of the parameters
of the two speakers.

The morphing algorithm consists of two main stages:
analysis and synthesis. In the analysis stage, the residual error
signal is estimated, along with the vocal tract parameters. The
residual signal is then used to create a PWI surface for each
speech utterance. In the synthesis stage, a new residual error
signal is recovered from a PWI surface interpolated from the
two original surfaces. The area functions of the two speakers
are also interpolated, producing a hybrid area function, from
which a new vocal-tract filter is computed. The residual sig-
nal is then transferred through this filter to yield a morphed
speech signal. Thus, we use an excitation signal the dynam-
ics of which are comprised of both excitation waves and pitch
period contours, along with a vocal tract with an interpolated
structure.

This study resembles other studies on voice conversion or
voice transformations [7, 8, 9, 10, 11, 12, 13, 14], but it is sig-
nificantly different. Voice conversion modifies the utterances
of one speaker so that his/her voice will sound like another
(target) voice, by matching the source voice to the statisti-
cal properties of the target voice. In these studies, different
methods are used to represent the relationships between the
source and the target speakers, and most of the studies are

concentrated on the spectral envelope data of short segments
of speech. The spectral envelopes are characterized by one of
several possible representations, such as HNM (8), Cepstrum
or log-area ratio [8], LSF [9, 11], LPC [12], and formant fre-
quencies [13]. For example, in [7] a Gaussian mixture model
(GMM) is used, where the conversion is performed in the
context of the harmonic + noise model (HNM), using a con-
tinuous probabilistic model of the source envelopes. Conver-
sion using GMM is also utilized in [12], with joint density
estimation for the spectral conversion using LPC analysis,
while the pitch of the source has been modified to match the
average pitch of the target. The residual LPC in each pitch
period in the latter study was left intact. In other studies, the
conversion is performed using codebook mapping with vec-
tor quantization [9, 13], or with artificial neural networks
[14].

The aim of speech morphing, as it is proposed and used
in [1, 2, 3], and as it has been carried out in the current
study, is to produce intermediate voices between two given
utterances that will be perceived as lying between the two
original voices. In the other morphing type, gradual mor-
phing, the morphed sound should be perceived as one ob-
ject that smoothly changes into another sound [3]. The mor-
phing algorithm presented here is shown to produce high-
quality morphing sounds that are perceived as highly natural
and smooth.

The paper is organized as follows. In Section 2.1, the PWI
technique is introduced, and in Section 2.2, the idea of using
it for speech morphing is presented. The basic morphing al-
gorithm is described in Section 2.3. A detailed computation
of the characteristic waveforms function, with the construc-
tion of corresponding PWI surface, and the interpolation be-
tween two such surfaces are all presented in Section 2.3.1.
The procedure for extracting a new intermediate residual er-
ror signal is presented in Section 2.3.2. Subsequently, the cal-
culation of the new vocal tract model and the synthesis of
the morphed speech are described. In Section 2.4, subjective
tests for evaluating the naturalness and the intelligibility of
the morphing voices are presented. Finally, we discuss the
advantages and disadvantages of the algorithm in contrast to
previous studies.

2. PROCEDURE AND RESULTS

In this section, a method for decomposing the speech sig-
nals of two speakers and recombining the components is
presented. The components are the excitation signal, rep-
resented by the residual error signal from an LPC analysis,
and the vocal tract parameters, represented by the area coef-
ficients of a lossless tube model. The method is designed so
that the resulting speech will be characterized perceptually as
an interpolated version of the voices of the two speakers.

2.1. Prototype waveform interpolation

PWI is a speech coding method described in [15, 16, 17, 18].
This method is based on the fact that voiced speech is
quasiperiodic and can be considered as a chain of pitch cy-
cles. Comparing consecutive pitch cycles reveals a slow evo-
lution in the pitch-cycle waveform and duration, that is, each
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pitch cycle has a close similarity to its neighbors. The slow
change in the shape and duration of the pitch cycle suggests
that extracting the cycles’ waveform at regular time intervals
should be sufficient in order to reconstruct the signal from
the sampled cycles by interpolation. The interpolation pro-
cedure is carried out by constructing a 3D surface from the
speech or the residual error waveforms. The coding proce-
dure can be applied for both the speech signal and its resid-
ual error function, derived from the LPC analysis. A detailed
description of this coding technique for bit-rate reduction
can be found in [16]. The representation of a speech signal’s
residual error function in the form of 3D surfaces has been
found useful for voiced speech morphing. The creation of
such a surface is described below.

2.2. PWiI-based speech morphing

Prototype waveform interpolation is based on the observa-
tion that during voiced segments of speech, the pitch cycles
resemble each other, and their general shape usually evolves
slowly in time (see [16, 17, 18]). The essential characteris-
tics of the speech signal can, thus, be described by the pitch-
cycle waveform. By extracting pitch cycles at regular time in-
stants, and interpolating between them, an interpolation sur-
face can be created. The speech can then be reconstructed
from this surface if the pitch contour and the phase function
(see Section 2.3.1) are known.

The algorithm presented here is based on the source-
filter model of speech production [19, 20]. According to this
model, voiced speech is the output of a time-varying vocal-
tract filter, excited by a time-varying glottal pulse signal. In
order to separate the vocal-tract filter from the source sig-
nal, we used the LPC analysis [21], by which the speech is
decomposed into two components: the LPC coefficients con-
taining the information of the vocal tract characteristics, and
the residual error signal, analogous to the derivative of the
glottal pulse signal. In the proposed morphing technique, we
used the PWI to create a 3D surface from the residual error
signal which would represent the source characteristics for
each speaker. Interpolation between the surfaces of the two
speakers allows us to create an intermediate excitation signal.
In addition to the fact that the information of the vocal tract
(see Section 2.3.3) is manipulated separately from the infor-
mation of the residual error signal, it is also more advanta-
geous to create a PWI surface from the residual signal than
to obtain one from the speech itself. In this domain, it is rel-
atively easy to ensure that the periodic extension procedure
(see below) does not result in artifacts in the characteristic
waveform shape [16]. This is due to the fact that the resid-
ual signal contains mainly excitation pulses, with low-power
regions in between, and thus, allows a smooth reconstruc-
tion of the residual signal from the PWI surface with minimal
phase discontinuities.

In the proposed algorithm, the surfaces of the residual er-
ror signals, computed for each voiced phoneme of two differ-
ent speakers, are interpolated to create an intermediate sur-
face. Together with an intermediate pitch contour and an in-
terpolated vocal-tract filter, a new voiced phoneme is pro-
duced.

2.3. The basic algorithm

The morphing algorithm consists of two main stages—
analysis and synthesis. As most of the speaker’s individuality
is contained in the voiced portion of speech [22], and be-
cause, in preliminary experiments, it was found that mor-
phing the unvoiced sections yielded low-quality utterances,
the algorithm is applied on the voiced segments only. The
unvoiced segments were left intact, and concatenated with
the interpolated voiced segments. Concatenation of voiced
and unvoiced segments was performed by overlapping and
adding two adjacent frames, about 20 milliseconds each, one
from the voiced phoneme, and the other from the unvoiced
one. The two frames are overlapped after each of them is
multiplied by a half-left or half-right Hanning or linear win-
dows, to yield a new frame that gradually changes from the
voiced segment to the unvoiced segment or vice-versa. Since
this operation may shorten the utterance, time-scale com-
pensation is carried out for each vocal segment by extending
the PWI surface as necessary.

The unvoiced segments are taken according to the mor-
phing factor («): from the first speaker where 0 < a < 0.5,
and from the second one where 0.5 < a < 1.0. The basic
block diagram of the algorithm is shown in Figure 1.

In the analysis stage, the voiced segments of both speech
signals are marked and each section in one of the voices
is associated with the corresponding section in the other.
The segmentation and mapping of the speech segments
are done semiautomatically. First, a simple algorithm for
voiced/unvoiced segmentation is applied, which is based on
3 parameters: the short-time energy, the normalized maxi-
mal peak of the autocorrelation function in the range of 3—16
milliseconds (the possible expected pitch period duration),
and the short-time zero-crossing rate (Figure 2). The output
of the automatic voiced/unvoiced segmentation is a series of
voiced segments for each of the two voices. However, due to
the imperfection of the segmentation algorithm, and the dis-
similarity of the characteristics of the two voices, and as ac-
curate mapping between the corresponding voiced sections
of the two voices is crucial for the success of the algorithm,
a manual correction mode has been added to refine the pre-
liminary segmentation. The manual mode allows for making
adjustments to the edges of the segments, splitting segments,
joining segments, and adding new segments or deleting ones.
For the demarcation of phoneme boundaries, the user can
be assisted by the graph of the 2-norm of the difference be-
tween the MFCCs of adjacent frames (10 milliseconds each,
see Figure 2).

It was found that, by applying manual segmentation as
a refinement of the automatic segmentation, it is possible to
reach accurate mapping with only small adjustments.

A pitch detection algorithm is applied to both speakers’
utterances. The pitch detection algorithm is based on a com-
bination of the cepstral method [23] for coarse-pitch period
detection, and the cross-correlation method [24] for refining
the results. Pitch marks are obtained, and after preemphasis,
linear prediction coefficients are calculated for each voiced
phoneme (either on the whole phoneme as one windowed
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FIGURE 1: A basic diagram of the algorithm.
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frame, or pitch synchronously) to create the vocal-tract filter
and the residual error function for each segment. The pro-
totype waveform surfaces are then created from the resid-
ual error functions (see Section 2.3.1). In the synthesis stage,
a new residual error signal is recovered from a PWI sur-
face interpolated from the two original ones (as described
in Section 2.3.2). The two speakers’ area functions are also
interpolated, producing an intermediate area function, from
which a new vocal-tract filter is computed (see Section 2.3.3).
The new residual signal is then used to excite the interpo-
lated vocal-tract filter to yield an intermediate speech signal.
The final morphed speech signal is created by concatenating
the new vocal phonemes, in order, along with the unvoiced
phonemes and silent periods of the source or of the target.
2.3.1. Computation of the characteristic
waveform surface

The characteristic waveform surface, which represents the
residual error signal derived from the voiced sections [16], is
a two-dimensional signal that represents a one-dimensional
signal, and is constructed as follows: let u(t, ¢) be the char-
acteristic waveform, where ¢ denotes the time axis, and ¢ is a
phase variable whose values are in the range [0, 277]. The pro-
totype waveforms are displayed along the phase axis, where
each prototype is a short segment from the residual signal
with a length of one pitch period. Each prototype is consid-
ered as a periodic function, with a period of 271. The time
axis of the surface displays the waveform evolution. A one-
dimensional signal can be recovered from u(t, ¢) by using a
specific ¢(t), so that

r(t) = u(t, ¢(1)), (1)

where ¢(t) is calculated using the signal pitch period func-
tion or pitch contour, p(t) by

$(t) = ¢ (to) + Jt z%dt' (2)

A typical prediction error signal and its surface are shown in
Figure 3.

In the proposed solution, the surface for each phoneme
is created separately. The construction of such a surface is
detailed in using the following procedure (Figure 4).

(1) Pitch detection is applied in order to obtain an instan-
taneous pitch value, p(t), which will track the pitch cy-
cle change through time. At any given point in time,
the pitch cycle is determined by a linear interpolation
of the pitch marks obtained by the pitch detector.

(2) A rectangular window with duration of one pitch pe-
riod multiplies the residual error function around a
sampling time t;, with a step update of 2.5 millisec-
onds, to create a prototype waveform. In order to
smooth the surface along the time axis, a low-order
Savitzky-Golay filter is applied to the error function.
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F1GURE 3: Creating the characteristic waveform surface. (a) A typ-
ical residual error signal, derived from the speech signal using lin-
ear prediction analysis. (b) The surface is constructed by plotting
the prototype waveform along the ¢-axis at intervals of 2.5 millisec-
onds, after alignment and interpolation of the prototypes.

(3) For the reconstruction of the signal from the surface,
it is extremely important to maintain similar and min-
imum energy values at both ends of the prototype
waveform (which actually represent the same point
due to the 27 periodicity along the phase axis). There-
fore a shift of +A samples (Amax Was set to be 1 mil-
lisecond) is allowed for the location of the window’s
center in the construction of the PWI surface.

(4) Because the pitch cycle varies in time, each prototype
waveform will be of different length. Therefore all pro-
totypes must be aligned along ¢ = [0 — 27] and must
have the same number of samples.
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(5) Once a prototype waveform is sampled according to
step (3) above, a cyclical shift along the ¢-axis is per-
formed to obtain maximum cross-correlation with the
former prototype waveform, thus creating a relatively
smooth waveform surface when moving across the
time axis.

(6) Inorder to create a surface that reflects the error’s pitch
cycle evolution over time, an interpolation along the
time axis is performed.

2.3.2. Construction of the intermediate

residual error signal
Let us(t, ¢), uy(t,¢) = {t : [0 — T, Ty];¢ : [0 — 2]} be the
PWTI of the source and target speakers, respectively. As de-
scribed earlier, the new intermediate waveform surface will
be an interpolation of the two surfaces (Figure 5). Therefore,

Unew(t ¢) =a- us(ﬂ -t ¢) +(l—-a)- utfaligned(y - 1, ¢):

“new(t) (/5) . {t: [0 - Tnew]; ¢ . [0 - 277]})
3)

where = Thew/Ts, ¥ = Tnew/Tr, and ! is the relative part of
us(t, §).

The factor may be invariant; if so, the voice produced will be an inter-
mediate between the two speakers, or it may vary in time (from a = 1 at
t=0toa =0att = T),vyielding a gradual change from one voice to the
other.
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FIGURE 5: Residual PWTI surfaces of the two speakers (upper and
intermediate figures, respectively) and the resulting interpolated
surface (bottom figure). It can be noticed that the interpolated
surface combines characteristics of both speakers. The ¢-axis rep-
resents samples of the normalized pitch period, in a scale between 0
and 271.
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FIGURE 6: The new PWI surface is constructed by interpolation of
two PWI surfaces of the residual error signals of two speakers. The
new reconstructed residual can be recovered by moving on the sur-
face along the phase axis according to the phase ¢(t) determined by
the new pitch contour. (The tracking is represented by the black line
along the surface.)

In order to maximize the cross-correlation between the
two surfaces, the target speaker’s surface is shifted along the
¢-axis, and is referred to as u;_qligned (£, ¢), Where

ut—aligned(tr ¢) = Ll[(t, (P + ¢n)a (4)

L;Zo Jt];n(;w us(t, (/)) ' ”t(t: ¢ + ¢e)dtd¢
oasl | = Tfoae (£, 6 + )|

b (5)

¢n = arg n}bax

2 Thew
RN Y RCORTCOI SO

where ¢, is the correction needed for the surfaces to be
aligned.

The last step (after creating unew(t,¢)) is reconstruct-
ing the new residual error signal from the waveform sur-
face. The reconstruction is performed by defining enew () =
Unew(t, Pnew(t)), for all t = [0 : Thew], Where ¢pew(2) is created
by the following equation:

¢new(t) = J 2n df,. (7)

to pnew(t,)

Prew(t) is calculated as an average of the source’s and target’s
short-time pitch contour functions, as shown in the follow-
ing equation:

pnew(t) =a- ps(ﬁ )+ (1 -a)- Pt(y - 1),
_ TneW
F="r (8)
Tnew
Tt)

where the factors f$ and y are scaling factors for the new time
axis [0, Thew], and a, as in (3), is a weighting factor between
the pitch of the source and the pitch of the target. Figure 6
shows the derivation of a new residual error signal using the
track on the PWI surface determined by ¢pew(£).

2.3.3. New vocal tract model calculation and synthesis

It is well known that the linear prediction parameters (i.e.,
the coefficients of the predictor polynomial A(z)) are highly
sensitive to quantization [19]. Therefore their quantization
or interpolation may result in an unstable filter and may pro-
duce an undesirable signal. However, certain invertible non-
linear transformations of the predictor coefficients result in
equivalent sets of parameters that tolerate quantization or in-
terpolation better. An example of such a set of parameters
is the PARCOR coefficients (k;), which are related to the ar-
eas of lossless tube sections modeling the vocal tract [20], as
given by the following equation:

1—k;
A = <1+ki) A 9)

The value of the first area function parameter (A,) is arbi-
trarily set to be 2. A new set of LPC parameters that defines a
new vocal tract is computed using an interpolation of the two
area vectors (source and target). This choice of the area pa-
rameters seems to be more reasonable, since intermediate vo-
cal tract models should reflect intermediate dimensions [25].
Let the source and target vocal tracts be modeled by N loss-
less tube sections with areas A3, Af : {i : [1—N]}, respectively.
The new signal’s vocal tract will be represented by

AMY =g AS+(1—a) - AY Vi:[1,2,...,N].  (10)

After calculating the new areas, the prediction filter is
computed and the new vocal phoneme is synthesized accord-
ing to the following scheme (Figure 7):

(1) compute new PARCOR parameters from the new areas
by reversing (9);

(2) compute the coefficients of the new LPC model from
the new PARCOR parameters;

(3) filter the new excitation signal through the new vocal-
tract filter to obtain the new vocal phoneme.

When temporal voice morphing is applied, informal subjec-
tive listening tests performed on different sets of morphing
parameters have revealed that in order to have a “linear” per-
ceptual change between the voices of the source and the tar-
get, the coefficient «a(t) (the relative part of u,(t,¢)) must
vary nonlinearly in time (like the one in Figure 8). When the
coefficient changed linearly with time, the listeners perceived
an abrupt change from one identity to the other. Using the
nonlinear option, that is, gradually changing the identity of
one speaker to that of another, a smooth modification of the
“source” properties to those of the “target” properties was
achieved. In another subjective listening test (see below) per-
formed on morphing from a woman’s voice to a man’s voice,
and vice versa, both uttering the same sentence, the mor-
phed sound was perceived as changing smoothly and natu-
rally from one speaker to the other. The quality of the mor-
phed voices was found to depend upon the specific speakers,
the differences between their voices, and the content of the
utterance. Further research is required to accurately evaluate
the effect of these factors.
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FIGURE 7: A block diagram of the procedure for synthesizing the new phoneme.
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FIGURE 8: An example of a nonlinear morphing function, obtained
empirically, and used to achieve a linear perceptual change between
the first speaker and the second speaker, when time-varying mor-
phing was performed.

2.4. Evaluation of the algorithm

Evaluation of the algorithm was carried out using three sub-
jective listening tests. The naturalness, intelligibility, identity
change, and smoothness of the morphing algorithm were
examined in these psychoacoustic tests. In all tests, six lis-
teners participated (three males and three females, all with-
out hearing impairments, and inexperienced in speech mor-
phing). The sentences for the tests were taken from TIMIT
database, and from BGU Hebrew database. The speech stim-
uli were played using high-quality loudspeakers. In all tests,

the stimuli were played in random order. The listeners were
free to play each stimulus more than once, without any limi-
tation. In the first test, the listeners had to decide if there was
a change in the identity of the speaker for each of the three
sentences, on a 1-5 scale, where 1 meant that one identity
was perceived along the utterance and 5 meant that there was
more than one speaker. The listeners had to rate the smooth-
ness of the utterance, as well, on a similar 1-5 scale, where
5 meant smooth utterance and 1 meant abrupt change or
changes in the utterance. Three types of stimuli were used:
the original speech, morphed speech (in which the identity
changed gradually from one speaker to another during the
sentence), and concatenated speech of two speakers, at a fixed
point [1]. The aim of this test was to evaluate if the iden-
tity change was perceived, and to assess the effect of the algo-
rithm on the smoothness of the gradual morphed utterances.
The results of this experiment for one of the sentences (“We
were different shades, and it did not make a bit of difference
among us,” taken from [9]) are depicted in Figure 9. As ex-
pected, it is readily seen that the original utterance was per-
ceived as a smooth speech without identity change, while the
abrupt change in identity in the concatenated utterance was
perceived and rated accordingly, that is, as more than one
identity and with an abrupt change. The change of identity
was perceived in the morphed signal, as well (average score
3.5, std. = 0.96), since the sentence was long enough to no-
tice the modification. Nevertheless, it was also perceived as
relatively smooth (average score 3.5, std. = 1.12). The other
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FIGURE 9: Evaluation of smoothness and identity change in an ut-
terance in which a gradual morphing is produced (smoothness—
left column, identity change—right column).

two utterances yielded similar results. In the second test, the
listeners had to evaluate the naturalness and intelligibility
of a given sentence on a 1-5 scale. The listeners attended
to 3 stimuli: two original sentences, one uttered by a male
speaker, and the other by a female speaker, and a morphed
sentence with a morphing factor of 0.5, which is a hybrid sig-
nal between the two originals. The results are summarized in
Figure 10. It is clear from this figure that the morphed sig-
nal was perceived as highly natural and clear by most of the
listeners (naturalness average score: 4.3, std. = 0.74, intelli-
gibility average score: 4.17, std. = 0.69). In the third exper-
iment, the listeners had to rate the identity change and the
naturalness of two sentences on a 1-5 scale. Each sentence
was repeated as a cyclostationary morph (see [3]) 16 times
with various morphing factors, from 0 to 1. The average nat-
uralness was 3.25, and the identity change was rated with an
average of 3.3. Naturalness in this case was not perfect (al-
though it is quite high), and can be explained by the fact that
the voice timbers in this test were distant, and the hybrid
voice that was produced could be perceived as uncommon.
In summary, the results of the tests show that the morphed
signals are perceived in most cases as highly natural, highly
intelligible, with a relatively smooth change from one speech
voice to another.

3. CONCLUSIONS

In this study, a new speech morphing algorithm is presented.
The aim is to produce natural sounding hybrid voices be-
tween two speakers, uttering the same content. The algo-
rithm is based on representing the residual error signal as a
PWI surface, and the vocal tract as a lossless tube area func-
tion. The PWI surface incorporates the characteristics of the
excitation signal, and enables reproduction of a residual sig-
nal with a given pitch contour and time duration, which in-
cludes the dynamics of both speakers’ excitations. It is known

bars) and intelligibility (right bars) for 3 stimuli: a man (left) and
a woman (middle) voices, and a morphing between the two voices
(right).

[16] that PWT surfaces can be exploited efficiently for speech
coding, and therefore, they allow for higher compression of
the speech database. The area function was used in an at-
tempt to reflect an intermediate configuration of the vocal
tract between the two speakers [25]. The utterances produced
by the algorithm were shown to be of high quality and to con-
sist of intermediate features of the two speakers.

There are at least two modes in which the morphing algo-
rithm can be used. In the first mode the morphing parameter
is invariant, meaning, for example, taking a factor of 0.5, and
receiving a morphed signal with characteristics which are be-
tween the two voices for the whole duration of the articu-
lation. In the second mode, we start from the first (source)
speaker (morphing factor = 0), and the morphing factor is
changed gradually along the duration of the sentence, so its
value is 1 at the end of the sentence. The same morphing
factor was used for both the excitation and the vocal tract
parameters.

In this time-varying version of the algorithm, that is,
when morphing gradually from one voice to another over
time, smooth morphing was achieved, producing a highly
natural transition between the source and the target speakers.
This was assessed by subjective evaluation tests, as previously
described.

The algorithm described here is more capable of pro-
ducing longer and more smooth and natural sounding ut-
terances than previous studies [1, 3]. One of the advantages
of the proposed algorithm is that, in addition to the inter-
polation of the vocal tract features, interpolation is also per-
formed between the two PWI surfaces of the corresponding
residual signals, and thus captures the evolution of the excita-
tion signals of both speakers. In this way, a hybrid excitation
signal can be produced, that contains intermediate character-
istics of both excitations. Thus, a more natural morphing be-
tween utterances can be achieved, as has been demonstrated.
Furthermore, our algorithm performs the interpolation of
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the residual signal regardless of the pitch information, since
the pitch data is normalized within the PWI surface. There-
fore, the morphed pitch contour is extracted independently,
and can be manipulated separately. In addition, the current
approach enables morphing between utterances with differ-
ent pitches, between male and female voices, or between
voices of different and perceptually distant timbres. Kawa-
hara and his colleagues [26, 27] implemented a morphing
system based on interpolation between time-frequency rep-
resentations of the source and the target signals. It appears
that the STRAIGHT-based morphing system (see [2, 26])
was able to produce intermediate voices of higher clarity than
our algorithm, but the need to assign multiple anchor points
for each short segment, using visual inspection and phono-
logical knowledge, is a noticeable disadvantage of that sys-
tem, which can make it difficult to use for morphing between
long utterances.

Further research is needed to improve the quality of the
morphed signals, which are natural sounding (see http://
spl.telhai.ac.il/speech/), but are somewhat degraded com-
pared to the originals.
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