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This paper presents efficient algorithms for the analysis of nonstationary multicomponent signals based on modified local poly-
nomial time-frequency transform. The signals to be analyzed are divided into a number of segments and the desired parameters
for computing the modified local polynomial time-frequency transform in each segment are estimated from polynomial Fourier
transform in the frequency domain. Compared to other reported algorithms, the length of overlap between consecutive segments
is reduced to minimize the overall computational complexity. The concept of adaptive window lengths is also employed to achieve
a better time-frequency resolution for each component. Numerical simulations with synthesized multicomponent signals show
that the proposed ones achieve better performance on instantaneous frequency estimation with greatly reduced computational
complexity.
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1. INTRODUCTION

Due to their superior performance in dealing with non-
stationary signals, time-frequency transforms (TFTs) have
found various applications in many areas including commu-
nications, multimedia, mechanics, and biology [1]. Themost
popular and simplest TFT is short-time Fourier transform
(STFT) that has been widely used for many practical applica-
tions [1, 2]. Nevertheless, the STFT suffers from low resolu-
tion when the analyzed signal is highly nonstationary. Local
polynomial time-frequency transform (LPTFT), referred to
as the generalization of STFT, was reported to provide high
resolution for nonstationary signals [3, 4] with a local poly-
nomial function approximating to the frequency character-
istics. Unfortunately, the estimation of a number of extra pa-
rameters required by LPTFT computation results in a heavy
computational load. This is mainly due to the long overlap
between consecutive signal segments for which the estima-
tion process is implemented [4]. In order to reduce the com-
putational complexity, attempts can be made to reduce the
length of overlap between the consecutive segments. How-
ever, problems of reduced resolution in the time-frequency
domain have to be solved by using more effective methods of
window length selection.

This paper presents analysis algorithms for time-varying
multicomponent signals containing white Gaussian and/or
impulse noises. Different from previously reported algo-
rithms, the proposed modified local polynomial time-
frequency transform (MLPTFT) reduces the overlap length
between consecutive segments to minimize the number of
segments to be processed. Effective methods of estimating
the MLPTFT parameters from each signal segment are pre-
sented. Deterioration of resolution due to the reduction of
overlap length is avoided by using adaptive window lengths.
This paper is organized as follows. Section 2 provides a
brief review of the LPTFT and introduces the MLPTFTs for
the analysis of multicomponent signals containing different
noises. Sections 3 and 4 present the details of parameter esti-
mation and window length selection. Simulation results are
given in Section 5 to show the effectiveness of the proposed
algorithms.

2. MODIFIED LPTFT

2.1. Segmentation

The signal with noise to be analyzed is defined as

x(t) = s(t) +w(t), 0 ≤ t ≤ N − 1, (1)
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x(t) −2 −1 0 1 2 3 4 5 6 7 · · ·
Segment x1 −2 −1 0 1 2

Segment x2 −1 0 1 2 3

Segment x3 0 1 2 3 4

(a)

x(t) −2 −1 0 1 2 3 4 5 6 7 8 · · ·
Segment x1 −2 −1 0 1 2

Segment x2 1 2 3 4 5

Segment x3 4 5 6 7 8

(b)

x(t) −2−1 0 1 2 3 4 5 6 7 8 9 · · ·
Segment x1 −2−1 0 1 2

Segment x2 3 4 5 6 7

Segment x3 8 9 · · ·

(c)

Figure 1: Segmentation examples for overlap length: (a) α = Q − 1 = 4, (b) α = (Q − 1)/2 = 2, (c) α = 0, and window length Q = 5.

where w(t) represents white Gaussian noise or impulse noise
and s(t) contains mono- or multi-nonstationary compo-
nents in the time-frequency domain. In the paper, the im-
pulse noise either belongs to Middleton class A [5] or is de-
fined as w(t) = w3

1(t) + jw3
2(t) [4], where w1(t) and w2(t)

represent mutually independent white Gaussian noises with
unit variances. It is also assumed that the sampling frequency
of the discrete data is normalized to be one Hz and param-
eter t takes integer values. The input signal x(t) is divided
into many small segments with a window function h(τ) in
the time domain. The jth signal segment is defined as

xj = x
[
j(Q − α) + τ

]
h(τ),

0 ≤ j ≤
⌊

N

(Q − α)

⌋
− 1, 0 ≤ α ≤ Q − 1,

− (Q − 1)
2

≤ τ ≤ (Q − 1)
2

,

(2)

where �x� is the function to return the largest integer that
is equal to or smaller than x, N is the length of signal x(t),
Q, which is assumed to be an odd number without loss
of generality, is the length of the window h(τ) or equiv-
alently the length of the signal segment, and α represents
the length of the overlap between the consecutive signal seg-
ments. Figure 1 shows examples for α =0,Q−1, and (Q−1)/2
with Q = 5. Heavy computational complexity is needed for
estimating the extra parameters required by LPTFT compu-
tation if the overlap length is large because the number of
signal segments to be processed is accordingly increased.

2.2. TheMLPTFT

The local polynomial time-frequency transform (LPTFT) of
x(t) is defined as [3]

LPTFT(t, f ) =
∞∑

τ=−∞
x(t + τ)h(τ)e− j2π[

∑M
m=2 lm−1(t)(τm/m!)+ f τ],

(3)

where h(τ) is the window function with length Q, and l(t) =
[l1(t), . . . , lM−1(t)] are the parameters related to the deriva-
tives of the instantaneous frequency of x(t) [3]. The LPTFT
is based on the idea of fitting an (M−1)th-order polynomial
function approximation of the frequency of xj defined in (2)
with α = Q − 1 to determine the nonparametric character-
istic of the signal [3]. In addition to the calculation of (3),
other processing costs for the LPTFT are for the estimation
of both the time-varying parameter l(t) and window length
Q. It has been shown in [3] that the LPTFT can yield high
resolution of the time-varying frequency provided that these
parameters are accurately estimated and properly updated.

The LPTFT cannot be directly used for signals containing
multiple components because individual signal components
have their own parameter l(t) and window length Q. We de-
fine the MLPTFTp for signals containing p components with
sets of parameters L(t) : {li(t); 1 ≤ i ≤ p} and window
length Q : {Qi; 1 ≤ i ≤ p} as

MLPTFTp(t, f )

=
∞∑

τ=−∞

1
a
x(t + τ)e− j2π f τ

p∑
i=1

hi(τ)e− j2π
∑M

m=2 li,m−1(t)(τm/m!),

(4)

where

a =
∥∥∥∥∥∥

p∑
i=1

hi(τ)e− j2π
∑M

m=2 li,m−1(t)(τm/m!)

∥∥∥∥∥∥
2

(5)

is the scaling factor keeping the signal energy unchanged and
‖ · ‖2 is the second-norm operation in terms of τ.

Now we consider the performance of the MLPTFTp

for signals containing p nonparallel components with Mth-
order polynomial phase defined as

x(t) =
p∑

i=1
xi(t) =

p∑
i=1

Aie
j2π

∑M
m=0 ki,mtm , (6)
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where Ai is the amplitude of the ith component xi(t). It was
shown that the optimal {li(t)} for the ith component is given
as [3]

li,s−1(t) = ds
∑M

m=0 ki,mtm

dts

=
M∑
m=s

m(m− 1) · · · (m− s + 1)ki,mtm−s,

(7)

where 1 ≤ i ≤ p and 2 ≤ s ≤ M is the index of the phase
parameters in xi(t). From (4), the MLPTFTp of x(t) can be
expressed as

MLPTFTp(t, f )

= 1
a

p∑
i=1


Aiδ


 f −

M∑
m=1

mki,mt
m−1


∗ FTτ

(
hi(τ)

)

+
i<q≤p∑
q=1,q<i

Aiδ


 f −

M∑
m=1

mkq,mt
m−1




∗ FTτ

(
hi(τ)e− j2π

∑M
m=2[ki,m−kq,m](τm/m!)

)
,
(8)

where ∗ is the convolution operator and FTτ represents the
Fourier transform in terms of τ. The first term in (8) is the
useful autoterm and the second one contains the undesirable
cross-terms. Generally, the cross-terms have much smaller
magnitudes, compared with that of the autoterm because the

phase factor of e− j2π
∑M

m=2[ki,m−kq,m](τm/m!) is spread in the fre-
quency domain [6]. TheMLPTFTp generally has fewer cross-
terms than the bilinear TFT [1] and can be approximately
viewed as the sum of the optimal LPTFTs of each compo-
nent. Furthermore, the constant scaling factor a for each
window in (4) or (8) keeps the signal energy ratio between
components approximately unchanged after the MLPTFTp

computation because the influence of the cross-terms is triv-
ial. It is worthmentioning that a similar modified form of the
LPTFT, which also uses summation of the LPTFTs with sev-
eral parameters suitable for each component, was proposed
in [4]. However, the estimation of L(t) is based on maximiz-
ing the concentration measure [4], which is different from
our proposed MLPTFTp.

2.3. Robustmodified LPTFT

The MLPTFTp is only suitable for signals containing Gaus-
sian noise and achieves poor performance for signals con-
taining impulse noise. It is known that for stationary signals,
robust FT (RFT) [7, 8] has been developed to deal with im-
pulse noises. Similarly, the robust MLPTFTp (RMLPTFTp)
is defined for nonstationary signals with impulse noises. The

MLPTFTp defined in (4) is also expressed as

MLPTFTp(t, f )

= FTτ



1
a

p∑
i=1

[
x(t + τ)hi,t(τ)e− j2π

∑M
m=2 li,m−1(t)(τm/m!)

]
.
(9)

The RFT [7, 8] can be conveniently used to replace the FTτ in
(9) to define RMLPTFTp as follows. We use the suboptimal
marginal-median form of the RFT [8] and replace FTτ with
median operation as

RMLPTFTp(t, f )

= medianτ




1
a

p∑
i=1

[
x(t+τ)hi,t(τ)e− j2π

∑M
m=2 li,(m−1)(t)(τm/m!)

]

× e− j2π f τ


,

(10)

where medianτ refers to selecting the median value with re-
gard to τ on the real and imaginary parts, respectively. With
the MLPTFTp and RMLPTFTp in (9) and (10) introduced
for p-component nonstationary signals with different kinds
of noises, major steps for the estimation of the parameter L(t)
and window length Q are presented in detail in the following
two sections, respectively.

3. ESTIMATION OF L(T)

This section considers methods estimating L(t) from the seg-
ments achieved by (2) to minimize the computational com-
plexity without deteriorating the smoothness of the spec-
trum. As mentioned previously, the signal is generally di-
vided into many segments and the L(t) estimation is based
on the idea of finding an (M − 1)th-order polynomial func-
tion to approximate the frequency characteristics of each sig-
nal segment. In the previously reported methods, the overlap
factor α equals Q− 1 which means that there are N segments
of length Q for an N-point input sequence. In general, sev-
eral MLPTFTps with different sets of parameters are com-
puted for each signal segment. For segment xj , for example,
the L( j) that yields the maximum value [2] or values larger
than a threshold [4] is selected. Because two consecutive sig-
nal segments overlap heavily, that is, two adjacent signal seg-
ments differ by only one data point, this method requires a
large computational load [4].

To reduce the overall computational load, it is necessary
to minimize the length of overlap between consecutive seg-
ments, such as α < Q− 1. For segment xj , the set of parame-
ters L( j(Q−α+ τ)) within the duration �−(Q − α− 1)/2� ≤
τ ≤ �(Q− α− 1)/2� is estimated simultaneously. As shown
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Figure 2: Comparison between (b) PFT and (a) RPFT of a signal containing two chirps with impulse noise.

in Figure 1, the parameters for the shaded data intervals are
estimated from the corresponding signal segment. For ex-
ample, L(2), L(3), and L(4) are estimated from segment x2
when α = 2 in Figure 1b. In this way, only �N/(Q − α)� in-
stead of N signal segments are processed to acquire L(t) at
all time instants. Generally, α controls the tradeoff between
the computational load and the smoothness of the spec-
trum. When α = 0, there is no overlap and only N/Q seg-
ments are processed, which reduces the computational load
Q times compared with that with α = Q − 1 in the previ-
ously reported method. In general, the MLPTFTp with L(t)
estimated with α = 0 yields satisfied performance to achieve
a good polynomial function approximation to the frequency
components if the window length Q is small enough, which
is further illustrated in the first experiment of Section 5. Oth-
erwise, this arrangement may cause problems of unsmooth-
ness of the frequency components when consecutive seg-
ments are connected because longer windows are prone to
larger differences between the estimated parameters for the
consecutive segments. Under this circumstance, the overlap-
ping factor α is required to be increased. According to the
types of noises encountered in practice, the following meth-
ods of parameter estimation are presented for each case.

(a) Estimation for signals with Gaussian noise

The coefficients of the polynomial function model are es-
timated by searching the peak locations of the polynomial
Fourier transform (PFT) of the signal segment. The PFT of
xj is defined as

PFT
(
xj , a

) =
∞∑

t=−∞
xje

− j2π(
∑M

m=1 amtm)

= FTt
{
x̃ j
(
a2, a3, . . . , aM

)}
,

(11)

where x̃ j(a2, a3, . . . , aM) = xje− j2π(
∑M

m=2 amtm) and a =
{a1, . . . , aM}. It is assumed that p peaks are found in the
PFT indicating the p components and are located at posi-
tions ai = {ai,1, . . . , ai,M}, 1 ≤ i ≤ p. The parameters in L(t)
needed for computation of the MLPTFTp of the ith compo-
nent are calculated by (7) with ki,m being replaced with the
estimates ai,m form = 1, . . . ,M.

(b) Estimation for signals with impulse noise

The robust PFT (RPFT) is derived for the estimation of co-
efficients from signals with impulse noise. The estimation of
phase parameters is the same as that presented in the previ-
ous section except that the RPFT uses the RFT [7, 8] instead
of the FT in the PFT computation. Figure 2 compares the
performances achieved by the PFT and RPFT of the signal
expressed as x(t) = e− jπ0.002t2 + e jπ(0.002t

2+0.3t) with impulse
noise w(t) = 0.5[w3

1(t) + jw3
2(t)]. It is shown that two chirp

rates are easily identified from the RPFT shown in Figure 2a
rather than from the PFT in Figure 2b.

4. WINDOW LENGTH ESTIMATION

In the previous section, L(t) is estimated based on the idea of
modeling each segment as an Mth-order polynomial phase
signal. Therefore, the window length used in the MLPTFTp

or RMLPTFTp is the same as the length of the segment. It
is known that there is a tradeoff between the window length
and the resolution of the MLPTFTp [9]. In general, approx-
imation errors increase with the window length if the order
of the MLPTFTp is lower than that of the phase of the sig-
nal segment. For a polynomial phase component whose or-
der is not higher than that of MLPTFTp, on the other hand,
theMLPTFTp gives a better resolution if a longer window (or
segment) is used. For a good compromise, it is always desired
that the length of the segment is adaptively matched to the
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characteristics of the signal components. In our analysis, the
initial window length is selected to be small enough to pro-
vide acceptable accuracy of the approximation and the actual
length of the window is increased according to the properties
of consecutive signal segments.

Since we intend to increase the window length used if
consecutive segments have the same polyphase model, we as-
sume that two consecutive segments, the jth and ( j + 1)th
segments, belong to the same polynomial phase model. If
the jth segment has the phase 2π

∑M
m=0 ki,mtm, the phase of

the ( j + 1)th segment should be 2π
∑M

m=0 ki,m(t + (Q − α))m

because the ( j + 1)th segment is delayed by a time in-
terval of the segment overlap compared with that of the
jth segment. The difference between the coefficients of the
consecutive segments is calculated by


 M∑

m=0
ki,m

(
t + (Q − α)

)m

−


 M∑

m=0
ki,mt

m




=
M∑

m=0
ki,m

m∑
s=0

Cs
mt

s(Q − α)m−s −
M∑

m=0
ki,mt

m

=
M∑

m=0

m−1∑
s=0

ts(Q − α)m−s,

(12)

where Cs
m = s!/(m!(m − s)!). For clarity of presentation, we

define

M∑
m=0

bmt
m =

M∑
m=0

m−1∑
s=0

ts(Q − α)m−s, (13)

where bm is the constant coefficient associated with tm term
on the right-hand side of (13). We represent the coeffi-
cients of the polynomial function estimated from the jth and
( j + 1)th segments with aj,m and aj+1,m, respectively, where
1 ≤ m ≤ M. The difference (aj+1,m − aj,m) is compared with
bm. If each |aj+1,m − aj,m − bm| is smaller than a predefined
threshold Tm, these two segments have the same polyphase
model and the length of the window increases by Q − α.
The final window length is the total length of the consecu-
tive segments that have the same polynomial functionmodel.
In general, Tm is defined as the summation of two values.
The first value is the deviation caused by the estimation of
kj,m in the consecutive segments due to the noise influence.
This value is decided by the statistical performance of the es-
timation method introduced in Section 3. The second one is
the difference defined by the user. This factor controls the
tradeoff between the resolution and distortion from the real
time-frequency characteristics of the signal. A larger value is
used if the resolution is the main consideration of the ap-
plications. In our simulations in the next section, we define
the first value as the bias introduced by the gridding oper-
ation during the estimation of L(t) and the second value as
zero.

From the previously described estimation methods of
L(t) and window lengths, the main computational complex-
ity is the computation of several PFTs so that L(t) lead-
ing to the maximum peak values can be selected. It can be
easily seen that compared with the algorithm reported in
[3], the computational complexity for L(t) estimation is sig-
nificantly reduced. This is because, with the segmentation
method shown in Figure 1, the number of segments for an
N-point sequence is reduced to be �N/(Q− α)� in compar-
ison with N segments needed in [3]. It is worth mention-
ing that the computational complexity can be further re-
duced if an efficient algorithm, such as a high-order am-
biguity function [10] and its variations [11], is used in es-
timating the polynomial phase parameters instead of PFT.
The estimation of window lengths requires overheads for
computation of (12) and the costs of comparison with the
given threshold is trivial. It should be noted that the pre-
sented computation process of MLPTFTp can be extended
to deal with the mixture of Gaussian and impulse noise by
using L-estimation-based transforms [12] instead of FT in
the same way as that MLPTFTp is extended to RMLPTFTp.

5. EXPERIMENTAL RESULTS

Two types of signals, which contain a mono- and multi-
component, respectively, are used to test the performance
of the proposed algorithms. For simplicity, the second-order
MLPTFTp is used in all experiments dealing with the input
sequence x(t) with N = 512. The L(t) is estimated from the
positions (ai = {ai,1, . . . , ai,M}, 1 ≤ i ≤ p and M = 2) of the
peaks in the PFT or RPFT based on (7). The noise term w(t)
is chosen from Gaussian and/or impulse noise.

The first type of signals contains a monocomponent de-
fined as

x1(t) = exp
(
− j
(
256
π

)
cos
(√

2πt
256

))
+w(t). (14)

The estimation of instantaneous frequency of x1(t) is
conducted with Gaussian noise w(t) of different variances.
Monte Carlo simulations are performed to obtain the mean
square error (MSE) for each estimator. The MSE is defined
by (1/N)

∑N−1
t=0 ( f̃ (t)− f (t))2, where f (t) is the true instanta-

neous frequency and f̃ (t) is the estimation of f (t) accord-
ing to the curve peak positions in the MLPTFTp of x1(t).
The MSEs are compared for different overlap lengths α =
0, �Q/2�, �Q/3�, and Q − 1, as shown in Figure 3. A large
range of window lengths (6 < Q < 80) have been tried.
Only the results using Q = 23, Q = 33, and Q = 43
are shown because the MSEs achieved with these windows
are mostly below 10−2. It is observed that for high SNRs,
smaller window length generally gives smaller MSEs, for ex-
ample, the curve forQ = 23 gives the best performance when
SNR > 7 dB. With low SNRs, that is, SNR ≤ 7 dB, larger
window length yields lower MSEs, as seen from Figure 3.
This is because that MSEs are mainly influenced by the
bias and the variance of the input sequence [3]. When SNR
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Figure 3: The comparisons between MSEs fromMLPTFTp with different α and Q.
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Figure 4: The comparison between (a) MLPTFTp and (b) RMLPTFTp of a sinusoidal FM signal.

is high, the MSE is mainly affected by the bias which in-
creases with the increase of window length. When SNR is
low, the variance of the signal is the dominant factor af-
fecting the MSE. The variances decrease with the increase
of window length so that the MSE becomes relatively small.
It is worth mentioning that, when SNR is extremely low,
for example, below 0 dB, MSEs deteriorate significantly. This
is because the windows used in our proposed MLPTFTp

are generally with smaller length. The use of narrow win-
dows leads to the increasing influence of noise especially
for low SNR. The most important observation made in
Figure 3 is that the MSE performances for different over-
lap lengths are very close to each other regardless of the

window lengths, which leads to the conclusion that the de-
crease of overlap length between segments does not dete-
riorate the performance of MLPTFTp. In our investigation,
several kinds of nonstationary signals, including the fourth-
order polynomial phase signals, sinusoidal FM signals, and
logarithm FM signals, have been used to reach similar con-
clusions. Therefore, the reduction of computational com-
plexity due to the reduction of the number of segments
to be processed does not obviously deteriorate the MSE
performance.

We now changew(t) embedded in x1(t) to be the impulse
noise which belongs to the Middleton class A model [5, 13]
with the form w(t) = w1(t) +

∑40
i=1w3(t − τi), where w3(t) =
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Figure 5: The comparison between MLPTFTp with (a) fixed and (b) adaptive window length.

0.4

0.3

0.2

0.1

0

−0.1
−0.2
−0.3
−0.4
−0.5

0 50 100 150 200 250 300 350 400 450 500

Time

Fr
eq
u
en
cy

(a)

0.4

0.3

0.2

0.1

0

−0.1
−0.2
−0.3
−0.4
−0.5

0 50 100 150 200 250 300 350 400 450 500

Time

Fr
eq
u
en
cy

(b)

Figure 6: Comparison between (a) MLPTFTp and (b) RMLPTFTp of the multicomponent signal with impulse noise.

10δ(t) and τi forms Poisson processes. Figure 4 presents the
MLPTFTp and RMLPTFTp to clearly show that good perfor-
mance is achieved by using the RFT in RMLPTFTp instead of
the FT in MLPTFTp.

We consider the signal contains multiple components,
which is defined as

x2(t) = exp
(
− j
(
256
π

)
cos
(√

2πt
256

))

+ exp
(− j0.002πt2

)
+exp

(− j0.002πt2+0.06πt
)

+w(t),
(15)

where w(t) is the Gaussian noise with SNR = 0 dB. This sig-
nal is used to test the performance of using adaptive win-
dow lengths. Figure 5 shows the MLPTFTps of x2(t) that are
computed with and without using adaptive window lengths.
In each segment with α = 0, three peaks are detected from
the corresponding PFTs. By comparing the difference be-
tween the estimated parameters in the consecutive segments
with bm in (13), the algorithm finds that two peaks in the
consecutive segments belong to the same components and
the window length is enlarged to N to obtain a high resolu-
tion. It is shown that the resolution in Figure 5b for the lin-
ear component of x2(t) is improved significantly and the two
parallel chirp components are clearly distinguished in com-
parison with Figure 5a in which the window length is fixed.
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Figure 6 shows the comparison between the MLPTFTp

and RMLPTFTp when w(t) = 0.9[w3
1(t) + jw3

2(t)]. The sig-
nal s(t) used is the same as in the previous experiment except
that the third component is zero. The components smear sig-
nificantly in Figure 6a because the FT used in the MLPTFTp

is not able to substantially suppress the non-Gaussian noise.
However, the RMLPTFTp yields much better performance
and the two components can be clearly seen in Figure 6b.

6. CONCLUSION

This paper presents analysis algorithms effectively dealing
with time-varying multicomponent signals. In particular,
these algorithms allow the reduction of computational com-
plexity by minimizing the length of overlap between consec-
utive signal segments. Experiments show that by using the
proposed algorithms of parameters estimation and adaptive
window length, the signals containing both single and mul-
tiple components with Gaussian and impulse noises can be
more accurately represented in the time-frequency domain.
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