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The paper introduces a new objective method for speech quality assessment called Fourier-lappedmultilayer perceptron (FLMLP).
This method uses an overcomplete transform based on the discrete Fourier transform (DFT) and modulated lapped transform
(MLT). This transform generates the DFT and theMLT speech spectral domains fromwhich several relevant perceptual parameters
are extracted. The proposed method also employs a multilayer perceptron neural network trained by a modified version of the
scaled conjugated gradient method. This neural network maps the perceptual parameters into a subjective score. The numerical
results show that FLMLP is an effective alternative to previous methods. As a result, it is worth stating that the techniques here
described may be potentially useful to other researches facing the same kind of problem.

Keywords and phrases: fast Fourier transform, modulated lapped transform, neural network, objective speech quality assessment,
perceptual feature, scaled conjugated gradient optimization method.

1. INTRODUCTION

The continuous search for efficient and reliable speech trans-
missions through communication channels has produced a
great number of speech devices (specially codecs), which of-
ten include highly sophisticated features, making their qual-
ity assessment a tricky task.

For many years, the assessment of speech devices has
been mostly carried out using subjective tests, in which
human listeners perform the evaluation. This kind of
test, although very accurate, is quite expensive and time-
consuming. Such situation has motivated the search for ob-
jective methods able to suitably replace the subjective tests.

Several objective methods have been proposed [1, 2, 3, 4,
5, 6, 7, 8, 9, 10] so far. Among them, PESQ (perceptual eval-
uation of speech quality) [7], which is currently adopted as
a standard by the International Telecommunication Union
(ITU), aggregates some of the best features of its predeces-
sors. On the other hand, the Fourier-lapped multilayer per-
ceptron (FLMLP) method here proposed assembles the best
features of MOQV (objective measure for speech quality) [8]
and MOQV-KSOM (MOQV using Kohonen self-organizing
maps) [9, 10] together with two new techniques.

(a) An overcomplete transform [11, 12, 13] based on the
discrete Fourier transform (DFT) [14, 15] and the modu-
lated lapped transform (MLT) [16] to generate a redundant
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Figure 1: Basic scheme of objective methods for speech quality assessment.

spectral representation of speech signals, from which various
pertinent perceptual parameters are extracted. The discus-
sion about this kind of transformwill be retaken in Section 5.

(b) A multilayer perceptron neural network (MLPNN)
[17] to implement a nonlinear multidimensional mapping
between the perceptual parameters and the subjective score.
MLPNN is trained by a second-order optimization method
namedmodified version of scaled conjugated gradient (SCG)
[18]. The motivations to use MVSCG are the following: (i)
the modified version of SCGmethod is one of the most pow-
erful second-order optimization technique for searching in
a multidimensional surface; (ii) the use of the differential
operator, which was defined in [19], in the modified ver-
sion of SCG [18, 19] formulation, provides its fast and ex-
act implementation. In fact, as will be briefly highlighted in
Section 6, the explicitly evaluation of the Hessian matrix is
not needed when we consider the differential operator. As
a result, the computation complexity of the training proce-
dure is reduced from O(N2) to O(N), where N is the total
number of MLPNN weights. Therefore, the training proce-
dure can be implemented for periodic online updating of
MLPNN weights. The FLMLP has been assessed using the
S-23 ITU-T database [20]. The computational results show
that the FLMLP overperforms PESQ, MOQV, and MOQV-
KSOM for the set of speech signals used in the tests.

The paper is organized as follows. Section 2 presents a
brief discussion about earlier objective assessment meth-
ods. Section 3 presents a general description of the FLMLP.
Section 4 details the most important actions of the FLMLP
algorithm. Section 5 presents the basic theory underlying the
overcomplete transforms. Section 6 presents the mathemati-
cal formulations of the multilayer perceptron neural network
(MLPNN). Section 7 reports some results attained by the
FLMLP. Finally, Section 8 states some concluding remarks.

2. EARLIER OBJECTIVE SPEECHQUALITY
ASSESSMENTMETHODS

Most of the objective quality assessment methods developed
in the last decade have been based on psychoacoustic mod-
eling of the human ear. Figure 1 shows the basic scheme fol-
lowed by such methods.

The processing denoted by the last block in Figure 1 is not
always included in the method itself. Sometimes, the map-
ping is carried out as an independent procedure, as in PSQM
[4].

In the following, some of the most important objective
methods for speech quality assessment are briefly described.

(i) MNB (measuring normalizing blocks) [1]. MNB uses
a very simple hearing model; only a psycho-acoustic fre-
quency scale and a model for nonlinear loudness behaviour
are included. On the other hand, it uses a sophisticated
judgement model. The technique consists in measuring and
removing spectral deviations at multiple scales using the so-
called time and frequency measuring normalizing blocks.
The behaviour of listeners is modeled by successive combi-
nations of such blocks.

(ii) PAMS (perceptual analysis measurement system) [2].
PAMS process uses an auditory model that combines a math-
ematical description of the psychophysical properties of hu-
man hearing with a technique that performs a perceptually
relevant analysis taking into account the subjectivity of the
errors in the degraded signal. It was the first method capable
to align signals with variable delay. Some PAMS techniques
were included in PESQ [7].

(iii) TOSQA (telecommunication objective speech qual-
ity assessment) [3]. The speech quality calculated in TOSQA
is based on a similarity measurement between reference and
degraded signals. The procedure is based on a modified
short-term loudness spectra, where the influence of signal
parts with low loudness is reduced. The program is able to
take into account quality effects such as background noise,
frequency response, and nonlinearity of the system under
test.

(iv) PSQM (perceptual speech quality measure) [4]. It
is the former ITU’s standard for objective speech assess-
ment [5]. PSQM converts physical domain into a perceptu-
ally meaningful psychoacoustic domain through a series of
nonlinear processings (time-frequency mapping, frequency
warping, intensity warping, loudness scaling, etc.). After
such transformation, the original and degraded signals are
compared, and a measure for the signal quality is extracted.
A slightly modified version of PSQM, the PSQM+ [6], was
later released in order to improve the performance for sig-
nals with loud distortions and/or temporal clipping.

(v) PESQ (perceptual evaluation of speech quality) [7].
This method is the ITU’s current standard. It combines the
best features of PSQM and PAMS, with an improved psy-
choacoustical model of human hearing. PESQ takes into ac-
count a wide range of conditions, like coding distortions,
errors, packet loss, delay and variable delay, and filtering in
analogue networks.

(vi) MOQV (objective measure for speech quality) [8].
The psychoacoustical model of MOQV was inspired by that
one used in PSQM. Its novel features include some addi-
tional processing in the cognitive model and a polynomial
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Figure 2: Scheme of the FLMLP method.
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Figure 3: Scheme for time-frequency decomposition and mapping into subbands.

mapping strategy between objective and subjective scores.
Later, the polynomial mapping was replaced by Koho-
nen self-organizing maps, originating the so-called MOQV-
KSOM [9, 10].

3. GENERAL DESCRIPTION OF FLMLP

The basic scheme of FLMLP is illustrated in Figure 2. Each
block of this scheme is described in the following.

(1) Preprocessing: defines the beginning and the end of
the speech signals, performs a time alignment between the
original and degraded signals, and adjusts their energy level.

(2) Overcomplete transformation: divides both signals
into frames and computes the proposed overcomplete trans-
form, which is, basically, made up with a number of basis
vectors greater than the dimensionality of the analysed sig-
nal.

(3) Perceptual measure: extracts 10 perceptual parameters
from DFT and MLT spectral domains. These parameters are

(i) the difference between short-term energies of the ref-
erence and degraded signals, such parameters are ob-
tained after dividing both signals into frames andmap-
ping the frequency components of such frames into
subbands [8];

(ii) the perceptual spectral distance (PSD) [14], given by

PSD =
√√√√√ B∑

b=1

[
Lx(b)− Ly(b)

]2
, (1)

where Lx and Ly represent the perceptual spectral den-
sity function of the original and degraded signals at
each subband, respectively, and B is the number of
subbands;

(iii) the perceptual cepstral distance (PCD) [14], given by
(2), it is a modified version of the PSD

PCD = 10

√√√√√ B∑
b=1

{
log10

[
Lx(b)

]− log10
[
Ly(b)

]}2
; (2)

(iv) the MOQV1 and MOQV2 measures [8], which are
similar to those of PSQM [4] and PSQM+ [6], respec-
tively.

(4)Nonlinear mapping: applies the MLPNN, trained by a
modified version of the SCG method, to perform a mapping
from the perceptual parameters to the target speech quality
measure.

(5) Estimated subjective value: stores the estimated sub-
jective quality.

4. DETAILS OF FLMLP

The techniques summarized in this section are inspired by
those ones used in other methods, particularly, the PSQM
[4, 5].

4.1. Preprocessing

The detection of the effective beginning and end of the orig-
inal and degraded signals is performed by procedures stan-
dardized by Recommendation P.861 [5]. The samples outside
the actual active speech interval are discarded.

FLMLP processing can be applied only to time-aligned
signals. If the shift between them is not known, a temporal
alignment is performed using cross-correlation implemented
through an FFT algorithm. The index of themaximum cross-
correlation value represents the shift between both signals,
and the alignment is automatically performed.

The energy level of the degraded signal is adjusted multi-
plying this signal by the square root of the ratio between the
average energies of the original and degraded signals [5].

4.2. Time-frequency decomposition
andmapping into subbands

Figure 3 shows the procedures used in this stage. In the first
block, a Hanning windowing divides the preprocessed signals
into frames of 256 or 512 samples, for sampling frequencies
of 8 kHz or 16 kHz, respectively. There is a superposition of
50% between consecutive frames. After that, the overcom-
plete transform (which is detailed in Section 5) is evaluated
for each frame and the energy spectral density (ESD) of the
MLT and DFT domains is determined.
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The frequency lines of the resulting ESDs are equally
spaced in a linear spectral scale. However, the spectral res-
olution of the human hearing is not linear. According to the
definition of critical bands, the spectral resolution drops as
the frequency increases. In response to such fact, the fre-
quency lines of each ESD are grouped into 56 subbands [5].
The width of each subband increases as the central frequency
increases. The perceptual parameter “difference between the
short-term energies” is extracted at this point.

The last task in this stage of the processing is another ad-
justment performed in the DFT and MLT subband domains,
aiming to equal the respective energies of the degraded and
original signals. The procedure is applied only to the de-
graded signal, according to

Ey(n, k) =
∑B

n=1 Sx(n, k)∑B
n=1 Sy(n, k)

· Sy(n, k), (3)

where n and k are the indexes of the samples in time and fre-
quency domains, respectively, and Sx(n, k) and Sy(n, k) are,
respectively, the ESDs of original and degraded signals after
the grouping into subbands.

4.3. Perceptualmeasure

The main objective of this stage is to simulate both the trans-
mission of the sound from outer to inner ear and the subjec-
tive loudness generation.

The subbands spectral components are compressed using
the nonlinear compression function

L[k] =
(
S0(k)
0.5

)0.23

·
[(

0.5 + 0.5 · E(n, k)
S0(k)

)0.23

− 1

]
, (4)

proposed by Zwicker [21], where S0(k) is the absolute hear-
ing threshold [22] given by

S0(k) = 3.64 · f −0.8 − 6.5 · e0.6·( f−3.3)2 + 103 · f 4, (5)

where f is the frequency given in kHz. This is the point at
which the PSD and PCD parameters are extracted.

4.4. Cognitivemodeling

This stage aims to model the speech signal processing in the
brain cortex level. The cognitive modeling here adopted is di-
vided into two major blocks, the so-called cognitive process-
ing and cognitive combination, which are described next.

Cognitive processing

This step is composed of some procedures that include the
calculation of the difference signal between the patterns re-
sulting from the perceptual measure stage, the calculation of
asymmetry factors, and weighting of silent intervals [5].

The difference signal is simply the absolute value of the
difference between the degraded and original signals. In the
calculation of the energy of the difference signal for each
frame n, possible asymmetries between the signals must be

taken into account. The asymmetry is defined as the differ-
ence of degradation perceived by listeners when the system
under test has the two main characteristics: (a) it introduces
strange components, producing amajor impact, and (b) sup-
presses components, causing aminor impact. In order to take
into account the asymmetry of the degradation impressions,
an asymmetry factor is calculated according to

A(n, k) =
(
Ey(n, k) + 1

Ex(n, k) + 1

)0.2

. (6)

A(n, k) is used as a weighting factor in the calculation of the
frame energies:

F(n) =
56∑
k=1

N(n, k) · A(n, k) · ∆c, (7)

where N(n, k) is the difference signal and ∆c is the width of a
subband related to the critical band (in this case,∆c = 0.312).

After that, silent frames are identified and properly
weighted in order to reduce their influence over the final
score. Those procedures result in the last parameters, the
MOQV1 and MOQV2 measures [8], which, as the other
ones, are extracted from the patterns resulting from FFT and
MLT time-frequency decomposition.

Cognitive combination

This step consists in using an artificial neural network to
model the way a listener combines different features into a
single impression for the quality evaluation of a given signal.
Obviously, the processing performed by the brain is much
more complex than that one performed by an artificial neu-
ral network. However, this approach is often enough to solve
some of the problems involved in modeling the human be-
haviour. Section 6 details some aspects of the neural network
here used.

5. OVERCOMPLETE TRANSFORM
BASEDONDFT ANDMLT

Regarding the estimation of a subjective quality of speech
signals, it has been observed that few representative percep-
tual features of speech signals are obtained from the DFT do-
main. As a result, the mapping technique sometimes attains
low performance. This drawback seems to be due to the fol-
lowing problems: (i) two contradictory subjective measures
can produce two perceptual feature vectors very close to each
other, (ii) two very close subjective measures are associated
with two very distant feature vectors. The distance measure
here considered is the Euclidian norm.

To overcome or diminish the occurrence of both prob-
lems, it is proposed to use an overcomplete bases for the
extraction of some more representative perceptual features
from the speech signals. For simplicity, it is stated that the
so-called overcomplete bases or frames [11, 12, 13] are typi-
cally constructed by merging a set of complete bases, such as
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Fourier, wavelet, and so forth, or by adding basis functions
to a complete basis. Although being not unique, the over-
complete bases can offer some advantages, such as [12] (a) a
great flexibility to capture relevant information from the an-
alyzed signal, due to the use of a large set of specialized basis
functions, and (b) an enhancement in the stability of such
representation in response to small perturbations.

Based upon the knowledge about the use of DFT [14] for
perceptual feature extraction, an overcomplete basis made up
with basis functions from the DFT and the MLT [16] is pre-
sented.

The transpose of the analysis and synthesis transforms is
expressed by

TT
a =

[
QT

a

PT
a

]
=
[
0T DT

N

PT
a,0 PT

a,1

]
,

TT
s =

[
QT

s

PT
s

]
=

 0T

(
D−1N

)T
PT
s,0 PT

s,1


 ,

(8)

respectively. Note that Ps = PT
a . As a result, the coefficients in

the overcomplete domain is represented by




X[0]
...

X[N − 1]
X[N]

...
X[2N − 1]




︸ ︷︷ ︸
X

=

 0T DT

N

PT
a,0 PT

a,1







xw(0)
...

xw(N − 1)
xw(N)

...
xw(2N − 1)




︸ ︷︷ ︸
xw

, (9)

where xw = [xw(0) · · · xw(2N − 1)]T is the input vector
formed by cascading previous and current frames, which
were previously submitted to a Hanning window with an
overlapping of 50%;X = [X[0] · · · X[2N − 1]]T are the
coefficients in the overcomplete domain. Note that the for-
mer N samples are the DFT coefficients, while the later are
the MLT ones; 0 is a N ×N matrix of zeros; DN is an N ×N
Vandermonde matrix whose columns are the DFT basis vec-
tors; Pa is an 2N × N orthonormal matrix whose columns
are the MLT basis vectors. For the proposed overcomplete
transform Ta and its inverse Ts, the following relations can
be expressed:

〈
ϕk(n),ϕl(n)

〉 = δ(k − l), k, l = 0, . . . ,N − 1,〈
ψk(n),ψl(n)

〉 = δ(k − l), k, l = 0, . . . ,N − 1,〈
ϕk(n),ψl(n)

〉 �= δ(k − l), k, l = 0, . . . ,N − 1,

(10)

where {ϕk(n)}k=0,...,N−1 and {ψl(n)}l=0,...,N−1 are the basis
functions of Qa and Pa, respectively.

It is worth stating that the use of the MLT along with the
DFT was decided due to the fact that both transforms pro-
vide different spectral representation of the analyzed signal.
It is a remarkable consideration, because the DFT-based pro-
cedure for perceptual feature extraction, applied so far, can

be straightforwardly used in the MLT domain. As a result, all
theoretical justification for the DFT-based perceptual feature
extraction is well applied to the MLT-based procedure. An-
other advantage of the MLT is the use of a fast algorithm for
its implementation [16].

6. THEMLPNN TRAINED BY THEMODIFIED
VERSION OF THE SCGMETHOD

The search for a good mapping technique lies in the choice
of an appropriate technique with generalization properties,
a suitable minimization criterion, and an efficient and low-
complexity training procedure. Among many mapping tech-
niques available, the MLPNN trained by a second-order op-
timization technique was chosen to perform the last task of
the FLMLPmethod. The following two reasons support such
choice.

First, little knowledge has been acquired about the cog-
nitive mechanism of the human brain. Therefore, it is quite
difficult to develop a suitable model for the signal processing
into the brain cortex. As a consequence, the search for newer
solution is an open research field.

Second, but not least, the nature of subjective analysis
of speech signals is highly fuzzy. As a result, a fuzzy sys-
tem should be appropriate to solve this problem. However,
the equivalence between feedforward neural networks, like
MLPNN, and fuzzy logic systems [23, 24] is well known.
Moreover, due to the characteristics of the posed problem,
the use of a regular network [24, 25] is recommended to solve
the problem associated with the assessment of the speech
quality when a reduced and representative set of perceptual
features is available.

In this regard, it is well established that the state space
formulation of an MLPNN with one hidden layer is given by
[17]

z(n) = AT(n)

[
x(n)
1

]
,

u(n) = f
(
z(n)

) = [ f (z0(n)) · · · f
(
zI−1(n)

)]T
,

y(n) = bT(n)

[
u(n)
1

]
,

f
(
zi(n)

) = tanh
(
zi(n)

)
, i = 1, . . . , I ,

(11)

where x(n) = [x(n) · · · x(n− K + 1) 1]T is the (K+1)×1
input vector, which is constituted by elements of the per-
ceptual feature vector and the bias of the MLPNN; z(n) =
[z0(n) · · · zI−1(n)]T is the neuron output vector in the hid-
den layer; I is the number of neurons in the hidden layer;
y(n) is the MLPNN output; A(n) ∈ �(K+1)×I is the ma-
trix of weights between the input and the hidden layers; and
b(n) ∈ �(I+1)×1 is the matrix of weights between the hidden
and the output layers.

Let a(n) be a column vector formed by the columns
of the matrix A(n). Then, the vector w(n) containing all
weights of the MLPNN, the total error measure ET(w(n)) for
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a set of training data, and its corresponding gradient vector
∇ET(w(n)) are given by

w(n) = [aT(n) bT(n)
]T
, (12)

ET
(
w(n)

) =∑
n

e(n) =
∑
n

1
2

(
y(n)− yd(n)

)2
, (13)

∇ET(n) = ∇ET
(
w(n)

) = [∇ETa (n) ∇ETb (n)]T , (14)

respectively. yd(n) is the desired output, e(n) is the output
error, and ∇Ea(n) and ∇Eb(n) are the gradients of the error
measure with respect to a(n) and b(n), respectively. From
the definition of error measures in (13), it can be seen that
MLPNN tries to make its output as close as possible to the
subjective measure yd(n) in a least-squares sense. Note that

∇EA(n) = ∂e(n)
∂A(n)

=




∂e(n)
∂a1,1(n)

· · · ∂e(n)
∂a1,I(n)

...
. . .

...
∂e(n)

∂a(K+1),1(n)
· · · ∂e(n)

∂a(K+1),I(n)


 ,

∇EA(n) =
[
x(n)
1

]
∂e(n)T

∂z(n)
,

∂e(n)
∂z(n)

=
[
∂e(n)
∂z1(n)

· · · ∂e(n)
∂zI(n)

]T
,

∂f(n)
∂s(n)

= ḟ(n) =
[
∂ f1(n)
∂s1(n)

· · · ∂ fI(n)
∂sI(n)

]T

,

∂e(n)
∂z(n)

= (b(n) • ḟ(n))e(n),

∇Eb(n) =




∂e(n)
∂b1(n)

...
∂e(n)

∂bI+1(n)


 =

[
z(n)
1

]
e(n),

(15)

where • is the Hardamard product [26]. The use of the mod-
ified version of SCG method [18] in the training procedure
of the MLPNN demands the computation of the total gradi-
ent vector∇ET(w(n)) and the Hessian matrixH(w(n)) [18].
However, it is well stablished that the evaluation of the Hes-
sianmatrix demands a huge computational effort. In order to
avoid such problem, this contribution proposes the straight-
forward computation of the expression H(w(n))d(n) [19],
where d(n) is a directional vector that appears in the modi-
fied version of the SCG formulation. As a result, the modi-
fied version of the SCG does not require the explicitly Hes-
sian matrix computation. In this regard, let the differential
operator [19] be expressed by

�d
{
g
(
w(n)

)} ≡ ∂

∂α
g
(
w(n) + αd(n)

)|α=0, (16)

where g(·) is a function, α is an increment, d(n) is a direc-
tional vector, andw(n) is the parameters of g(·), respectively.

Then, H(w(n))d(n) is given by

H
(
w(n)

)
d(n) = �d

{∇ET(w(n))} =


∑
n

�d
{∇Ea(n)}∑

n

�d
{∇Eb(n)}


 .
(17)

7. SOME RESULTS

The tests were performed using the S-23 database [21], which
is composed of speech files in English, French, Japanese, and
Italian. Each file corresponds to a determined test condition,
involving some speech codecs, and has a respective mean
opinion score (MOS) or comparative mean opinion score
(CMOS) subjective quality measure associated. The FLMLP
method should estimate those subjective values. The S-23
database is divided into three main groups.

(i) First experiment: the speech files were submitted to
a number of ITU and mobile-telephony standard
codecs.

(ii) Second experiment: the speech files were submitted to
a number of environment noise types.

(iii) Third experiment: the coded signals were transmit-
ted through a communication channel that introduces
random and burst frame errors.

The training of MLPNN took into account all languages
and experiments found in the S-23 database, as shown in
Figure 4. The test set has been assembled in such a way that
all different conditions found in the S-23 database are rep-
resented. In other words, the method is tested for all kinds
of distortions present in the S-23 database. Table 1 shows the
number of test files used for each language and for each ex-
periment.

The performance of the FLMLP method during the
training and tests were evaluated according to the correla-
tion, ρ, and variance of error, σ2e , given by (18) and (19), re-
spectively:

ρ =
∑N−1

i=0
(
xi(n)− x̄(n)

)(
yi(n)− ȳ(n)

)√∑N−1
i=0

(
xi(n)− x̄(n)

)2∑N−1
i=0

(
yi(n)− ȳ(n)

)2 , (18)

σ2e =
1
N

N∑
i=1

[(
xi(n)− yi(n)

)− (x̄(n)− ȳ(n)
)]2

, (19)

where xi(n) represents the ith objective measure, yi(n) rep-
resents its corresponding subjective measure, and x̄(n) and
ȳ(n) represent the means of the estimated and subjective
measures, respectively. N is the number of measures.

In order to train MLPNN with 12 neurons in the hidden
layer, it was considered that the training sets with the per-
ceptual parameters were randomly generated for each lan-
guage as well for all languages together. After that, each train-
ing set was used in the learning procedure of one MLPNN.
About 3000 epochs were heuristically specified for each train-
ing procedure.
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Group

1st Group

3rd Group

French
116 files

Japanese
116 files

English
116 files

French
132 files

Japanese
132 files

English
132 files

Italian
132 files

Language/ number of files Language/
total number of files

French
248 files

Japanese
248 files

English
248 files

Italian
248 files

General
876 files

2nd Group

French
84 files

Japanese
88 files

English
88 files

General
260 files

Files with subjective measures in CMOS

Group Language/ number of files Language/
total number of files

Figure 4: The training files.

After the training phase, the correlation and error vari-
ance obtained for all training files were higher than 0.99
and lower than 0.005, respectively. After that, each trained
MLPNN was used to measure the subjective quality of the
testing speech signals. The correlation achieved during the
test procedure is reported in Table 2 while the attained error
variance is displayed in Table 3. From Tables 2 and 3, the fol-
lowing remarks can be stressed.

(i) The fast and modified version of the SCG method ap-
plied to train MLPNN yields to good results, even with only
12 neurons in the hidden layer. A greater number of neurons
do not exhibit noteworthy improvement.

(ii) The worst results have occurred with generic lan-
guage. This is due to the low robustness of the FLMLP for
quality assessment of several languages with only one trained
MLPNN. But, even in this case, the newmethod has achieved
better results than the other ones [2, 8, 9, 10].

(iii) The behavior of the error variance reveals that the
FLMLP yields estimates with low variability, which is a very
desirable property for this kind of application.

Another performance measure, not shown in the paper,
is the mean difference between actual and estimated subjec-
tive values. This mean is less than 0.2 for all cases.

Table 1: Number of speech files used in the tests.

Language 1st exp. 2nd exp. 3rd exp.

French 60 44 68
Japanese 60 48 68
English 60 48 68
Italian 60 — 68
Total 240 140 272

As can be seen, the FLMLP attains a notable performance
in the presence of hard conditions, such as errors, various
codecs and environmental noises. However, caution must be
taken before stating its superiority over the other methods.

As commented before, neural networks have as their
main shortcoming the lack of flexibility under untrained
conditions quite different from those ones used for training.
Therefore, it is difficult to estimate how the FLMLP would
behave when facing untrained conditions without using ad-
ditional speech databases. However, it is worth pointing out
that if the untrained conditions show some kind of similari-
ties with the training ones, a good speech quality assessment
should be accomplished.
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Table 2: Performance of FLMLP in terms of ρ.

Language Measure MOQV PESQ∗ MOQV- KSOM FLMLP

French
MOS 0.93 0.92 0.96 0.97
CMOS 0.93 0.94 0.98 0.99

Japanese
MOS 0.91 0.94 0.95 0.96
CMOS 0.95 0.93 0.98 0.99

English
MOS 0.92 0.94 0.94 0.95
CMOS 0.95 0.93 0.93 0.99

Italian MOS 0.90 0.93 0.93 0.94

Generic
MOS 0.87 0.90 0.92 0.92
CMOS 0.94 0.93 0.92 0.94

∗ The correlation values of PESQ were obtained in tests performed by the
authors of this paper using the original ITU’s PESQ routine, because the
literature currently available does not provide that information in such a
detailed way.

Table 3: Performance of FLMLP in terms of σ2
e .

Language Measure FLMLP

French
MOS 0.030
CMOS 0.001

Japanese
MOS 0.030
CMOS 0.004

English
MOS 0.055
CMOS 0.001

Italian MOS 0.060

Generic
MOS 0.090
CMOS 0.060

On the other hand, it has been shown that PESQ, which
does not use neural networks, often achieves good results
when faced to unknown conditions. Additionally, the opti-
mization of PESQ has been carried out using a larger number
of databases, making more difficult to achieve high correla-
tion with a particular database.

The version of the FLMLP here described has not been
optimized to assess signals where the distortions significantly
vary in time. Studies have been carried out focusing on this
task. Initial efforts have been addressed toward the assess-
ment of small segments of the signal, and then the combina-
tion of the scores into a single estimate of the signal quality.
Another topic that has been investigated is the use of a “for-
getting factor” to model the phenomenon where the listeners
tend to forget the distortions occurred at the beginning of
long signals. Both studies are still in the early stages, but the
first results are promising.

8. CONCLUSIONS

This contribution has introduced the FLMLP method for
speech quality assessment. As reported by numerical results,
the new method not only provides good results, but it also
outperforms previous ones for the tested conditions. There-
fore, it may be a wonder that the obtained results validate

the FLMLP underlying techniques as potential tools to solve
some of the main problems that still prevent the use of ob-
jective speech quality assessment to a number of conditions.

The improvement achieved by the FLMLP is due to the
introduction of two original techniques: (a) an overcomplete
transform based on the DFT and the MLT that leads to a new
set of perceptual parameters related to speech quality; (b)
a multilayer perceptron neural network, trained by a mod-
ified version of the SCGmethod, to map from the perceptual
parameters into a subjective quality measure. Compared to
the existing solutions, the new perceptual parameters con-
tain more information about the differences between the de-
graded and original speech signals, whereas the neural net-
work yields a more precise mapping from these parameters
to an estimate of the subjective quality measure. Additionally,
it can be pointed out that adjustment of MLPNN weights to
take into account new conditions can be performed online
because of the low complexity of the training procedure.

Further research should be carried out to address other
kinds of overcomplete transforms, aiming to improve the
quality of the perceptual parameters.

Also, other nonlinear techniques can further enhance the
speech quality estimation. From the authors’ point of view,
good candidates can emerge from the hybrid techniques
grounded on type 2 fuzzy systems and hierarchical neural
networks.

Finally, further investigation about the performance of
FLMLP when facing untrained conditions should be con-
ducted.
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