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This article presents a newmethod for supervised image classification. Given a finite number of image sets, each set corresponding
to a place of an environment, we propose a localization strategy, which relies upon supervised classification. For each place,
the corresponding landmark is actually a combination of features that have to be detected in the image set. Moreover, these
features are extracted using a symbolic knowledge extraction theory, “formal concept analysis.” This paper details the full landmark
extraction process and its hierarchical organization. A real localization problem in a structured environment is processed as an
illustration. This approach is compared with an optimized neural network-based classification, and validated with experimental
results. Further research to build up hybrid classifier is outlined in the discussion.
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1. INTRODUCTION

Characterizing and recognizing a place in a structured or not
environment, using only a set of views attached to each place
to characterize, is a difficult challenge to take up for a ma-
chine (computer or robot) today. To do this, the machine
needs to find “something” that (1) characterizes a considered
place, and (2) distinguishes it from the others. This “some-
thing,” under specific conditions, is called a (visual) land-
mark. What is a landmark? How to find it? And how to select
it?

This paper presents a new method to answer these ques-
tions. All the images issued from one place are regrouped
into a set. Thus, the machine has to recognize one original
place from some images of the associated set. At first, dur-
ing a learning stage, the relationships between sets of im-
ages and features are structured and organized into a hierar-
chy, through a formalism called Galois lattices, or concept lat-
tices. The use of such mathematical structures allows the ma-
chine to determine its own landmarks attached to each place.
Subsequently, once this initial characterization has been per-
formed, the machine is able in a second stage to recognize the
corresponding place thanks to the landmarks it has learned.

The choice of the application we have done makes the
connection between one set of images and one room of a

structured environment. Thus we expect that there will be
more or less common properties between images of one set.
But the theory we have developed here considers only sets of
images without any restriction.

This paper is organized as follows. Section 2 introduces
landmarks, primitives, and features; Section 3 gives an out-
line of formal concept analysis; Section 4 shows how we use
it to define and to build landmarks; Section 5 exposes the re-
sults of this approach on an experimental setup, before con-
clusion and perspectives (Section 6).

2. LANDMARKS, PRIMITIVES, AND FEATURES

2.1. The classical notion of landmark in autonomous
mobile robotics

As defined in the Cambridge Dictionary, a landmark is a
building or place that is easily recognized, especially one which
you can use to judge where you are. This original definition,
applied to the mobile robotics field, has several versions such
as “distinctive templates from one image which can be read-
ily recognized in a second image acquired from a different
viewpoint” [1], or more simply “identifiable visual objects
in the environment” [2]. Usually landmarks are not intro-
duced according to a formal definition but through some
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specific properties such as “easily distinguishable” [3] or “lo-
cally unique” [3]. In concrete terms, a landmark could be an
object [4], a color [5], interest points [6], and so forth. In our
case, landmarks are not restricted to one kind of elements,
but could be a combination of elements. For instance, a land-
mark of a place A could be a “big blue object,” even if there is
a “big object” in the place B and some “blue” in the place C.

Nevertheless, it is essential that a landmark checks the
following two characteristics: first it should discriminate be-
tween locations, and second it should be stable to allow ro-
bust identification against variations of the observer posi-
tion and time [1, 7]. Several classifications of landmarks, as
static/dynamic [8], already exist, still we propose here an-
other classification based upon the learning ability and the
autonomy of the recognition system. We do separate land-
marks into three categories.

(i) Fully predefined landmarks: the machine is given a
database of objects [1, 4, 9] which are “just” to be rec-
ognized.

(ii) Partially predefined landmarks: such potential land-
marks are specified by a common structure. For in-
stance, in [10], the authors use planar quadrangu-
lar forms (typically, posters) characterized with inter-
est points [11] and Hausdorff distance. Observations
which could fit into the specified framework are then
dynamically chosen as landmarks.

(iii) Non-predefined landmarks: no hypothesis is assumed
about potential landmarks. The main approaches with
such landmarks are biologically inspired [12, 13, 14].

Our approach deals with the last category: we want the
machine to choose the most relevant landmarks in an au-
tonomous and dynamic way. Notice the connection between
landmark localization and supervised classification. When
the landmark is predefined, the classifier is designed by hand
using expert knowledge about robustness of object shape,
and so on. In case (iii), the landmark is defined through
a learning process which is similar to learning a super-
vised classifier. An important difference still remains between
landmark-based localization and supervised classification: in
our case, if a landmark is not found in the current image,
the robot visual system is requested to provide additional in-
formation to the localization system through a new picture.
This “no answer” event decreases classification error. We will
develop the landmark selection process further in this paper
according to a learning approach, still we will keep the “no
answer” event.

2.2. Primitives and features

Different pictures are extracted from each room of the envi-
ronment; thus, a set of images is attached to each room. From
these different pictures, primitives are extracted to build fea-
tures of images, to help the robot to find properties of each
place. We do distinguish feature from properties by the fact
that features are attached to images, whereas properties are
attached to the place. Three kinds of primitives are extracted
from the different pictures:

(i) structural primitives: segments with their size and ori-
entation (they are issued from polynomial contour ex-
traction), interest points [15], and so forth;

(ii) colorimetric primitives: extraction of red, green, blue,
cyan, magenta, or yellow pixels with joint histograms,
objects, contrast, and so forth;

(iii) photogrammetric primitives, issued from pixels inten-
sity: contours, texture, and so forth.

From all these primitives, features are extracted in all sets of
images. Notice that our definition of feature is extensive and
includes any potential feature, whether it is present in an im-
age or not. For instance, with colorimetric primitives, poten-
tial features could be “there is some yellow here” or “there is
such texture.” Notice that we include features that are invari-
ant against rotation, translation, and scaling. For instance,
using segments (primitives) extracted from contours, one
feature could be “there is a large number of identical (orienta-
tion and size) segments” (typically, this feature may be issued
from a bookcase that is present in the considered place).

We also note that our system is “open,” that means that
any other (visual or not) feature could be included to increase
efficiency of our learning process.

2.3. Raw display of visual information

Once all primitives are extracted from images and features
are detected, information is organized into a lookup table
that displays the presence or not of a feature in an image (see
Table 1).

3. FORMAL CONCEPT ANALYSIS

Galois—or concept—lattices have been widely used in arti-
ficial intelligence in the past 20 years. This theory has been
developed as FCA (formal concept analysis), and several lat-
tice building algorithms appeared since then, more andmore
efficient [16]. Still few concrete applications have recently ap-
peared mainly in data mining topics such as machine learn-
ing [17, 18] or in the aeronautic field [19]. We outline here
an application to localization in the autonomous mobile
robotics field.

3.1. Mathematical formalism [20, 21]

Definition 1. A lattice is defined as an ordered set in which
any couple of elements has a least upper bound (lub) and
a greatest lower bound (glb). A complete lattice is a lattice
where any set has an lub and a glb.

For instance, the set P (O) of all subsets of a set O or-
dered by the inclusion ⊂ is a complete lattice.

Definition 2. A context K is a triple (O,F , ζ) where O is a
set of objects, F is a set of attributes, and ζ is amapping from
O ×F into {0, 1}.

In our application, objects are images taken by the robot,
attributes are features, and the mapping ζ is defined by
ζ(o, f ) = 1 if and only if feature f is present in image o.
The graph of this mapping is the lookup table of Table 1.
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Table 1: Visual information lookup table.

Place Image Feature 1 Feature 2 Feature 3 Feature 4 Feature f Feature Nf

Place 1

Image 1.1 x x
Image 1.2 x x x
Image 1.3

... x
Image 1.N1

Place 2

Image 2.1 x
Image 2.2 x x x x x
Image 2.3 x

...
Image 2.N2

...
... x x

Place p

Image p.1 x
Image p.2 x x
Image p.3

... x
Image p.Np

Definition 3. Given a context K = (O,F , ζ), two mappings
fromP (O) intoP (F ) and fromP (F ) intoP (O) using the
same notation ′ are defined by the formula

∀A ⊂ O, A′ = { f ∈ F | ∀o ∈A, ζ(o, f ) = 1
}
,

∀B ⊂ F , B′ = {o ∈ O | ∀ f ∈ B, ζ(o, f ) = 1
}
.

(1)

These mappings are called the Galois connections of the con-
text;A′ is called the dual ofA, similarlyB′ is called the dual
ofB.

Clearly, A′ is the set of common attributes to all objects
of A, and B′ is the set of objects which share all attributes
belonging toB.

The properties of the Galois connections can be found in
[22]. We recall the following basic properties.

Property 1. A1 ⊂A2 ⇒A′
2 ⊂A′

1.

Property 2. A ⊂A′′.

Property 3. A′ =A′′′.

We are now able to state the definition of a concept.

Definition 4. Given a context K = (O,F , ζ), the pair C =
(A,B) is called a concept of K if and only if A′ = B and
B′ =A.

Definition 5. A is called the extent of the concept C and
B is called its intent. One notes A = extent(C) and B =
intent(C).

The set of all concepts of a contextK is denoted byL(K)
or simply L if the context is clear. One proves [21] the fol-
lowing theorem.

Theorem 1. Let C1 = (A1,B1) and C2 = (A2,B2) be a cou-
ple of concepts, then C1 ∨ C2 = ((A1 ∪A2)′′,B1 ∩B2) and
C1 ∧C2 = (A1 ∩A2, (B1 ∪B2)′′) are concepts.

This result may be extended to any set I of concepts.
We will note CI = (AI,BI) =

∨
i∈I Ci and similarly CI =

(AI,BI) = ∧i∈I Ci.
Thus, the set of concepts L when it is endowed with the

order relation⊂ of its extents is a complete lattice and we can
set the following definition.

Definition 6. The complete lattice L(K) of concepts of the
contextK is called the Galois lattice or the concept lattice.

3.2. Lattice building algorithm

Concept lattice building algorithms are divided into two
families: incremental algorithms and nonincremental algo-
rithms. See [23] for a complete description. The most ap-
propriate algorithm for our application is the Norris algo-
rithm [24] (the complexity is O(|O|2 · |F | · |L|) with |L|
the number of concepts [23]). It is practically efficient to pro-
cess middle-size problems with time constraints for this ap-
plication in spite of the worst-case exponential complexity as
shown in Section 5.4.

3.3. Finding landmarks with concept lattices

From now on, we will use the term “concept lattice.” The ex-
tent of a concept is an object subset that is completely defined
by a set of attributes that are simultaneously checked by the
elements. The intent of a concept is a set of attributes that are
a maximal characterization of an object set.

The context in our application being defined with a set
of images (objects), a set of features (attributes), and a map-
ping, here the presence or not of a feature f in an image i,
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the general lattice is built and landmarks are extracted thanks
to the following definition.

Definition 7. Given a contextK = (O,F , ζ) and a subset of
objects A ⊂ O. A subset B ⊂ F is said to be a landmark of
A if and only if

(i) B′ ⊂A,
(ii) B′′ = B.

By this way, a landmark is a combination of features of
a concept (intent) that respects the above conditions. The
complete process is detailed in next section.

We note that the first property (B′ ⊂ A) could be
enough to define a landmark. However,B′ would not always
correspond to a specific subset of objects, so the combination
is not optimized. Thus, to avoid an explosion of possibilities,
and to restrict the number of landmarks to a minimal num-
ber, it is necessary to fit with concept intents. The choice of
concept as the basis element to build classification rules is
hoped to provide robustness to classification and to improve
generalization properties.

4. BUILDING A LANDMARK-BASED CLASSIFIER

In this section, we do expose the complete reasoning first to
extract landmarks from a set of images, and second to label
an image to a set.

We detail our basic application. We have at our disposal
a set of images from a structured environment. Each image
is labelled by the room from which it was shot. Our objective
is to provide a mobile robot, equipped with a camera, with a
decision rule to allow it to find its localization in a topolog-
ical map.1 It is basically a supervised classification problem.
The decision rule is provided by a maximal partial landmark.
Note that we are in a typical learning situation. The decision
rule is extracted from a set of labelled examples, the learn-
ing base of images. This rule is formalized for each set by
concepts that will be defined as maximal landmarks. Some
images of the learning set may escape from the decision rule.
Thus, due to the image preprocessing (primitive extraction)
and the complexity of the environment, learning failing may
occur.

There are actually two phases: the first phase deals with
landmark extraction (learning phase), and the second phase
deals with the use of these landmarks to find the place a new
image comes from (generalization phase). We first give some
definitions useful for our particular application.

4.1. Formal definitions in a partitioned context
Given a context K = (O,F , ζ), a partition (Oθ)θ∈Θ of the
object set is available. So we have

O =
⊕
(θ∈Θ)

Oθ. (2)

1A topological map of a structured environment is a graph for which,
most of the time, a node is a room and an edge is a connection between two
rooms [25].

Definition 8. θ is called a site and Θ the set of sites.

More generally, a semantic label can be considered in-
stead of a site in a general classification context.

4.1.1. Landmarks

Definition 9. LetBθ be a subset ofF .Bθ is said to be a land-
mark of a site θ if and only if

(i) B′
θ ⊂ θ,

(ii) B′′
θ = Bθ .

A landmark is thus a set of attributes for which the si-
multaneous presence is effective in some image of the site to
characterize.

4.1.2. Full landmarks

In particular, if the landmarkBθ is a set of attributes present
simultaneously in all images of the site, Bθ is called a full
landmark.

Definition 10. Bθ ⊂ F is said to be a full landmark of a site
θ if and only if

(i) B′
θ = Oθ ,

(ii) B′′
θ = Bθ .

4.1.3. Maximal landmarks

If a full landmark Bθ = O′
θ exists, it is sufficient to define a

decision rule for localization with respect to site θ. Of course,
that issue does not occur very often in practical applications.
If there is no full landmark, it is interesting to limit the num-
ber of landmarks by introducing maximal landmarks.

Definition 11. Amaximal landmark B̂ is a landmark of min-
imal intent in a set of landmarks of a given site.

4.1.4. Coverage

The coverage of a site by a landmark or a set of landmarks
specifies whether every image of the site contains some of
landmarks or not.

Definition 12. Let {Bθ,i}i=1,...,Nθ be theNθ landmarks of a site
θ. This site is said to be covered, or the landmarks cover the
site, if and only if

⋃
i=1,...,Nθ

{
B′

θ,i

} = θ. (3)

If there is a full landmark in a site, the coverage is obvi-
ous. If not, the set of images from a site may not be covered
by landmarks. Note that if such a full coverage exists, it is
provided by maximal landmarks.

4.2. Learning phase: extracting the landmarks

The first step is to extract primitives from each image.
The algorithms used to do this are quite classical. For in-
stance, to obtain segments, the contours are extracted with a
Canny-Deriche algorithm, then they are approximated with
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1. Extract primitives from each image.
2. Determine the presence or not of features and fill

up the cross table.
3. Build the corresponding lattice.
4. For each place θ,

4.1 select landmark-concepts,
4.2 read concepts from landmark-concepts,
4.3 select maximal landmarks.

Algorithm 1: General algorithm of the landmark selection
method.

polynomial figures. Eventually segments are extracted by a
fusion process. Other primitives are found through image
color or texture segmentation.

The second step is to find features with these primitives,
and to fill up the lookup table. The third step is the building
of the associate lattice. The last step is to “read” the lattice,
that is, to select landmarks attached to each class (each place).
Let us detail this last process.

Following the strict definition of a landmark, the general
lattice is built and concepts are put into a hierarchy. Consid-
ering all concepts {Cθ} relative to a site θ, that is, all concepts
whose extents are made with images from the site θ (and only
from this site), landmarks are intents of these concepts. We
precise the definitions from previous section.

Definition 13. A landmark-concept relative to a class θ is a
concept whose extent is made with objects belonging to Oθ .

Definition 14. A landmark of a class θ is the intent of a
landmark-concept relative to a class θ.

Definition 15. Considering the set of all landmark-concepts
relative to a class θ, a maximal landmark-concepts is a
landmark-concept whose extent has no parent in the con-
sidered object set Oθ .

Definition 16. A maximal landmark of a class θ is the intent
of a maximal landmark-concept relative to a class θ.

The general algorithm of the landmark selection method
is presented Algorithm 1.

4.3. Generalization phase: image (or object)
classification

Once the landmarks selected, we consider now a new image
issued from any place. Primitives and attributes are extracted
from this image. Two cases should be considered:

(i) if the image contains at least one landmark of a class
θ and no landmark of any other class θ′ 
= θ, then the
image is classified in the class θ;

(ii) if no landmark is included in the image or if several
landmarks, from several classes, are included, the clas-
sifier gives no response. In this case, the lattice has to
be updated.

Table 2: Learning phase: landmarks extraction.

Place Ldks Full Ldks Maximal Ldks

Place #1 194 0 9

Place #2 316 0 8

Place #3 291 0 17

Place #4 82 0 8

Total 883 0 42

5. EXPERIMENTATIONS AND RESULTS

Different experimentations have been managed to confirm
our approach. The general frame of these experimentation is
the navigation of a robot in a structured (human) environ-
ment. The goal, for the robot, is to extract visual landmarks
with the aim to locate itself in view.

Sixty-six potential features could be detected in our im-
ages: number of pixels of the primary and secondary colors
greater than 1000, black, white, and colored small, medium,
and big objects detected thanks to morphological operators,
bio-inspired color contrasts such as black-white, red-green,
and yellow-blue contrasts, small, medium, and large oriented
(12 directions) segments issued from image derivation.

The first experimentation consists of a classical classifi-
cation process: some images from four different classes have
been analyzed to build the classifier. Next this classifier has
been tested with other images from the same places. This ap-
proach is validated through a comparison with an optimized
neural network. Next, a real robotics experimentation has
been processed to fit closely with our general research con-
text. Finally, an experimentation has been carried out with a
much bigger context.

5.1. Image classification

First, we state results in terms of image classification with
landmarks. One hundred seventy-seven images have been
taken for the learning stage, in four different places of the
laboratory environment. The feature extraction process gives
a 177×66 lookup table. The corresponding 5265-concept lat-
tice is computed in 25 seconds on a Spark 100 machine. For
the four classes, 883 concept landmarks are extracted, there
are no full landmarks and 42 maximal (partial) landmarks
are kept: 9 for the first place, 8 for the second one, 17 for the
third one, and 8 for the fourth one (see Table 2).

During the generalization phase, 32 images are issued
from the place #1. These images are different from those of
the learning phase. Landmarks are searched on all images: 1
image contains 2 ambiguous landmarks (one of the place #1,
one of the place #3) and 14 no landmarks; 16 images contain
only landmarks of the place #1, and 1 image contains a place
#4 landmark. There is thus a response rate of 53.1%, an abso-
lute well-situated image rate of 50% on all images, more im-
portant a relative well-situated image rate of 94.1% on (well
or not) located images, an absolute error rate of 3.1%, and a
relative error rate of 5.88%. The results of the full analysis for
all places are displayed in Table 3.
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Table 3: Generalization phase using landmarks: results (NI: num-
ber of images, NR: number of responses, NGR: number of good
responses, NFR: number of false responses).

Place NI NR NGR NFR

Place #1 32 17 (53.1%) 16 (94.1%) 1 (5.88%)

Place #2 50 13 (26%) 12 (92.3%) 1 (15%)

Place #3 31 10 (32.3%) 10 (100%) 0 (0%)

Place #4 38 20 (52.6%) 19 (95%) 1 (5%)

Total 151 60 (39.8%) 57 3 (5%)

We note that the classification rule has been tested with
the learning set of images to assess the equivalent of learn-
ing error. Of course, by definition, for each place, there is
no landmark from another place, however the response rate
is not 100% (88%, 43.1%, 85.7%, and 54.8% for respective
places #1, #2, #3, and #4): there are some images with a pos-
teriori no useful information, that is, images whose features
are shared with some pictures of other sets.

5.2. Comparisonwith an optimized neural network

Comparison with a classical neural network classification
underMatLab has been processed to appraise our approach
on the same data basis. To improve neural network results,
several experimentations with different architectures have
been computed to obtain the best network as possible.

The optimized network is composed of 66 neurons in
the first layer (corresponding to our 66 features), 66 neu-
rons in the middle layer, and 4 neurons (corresponding to
the 4 places) in the last layer. The training function is a
backpropagation gradient training with an adaptive learning
(taingda), with a hyperbolic tangent sigmoid transfer func-
tion for each layer of the network. Other comparisons have
been done with different number of layers, different num-
ber of neurons in the middle layer, different training process,
and/or different transfer functions, but with worse results.
The Levenberg-Marquardt and Bayesian regularization algo-
rithms fail due to the high number of entries.

With the number of 700 training epochs, the smallest
learning rate is 4.10−2 and more significantly the smallest
error rate (false response compared to all response) we ob-
tained is 5% on the learning set of images, and 30% on the
testing set.

More over, the variability of responses of a network is
very different from one learning process to one another,
with the same learning database. Best results cited above are
reached once on five or six tries.

To fit with our technique and to have comparable results
(see Table 4), a program has been developed to allow the neu-
ral network to give some “no responses.” In a practical way,
the classification answer is validated if and only if the dif-
ference between the greatest probability to be in one place
and the second greatest probability to be in another place is
above a threshold that is adjusted to have the same rate of no
responses.

Table 4: Generalization phase using an optimized neural network.

Place NI NR NGR NFR

Place #1 32 17 (53.1%) 17 (100%) 0 (0%)

Place #2 50 17 (26%) 17 (100%) 0 (0%)

Place #3 31 14 (45.2%) 10 (71.4%) 4 (28.6%)

Place #4 38 12 (31.6%) 10 (83.3%) 2 (16.6%)

Total 151 60 54 6 (10%)

Table 5: Result with a real mobile robot experimentation.

NI NR NGR NFR

Results 161 54 50 4 (8%)

5.3. Mobile robot localization

This experimentation has been done with a real mobile robot
in our laboratory. There are also four places in this process
but they are different from the previous experimentation.
Yet, features are identical. The strategy here is different: dur-
ing the learning phase and the generalization phase, the robot
moves alone with its own speed, and images are issued from
a continuous flow of images (“continuous” here means that
the robot do not jump from one place to another, there are
some ambiguous transition zones, difficult to classify).

The robot moves thus over the structured environment;
295 analyzed images give a 295× 66 lookup table, the lattice
of which is built with 8020 concepts. A total of 649 landmark
concepts are extracted and 48 of them are isolated to be max-
imal partial landmarks (17 from the place #1, 16 from the
place #2, 9 from the place #3, and 6 from the place #4).

During the generalization phase (Table 5), the robot
moves also over the same environment. 161 images are an-
alyzed, 50 are well located in their respective place, and 4
are not. The global error is thus 8%, and the response rate
is 33.5%. The reason of such a low response rate is that the
robot moves through a white corridor that has very few fea-
tures and landmarks, and a lot of white images pollute the
analysis rate. However, the number of (well or not) located
images has no impact on our application: either the robot
may give an answer (the place where it is) with a heuristic
based on all image responses of the considered set (passive
vision process), or the robot may look by itself for landmarks
by moving around (active vision process). This is one of our
next working orientations.

5.4. Experimentationwith a bigger context

Another experiment has been carried out with a higher num-
ber of features. The use of the HSV color space allows us to
divide the whole spectrum into as many bands as wanted,
and by this way, we have increased the number of feature up
to 153. With a Pentium 4 (2.4GHz) PC, under 850 images,
the lattice update time process is inferior to the image analyze
time process (about half a second). After 850 images, time
processes are quite similar (contrary to the image analyze



Characterizing Image Sets Using Formal Concept Analysis 1937

process, the lattice update time process depends on the im-
age itself and the extracted features), and after 1100 images,
the update process is longer if new images appear. In a place
already visited, new combinations of features become scarce,
so the update time process decreases. However, in a bigger
environment, other techniques have to be implemented. A
possible way to reduce the processing time is to split the en-
vironment representation into local lattices. For instance, a
lattice may cover a place and its topological neighbors. We
are currently investigating this approach.

6. CONCLUSION AND PERSPECTIVES

In this paper, a new original supervised classification me-
thod has been developed to classify images with respect to the
place they have been taken. This method is strongly based on
visual landmarks, anyone or anything needs to locate oneself.

Our algorithms have been validated first through real im-
ages issued from four different places of a structural envi-
ronment, second through a comparison with an optimized
neural network that gives lower-quality results with a lot of
instability, and finally through a real experimentation with
an autonomous mobile robot.

In this last case, a lot of heuristics could be developed
to improve results, especially in introducing local constrains
such as connected—or not—places, probabilities of transi-
tion, and so forth. However, our objective here was to vali-
date our algorithms in the worst case, that is, in a pure clas-
sification problem without any a priori knowledge.

Our system is open, that is, other attributes from any cap-
tor could be used, or high-level attributes depending on the
final purpose (e.g., “rectangles” for building in outside urban
scenes). Thus wemay incorporate “partially predefined land-
mark” in the sense of Section 2.1. Such an approach will be
probably needed to process more complex tasks such as out-
door localization in partially unknown environment. How-
ever, in our applicative context, it was not necessary and this
is worth to be noted.

Four main directions will lead our further research pro-
gram. First, we have to improve our primitives and features
in order to obtain a more stable and wider range of land-
marks for the different classes. Second, we have to find a way
to associate a symbolic classifier such as the concept lattice
classifier we developed herein and a numerical classifier such
as neural network to improve results. Indeed, results from
these two techniques seem to be complementary, and prob-
ably Galois lattices could preprocess a neural network clas-
sifier through preselecting features. Afterwards, it would be
valuable to introduce recent classification techniques such as
“support vector machines.” Classification failures occur often
on topological boundaries of the sites. Support vector tech-
niques are supposed to help getting a more robust classifica-
tion. Notice that the concept of margin is closer in its spirit
from our “no decide” symbolic classifier. It is also important
to investigate unsupervised classification methodologies to
induce the creation of new classes, that is, nodes of the topo-
logical map.

Support vector techniques are supposed to help getting
a more robust classification and/or to induce the creation of
new classes, that is, nodes of the topological map. Finally, in
a more applicative way, our goal is to allow a robot to build
a topological map of structured—or not—environment, in a
fully autonomous process.

REFERENCES

[1] M. Knapek, R. S. Oropeza, and D. J. Kriegman, “Selecting
promising landmarks,” in Proc. IEEE International Conference
on Robotics and Automation (ICRA ’00), vol. 4, pp. 3771–3777,
San Francisco, Calif , USA, April 2000.

[2] G. Bianco and A. Zelinsky, “Biologically-inspired visual land-
mark learning and navigation for mobile robots,” in Proc.
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS ’99), vol. 2, pp. 671–676, Kyongju, South Ko-
rea, October 1999.

[3] Z. Dodds and G. D. Hager, “A color interest operator for
landmark-based navigation,” in Proc. 14th National Confer-
ence on Artificial Intelligence and 9th Innovative Applications
of Artificial Intelligence Conference (AAAI/IAAI ’97), pp. 655–
660, Providence, RI, USA, July 1997.

[4] G. Dudek and D. Jugessur, “Robust place recognition using
local appearance based methods,” in Proc. IEEE International
Conference on Robotics and Automation (ICRA ’00), vol. 2, pp.
1030–1035, San Francisco, Calif , USA, April 2000.

[5] I. Ulrich and I. Nourbakhsh, “Appearance-based place recog-
nition for topological localization,” in Proc. IEEE International
Conference on Robotics and Automation (ICRA ’00), vol. 2, pp.
1023–1029, San Francisco, Calif , USA, April 2000.

[6] R. Sim and G. Dudek, “Learning and evaluating visual fea-
tures for pose estimation,” in Proc. 7th IEEE International
Conference on Computer Vision (ICCV ’99), vol. 2, pp. 1217–
1222, Kerkyra, Greece, September 1999.

[7] M. Mata, J. M. Armingol, A. de la Escalera, and M. A. Salichs,
“A visual landmark recognition system for topological naviga-
tion of mobile robots,” in Proc. IEEE International Conference
on Robotics and Automation (ICRA ’01), vol. 2, pp. 1124–1129,
Seoul, Korea, May 2001.

[8] S. Thompson, T. Matsui, and A. Zelinsky, “Localisation using
automatically selected landmarks from panoramic images,”
in Proc. Australian Conference on Robotics and Automation
(ACRA ’00), Melbourne, Australia, August 2000.

[9] D. G. Lowe, “Object recognition from local scale-invariant
features,” in Proc. 7th IEEE International Conference on Com-
puter Vision (ICCV ’99), vol. 2, pp. 1150–1157, Kerkyra,
Greece, September 1999.

[10] J. B. Hayet, F. Lerasle, andM. Devy, “A visual landmark frame-
work for indoor mobile robot navigation,” in Proc. IEEE Inter-
national Conference on Robotics and Automation (ICRA ’02),
vol. 4, pp. 3942–3947, Washington, DC, USA, May 2002.

[11] C. G. Harris and M. Stephens, “A combined corner and edge
detector,” in Proc. 4th Alvey Vision Conference, pp. 147–151,
Manchester, UK, August–December 1988.

[12] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based
visual attention for rapid scene analysis,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 20, no. 11, pp. 1254–1259, 1998.

[13] A. Arleo, F. Smeraldi, S. Hug, andW. Gerstner, “Place cells and
spatial navigation based on 2D visual feature extraction, path
integration, and reinforcement learning,” in Advances in Neu-
ral Information Processing Systems 13, pp. 89–95, MIT Press,
Cambridge, Mass, USA, 2001.

[14] P. Gaussier, C. Joulin, J. P. Banquet, S. Leprêtre, and A. Revel,
“The visual homing problem: An exemple of robotics/biology



1938 EURASIP Journal on Applied Signal Processing

cross fertilization,” Robotics and Autonomous Systems, vol. 30,
no. 1-2, pp. 155–180, 2000.

[15] C. Schmid, R. Mohr, and C. Bauckhage, “Comparing and
evaluating interest points,” in Proc. 6th International Confer-
ence on Computer Vision (ICCV ’98), pp. 230–235, Bombay,
India, January 1998.

[16] S. O. Kuznetsov and S. A. Obiedkov, “Algorithms for the con-
struction of concept lattices and their diagram graphs,” in
Proc. 5th European Conference on Principles of Data Mining
and Knowledge Discovery (PKDD ’01), vol. 2168, pp. 289–300,
Freiburg, Germany, September 2001.

[17] R. Godin, R. Missaoui, and H. Alaoui, “Incremental con-
cept formation algorithms based on Galois (concept) lattices,”
Computational Intelligence, vol. 11, no. 2, pp. 246–267, 1995.

[18] M. Liquière and J. Sallantin, “Structural machine learning
with Galois lattice and graphs,” in Proc. 15th International
Conference on Machine Learning (ICML ’98), pp. 305–313,
Madison, Wis, USA, July 1998.

[19] L. Chaudron, N. Maille, and M. Boyer, “The cube lattice
model and its applications,” Applied Artificial Intelligence,
vol. 17, no. 3, pp. 207–242, 2003.

[20] M. Barbut and B. Monjardet, Ordre et Classification, Hachette
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