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The performance evaluation of 3D reconstruction techniques is not a simple problem to solve. This is not only due to the increased
dimensionality of the problem but also due to the lack of standardized and widely accepted testing methodologies. This paper
presents a unified framework for the performance evaluation of different 3D reconstruction techniques. This framework includes
a general problem formalization, different measuring criteria, and a classification method as a first step in standardizing the
evaluation process. Performance characterization of two standard 3D reconstruction techniques, stereo and space carving, is also
presented. The evaluation is performed on the same data set using an image reprojection testing methodology to reduce the
dimensionality of the evaluation domain. Also, different measuring strategies are presented and applied to the stereo and space
carving techniques. These measuring strategies have shown consistent results in quantifying the performance of these techniques.
Additional experiments are performed on the space carving technique to study the effect of the number of input images and the

camera pose on its performance.
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1. INTRODUCTION

The design of experimental test beds and methods of analy-
sis in addition to the definition of the ground truth are im-
portant components of any performance evaluation system
in computer vision. Furthermore, the performance must be
quantified to make valuable objective comparisons. Other-
wise, the failure of assessing the performance may not only
cause unnecessary complexities in the subsequent processes
but also may lead to the inability to fulfill the requirements
of the application under concern. This reflects the need of
a general methodology for testing the performance of simi-
lar computer vision techniques. Particularly, in this paper, we
address the problem of performance evaluation of 3D recon-
struction techniques from a sequence of images.

In fact, this area of research still faces a lack of standard-
ized and widely accepted methods. Yet, the seminal works of
Szeliski and Zabih [1, 2] are leading examples in the sense of
presenting new metrics and methodologies of performance
evaluation of stereo and motion techniques. Another related
work [3] has presented a design of an experimental setup for
performance evaluation of stereo techniques in telepresence.
This setup uses a 3D scanner for providing the ground truth
for performance evaluation of stereo techniques.

In this paper, we extend the evaluation domain to include
different 3D reconstruction techniques based on common
reference, common methodologies, and common quantifi-
cation measures.

Since, stereo and space carving [4] are standard 3D re-
construction techniques, we group them under common
testing methodology to examine their performance [5]. In
our research laboratory, we have developed a testing setup
that lends itself for generating calibrated sequences of images
and concurrently generates a reference 3D model using a 3D
laser scanner. This gives the possibility of using the scanner
output as ground truth to the evaluation process. However,
in this paper, we chose to reduce the dimensionality of the
evaluation problem by considering the generated images as
ground truth. Of course, it is desirable to test the given 3D
data in its original domain provided that the 3D reference
data are generated in error-free form [6]. However, this may
not be achievable in most cases. For example, the projection
of laser in 3D laser scanners is not guaranteed on all surfaces
such as hairlike surfaces. In addition, self-occluding objects
could not be well reconstructed [7]. Therefore, additional al-
gorithms are necessary to compensate for errors in the refer-
ence data.
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The testing strategy that we use depends on reproject-
ing the generated 3D model to similar views of input im-
ages, then comparing these reprojections to the input images.
The idea of reprojection is not new [3, 8], however, we use
this methodology under unified framework for performance
evaluation of different 3D reconstruction techniques. This
framework includes a general problem formalization, differ-
ent measuring criteria, and a classification criterion as a first
step in standardizing the evaluation process.

To quantify the performance, we used different image
quality measures with different assessment philosophies. The
dynamic ranges of these measures are modified to facilitate
the comparison process.

The rest of this paper is organized as follows. Section 2
describes the data acquisition system we use to generate the
input data. Section 3 presents the performance evaluation
framework and describes the testing methodology and the
quality measures. Section 4 provides the experimental results
and Section 5 provides the conclusion and the future work.

2. DATA ACQUISITION SETUP

The experimental setup consists of a 3D laser scanner and a
CCD camera mounted on a metal arm of multiple joints that
is attached to the scanner head. A monocolor, usually black,
screen is attached to the scanner head facing the CCD cam-
era such that the screen appears as a fixed background to the
object under reconstruction. The structure of the monocolor
screen as well as the motion mechanism of the scanner fa-
cilitate the object segmentation task. The shaft over which
the scanner head is mounted is controlled in terms of speed
and angle of rotation to capture a number of N; images
Io, I, ..., In,—1 at specific locations on a circular path. Mean-
while, the scanner generates a 3D reference model.

The calibration process [9, 10] attempts to estimate the
camera parameters at each point in the circular path where
the images are acquired. The camera is calibrated at the ini-
tial position to determine the projection matrix Py. Assum-
ing that the camera rotates by a step-rotation angle «, the
projection matrix can be determined at each position as

cos(ka) 0 sin(ka) 0
0 1 0 0

Pe=Po| _ sin(ka) 0 cos(ka) 0|’ (1)
0 0 0 1
wherek = 1,2,...,N;—1. Asaresult, a sequence of calibrated

images is generated. These images are used as inputs to the
vision technique under test.

Since the rotation angle of the scanner head is preas-
sumed, subsequent calibration errors could result if the ac-
tual rotation of the head did not follow the preassumed ro-
tation. As a result, we put an upper bound on the rotation
angle error. The system setup has to be accurate to the limit
of this upper bound, otherwise, subsequent errors could af-
fect the accuracy of the evaluation process. This upper limit is
a function of the calibration parameters, the rotation angle,

and the 3D coordinates of a given 3D reconstruction [11]. To
ensure errors less than =0.5 pixel in reprojected images, our
experimental results show that an error up to 0.2 rad between
the actual rotation and the preassumed rotation is permis-
sible since most commercial 3D laser scanners can achieve
0.1 rad accuracy. For more details about the system, we refer
the reader to [11].

3. PERFORMANCE EVALUATION FRAMEWORK

In this section, a general formalization of the evaluation
problem is presented, followed by a proposed classification of
evaluation techniques. In addition, a performance evaluation
methodology for 3D reconstruction techniques is described.

3.1. Problem formalization

Formally, we want to solve the following problem: given (i) a
set M C R3 of 3D data points of an object generated by a 3D
reconstruction technique X and (ii) a set § of ground truth
data points of the same object, quantify the performance of
technique X.

In general, to solve this problem, three main components
should be available: (i) an experimental test bed for collecting
data, (ii) preevaluation techniques for preparing data for the
evaluation process with minimal undesirable effects on the
given data, and (iii) a performance evaluation methodology
and a measuring criterion. If the ground truth data points are
3D points, then a pre-evaluation 3D registration function or
transformation ¥ is required to minimize the energy func-
tion E defined as

E=Zd§(m,~€w{,}‘(g,~eg,)), )

where dg denotes the Euclidean distance. In the Euclidean
space, ¥ has 6 degrees of freedom (DOF): three for rotation
and three for translation. Otherwise, if ground truth data set
is a set of 2D points or 1D parameters, then a new data set D
derived from the given data set M is needed to be matched
with . The data set O is derived from the given data set M
according to the transformation or criterion C as

D={d:d=Cme M),deR", ne{1,2}}. (3)

An example of the criterion C is the camera projection ma-
trix that transforms 3D data points into 2D image points.

Considering the evaluation problem as a matching prob-
lem [12], we can define the error criterion &(7,d, g) as

0 if d matches g, @

1 otherwise,

&(7,d,g) =<|

where 7 : § — D is a matching criterion. The error ratio
(E,) is defined as

z,irod(g)fl &(T,dig)

Er= card (&(7,4d,g))

(5)
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where card(&) is the cardinality of &. The matching crite-
rion 7 could be one-to-one mapping or many-to-one map-
ping. An example of the later case is the closest point crite-
rion where a point in the measured data could be matched
to many points in the ground truth data because the mea-
sured point could be the closest point to such ground truth
points. A one-to-many matching case could happen if the
cardinality of the measured data is greater than the cardinal-
ity of the ground truth data. In this case, false matching and
hence nonzero errors are expected. The following proposi-
tion states this case.

Proposition 1. If card(D) > card(4) and if T exists such that
T:6 - D, thenE, +0.

Proof. Since card(D) > card($), then 7 is not an injective
mapping, then at least one point g; € § is matched to a subset
D; C D where card(D;) > 1, then false matching is guaran-
teed, hence the nonzero error result. O

The above proposition provides a preliminary evaluation
method since it expects errors if the cardinality of the data
under test is greater than the cardinality of the ground truth
data.

3.2. (Classification of evaluation techniques

Seeking for a standardization to the evaluation problem com-
ponents, we propose a classification criterion based on which
we can classify different tests that measure the performance
of 3D reconstruction techniques. Based on this classification,
it will be easy to qualify new proposed tests and identify the
goals and benefits of applying such tests to vision techniques.
In addition, the classification could lead to a clue about the
importance of applying these tests.

The proposed classification is based on four sets: the op-
erating conditions set A, the complexity of data analysis set
B, generality of measures set C, and the position of the test
point set D.

Operating conditions set

Based on the operating conditions, we can identify two types
of tests.

(i) Dynamic tests: in this type, the test is performed under
different conditions of lighting, interference, calibra-
tion, and object complexity. These tests should mea-
sure the immunity of the vision technique to varia-
tions.

(i) Static tests: in this type, the test is performed under
constant conditions. Actually these tests investigate the
basic functionality of the vision technique.

Complexity of data analysis set
Tests could be quantitative or qualitative.

(1) Quantitative tests: massive data are analyzed by these
tests, statistical analysis can be a part of these tests.
A test is said to be quantitative if the data set under-
test M, where M; C M, has cardinality > 3 card(M)
where 8 > 0.5.

(i1) Qualitative tests: the objective of these tests is to pro-
vide a quick figure of merit of the performance of the
vision technique under test. In this case, M ; has cardi-
nality < y card(M) where y < 0.5.

Generality of the measure set

Measures could be global or local, hence we have two type of
tests.

(i) Global tests: these tests provide a single measure of the
overall performance of the vision technique under test.
Such types of tests are of great importance because
they give a final decision on the technique’s perfor-
mance.

(i) Local tests: these tests investigate the local errors pro-
vided by the vision technique. Using local measures
provided by the test, enhancement of the technique’s
performance could be possible.

Position of the test point set

Data can be tested in a form of 3D data, a form that results
after applying a certain transformation to the 3D data, or a
form that requires a certain transformation or criterion to get
the 3D data form. Based on this forms, we have three types
of tests

(i) Type I tests: these tests are applied directly to the data
set M. This means that transformation C is unity.
These tests are highly trusted because they work di-
rectly on 3D data sets avoiding errors introduced by
such transformations.

(ii) Type I*: unlike type I, these tests are applied to the
data set D generated by applying the transformation
C to data set M. Errors should be predicted due to this
additional transformation step. As a result, these tests
may underestimate the performance of the given tech-
nique under test. An example of this type is testing the
data in the form of 2D intensity images.

(iii) TypeI~:like type I, these tests are applied to the mea-
sured data set, however, a step before getting the data
set M. Overestimation of the performance is predicted
when using this type of tests because we test data in a
form prior to the 3D form. An example of this type is
testing the data in the form of disparity maps, the form
of data that needs further transformation or criterion
to get the 3D data form.

Based on the preceding classification a number of

card(A) x card(B) X card(C) x card(D) (6)

different tests can be accomplished under this classification.
The next proposition generalizes the above formula.

Proposition 2. For disjoint test sets X1, X2,. .., X, there ex-
ists

card (X;) x card (X;) X - - - X card (Xk) number of tests.
(7)
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Proof. It is a generalization to the above formula. O

According to the above classification, there are 2 X 2 X 2 X
3 = 24 different types of tests.

3.3. Image reprojection testing methodology and
measuring criteria

Different performance evaluation techniques could be pro-
posed to investigate the performance of a given 3D recon-
struction technique. In our previous work [6], we introduced
a technique for local quality assessment of 3D reconstruc-
tions. Using this technique, we analyze the performance in
the 3D domain with ground truth data being generated us-
ing the setup presented in Section 2. This type of test is clas-
sified as quantitative, dynamic, local, and type I. Since type
I tests manipulate 3D data and assume the availability of 3D
ground truth data and accurate methods for 3D data regis-
tration [13], their use could be limited. Types I" and I~ tests
could be alternatives to avoid such difficulties related to type
I tests.

Here we introduce an example of type I* tests, the image
reprojection test. This test uses calibrated sequence of im-
ages captured for the object under reconstruction as ground
truth data. A corresponding sequence of images is generated
by reprojecting the 3D reconstruction under test to the same
views as of ground truth images. Different measuring criteria
are presented to quantify the similarities/dissimilarities be-
tween such sets of images. Three measures are presented: the
signal-to-noise ratio (SNR), the inverse fuzzy image metric
(IFIM), and the modified image quality index (Qy,).

Signal-to-noise ratio

SNR is a mean-squared (/,-norm) error measure [14]. SNR is
defined as the ratio of average signal power to average noise
power. Assuming that § and D are two M X N images repre-
senting a ground truth image and a data image, respectively,
the signal-to-noise ratio (SNR) is defined as

Zi,jg(i,j)z
. —z ] @
> (g, j) —d(, )
for0 <i<M—-1and0 < j < N — 1, where g(j, j) denotes

the intensity of pixel (i, j) of the standard image and d(i, j)
denotes the intensity of pixel (i, j) of the data image.

SNR(dB) = 10log,, (

Inverse fuzzy image metric

A fuzzy image metric (FIM) [15], defined based on Sugeno’s
fuzzy integral, can be used as a quality metric instead of SNR
measure. While the SNR measure is commonly used in eval-
uating image quality to certain extent, it fails to be consistent
with human visual perception. On the other hand, the fuzzy
image metric (FIM) has the ability to reflect the human vi-
sual perception [15].
The two images D and § can be written as 1D arrays
denoted by
D = (di,da,...,dyxn)»

G = (g,8-->guxn), (9)

where 0 < g;, d; < 1 (after normalization).

The FIM is defined as

FIM = max min (é,y(N,mSOg - ch|)>), (10)

0=<i<255

where pu({-}) = card({-})/MxN and N;(f) = {x | f(x) = I}.

The FIM measure has a dynamic range of [0, 1] where
the smaller values indicate high-quality images. We propose
the inverse fuzzy image measure (IFIM) which has better dy-
namic range than FIM for better comparison with SNR mea-
sure. The IFIM is defined as follows:

IFIM = 10log ﬁ (11)

The IFIM has a lowest value of 0 dB with higher values indi-
cating better quality images.

Image quality index measure

Wang et al. [16] proposed a quality index which models im-
age degradation as structural distortion instead of errors.
This quality index is defined as

4044(3)(d)
(052 +042) ((8)° + (d)?)°

Q= (12)

where

(i) g and d are the means of § and D images, respectively,
(ii) 0, and 04? are the variances of § and O images, re-
spectively,
(iii) 0gq is covariance between § and £ images.

The dynamic range of Q is [—1,1]. The best value 1 is
achieved if and only if g; = d; fori = 1,2,...,M x N. This
quality index models any distortion as a combination of three
different factors: loss of correlation, mean distortion, and
variance distortion. To be consistent with above measures,
the Q measure is modified as

Qu = 10log(2+ Q), (13)

where Q,, is the modified quality index in decibels.

The above measures are applied to space carving and
stereo reconstructions to quantify their performance based
on the reprojection methodology. The procedure of the re-
projection test is outlined as follows:

(i) apply the vision algorithm under test to the acquired
sequence of images, the ground truth sets D, to gener-
ate the 3D data set M,

(ii) apply (1) to generate sets D of reprojected images,

(iii) apply (8), (11), or (13).

Based on the classification presented in the previous sec-
tion, the reprojection test is a quantitative, dynamic, global,
and type I test.
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SNR (dB)

O 1 1 1 1 1 1 1
5 10 15 20 25 30 35
View no.
—— 36 o 12
-e- 18 -*- 9

FiGURrE 1: The SNR values at different views when the number of
input images to the space carving is changed.

TaBLE 1: The effect of the number of input images on the perfor-
mance of space carving.

No. of input images Mean (dB) No. of voxels
36 9.190 81535
18 9.012 83233
12 9.000 83076
9 7.069 87591

4. EXPERIMENTAL RESULTS

In this section, we introduce examples of performance eval-
uation of two common 3D reconstruction techniques: space
carving and stereo. First, the performance of space carving is
examined when the number of input images and the camera
pose are changed. Second, we provide a preliminary compar-
ison of stereo and space carving techniques using different
measuring criteria.

4.1. Performance evaluation of space carving

In this section, we study the effect of the number of input im-
ages on the performance of space carving approach. A num-
ber of 36 (o« = 10°) images are acquired for a house object.
The space caving approach is applied to the acquired set of
input images. The image reprojection testing criterion is ap-
plied to the output reconstruction, then the SNR is computed
at each view. The experiment is repeated with different num-
bers of input images: 18, 12, and 9.

Figure 1 shows the SNR values for each view for differ-
ent numbers of input images. As shown in this figure, the
SNR values are almost the same for 36, 18, and 12 cases, how-
ever, they are lower in the case of 9 images. Table 1 shows the
arithmetic mean of SNR values in each case. It shows that
the mean of the 9-input case has the lowest value among the
other cases.

(e) ®

FIGURE 2: (a) and (b) Two input images of the house object. Re-
projected images of a 3D reconstruction by space carving given (c)
12 and (d) 9 input images. Difference images between the reprojec-
tions of 3D reconstruction and the input images at the same view
given (e) 12 and (f) 9 input images. The fattening effect is clearly
manifested in (f).

It can also be noted that the number of voxels in the out-
put reconstruction of the 9-input case is much higher than
the other cases. This indicates that 9-input reconstruction is
much fatter than the others, hence the degradation in the
SNR values. Figure 2 shows visual results of this fattening
problem. Figures 2a and 2b show two input images. Two re-
projected images at the same view as in Figure 2a are shown
in Figures 2c and 2d for the 12-input and 9-input cases, re-
spectively. These reprojected images are subtracted from the
original image in Figure 2a. The difference images are shown
in Figures 2e and 2f for 12- and 9-input images cases, re-
spectively. As shown in Figure 2f, the 9-input reconstruction
is fatter than the 12-input case. Actually, this is an inher-
ent problem in the space carving approach when the recon-
structed scene has large homogenous (same intensity) areas.
To overcome this fattening problem, the number of input im-
ages should be increased to put additional constraints on the
reconstructed shape.
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FIGURE 3: Reprojected images of a 3D reconstruction by space carv-
ing given 9 input images of (a) set S, and (b) set S4. Difference im-
ages between the reprojections of 3D reconstruction and the input
images at the same view given (c) set S, and (d) set Sy. The fattening
effect is reduced as shown in (d).

TaBLE 2: The effect of camera pose on the performance of space
carving.

Set S] Sz S3 S4
Mean (dB) 7.0691 7.1498 7.6933 8.1108

Changing the camera pose can also help in reducing the
fattening problem if we allocate more cameras/images to the
part of the scene under concern, that is, we relocate the cam-
eras/images while the number of input images remains fixed.

The set of 36 images are divided into 4 different subsets:
S1, S2, S3, and Sy, each of them contains 9 input images. The
results of S; set have been shown in the previous experiment
(Figures 2c and 2e). In sets S3 and Ss, we allocate 5 cam-
eras/images to the homogenous part of the house instead of
4 images allocated to the same part in sets S; and S,. Table 2
shows the mean values of SNR measure of these sets. It is
shown that allocating more images has enhanced the qual-
ity of the output reconstruction as it seems from SNR values
for sets S3 and S4 compared to S; and S;, even if the recon-
struction of S, is slightly enhanced. Reprojected images at
the same view as in Figure 2a for sets S, and S; are shown
in Figures 3a and 3b, respectively. The corresponding dif-
ference images are also shown in Figures 3c and 3d, respec-
tively.

4.2. Stereo versus space carving

A correlation-based stereo and the space carving algorithms
are applied to the acquired images. Applying the reprojec-
tion methodology to the reconstructions of stereo and space
carving, reprojected images are generated. Two input images

(c) (d)

FIGURE 4: (a) and (b) Two out of 12 images captured for a birdhouse
object. A reprojected image to the same view as in (a) by (c) space
carving and (d) stereo.

(out of 12) acquired for a birdhouse object are shown in Fig-
ures 4a and 4b. Figures 4c and 4d show reprojected images
of space carving, and stereo, respectively, at the same view
of Figure 4a. As shown, the space carving has better recon-
struction resolution than stereo. This is because the resolu-
tion of space carving can be controlled by the number of
voxels in the initial volume. However, stereo resolution de-
pends mainly on the success of the matching strategy in solv-
ing the correspondence problem. Dense reconstructions are
possible by stereo techniques, however, finding correct cor-
respondences is not guaranteed when homogenous, slanted,
or occluded surfaces are reconstructed. Removing such false
matchings causes the lower output resolution as shown in
the lower part of the house object in Figure 4d. Fitting of
such missed parts of the reconstruction could overestimate
(if successful fitting happened) or underestimate (if fitting
failed) the performance of the given 3D reconstruction tech-
nique. The quality of each reconstruction is also reflected by
the SNR values in Figure 5a.

The IFIM, and Q,, values of the 3D reconstructions of
both space carving and stereo are shown in Figures 5b and
5¢, respectively. These measures are consistent with the SNR
measure in judging the quality of the given 3D reconstruc-
tions. The curve of IFIM is smoother than that of SNR,
Figure 5a, and Qy,, Figure 5c, which agrees with the logic
that the variations in adjacent views are not too much. The
SNR measure has the advantage that the error and the signal
are explicit, then error analysis is feasible. The Q,, measure
still has similarity with SNR measures, even though there is
no explicit relation between the signal and the error. Actu-
ally, Q,, can be considered as a similarity measure. In other
words, it measures the deviations from the original signal.
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SNR (dB)

1 2 3 4 5 6 7 8 9 10 11 12
View no.

—©— Space carving
—&8—  Stereo

(a)

IFIM (dB)

1 2 3 4 5 6 7 8 9 10 11 12
View no.

—©— Space carving
—&— Stereo

(®)

Qu (dB)

—©— Space carving
—&- Stereo

7 8 9 10 11 12

View no.

FiGure 5: Quantifying the performance of both space carving and stereo using (a) the SNR measure, (b) the IFIM measure, and (c) the Q,,

measure.

Although, the IFIM is consistent with the other measures, it
depends on a different philosophy. It is designed to resemble
the human sensing of quality. Even if it is not clear how this is
included in the measure, it is claimed that the FIM measure
has some features of the subjective measures [15].

5. CONCLUSION AND FUTURE EXTENSIONS

In this paper, we have proposed a framework for the perfor-
mance evaluation of 3D reconstruction techniques. Our goal
is to set the terminology and the definitions of the process
components as a starting step for standardizing and general-
izing the evaluation process.

In our research laboratory, we developed a testing setup
that helps bringing different 3D reconstruction techniques
under the same testing methodology. In this paper, we test
the performance of stereo and space carving based on the
same data set and using an image reprojection technique.
Different measuring strategies are used and they showed con-
sistent results in estimating the performance of stereo and
space carving techniques. It is shown by these measurements
that the space carving performance can be enhanced if the
number of input images is increased. In addition, we should
distribute cameras (images) in such a way that considers the
structure and the geometry of the given object under recon-
struction.
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A comparison example of space carving and stereo is in-
cluded in this paper. The results show that space carving has
better reconstruction than stereo. This is mainly because the
3D reconstructions by space carving have better resolution
than that of stereo. This also exploits the fact that resolution
of the 3D reconstructions using stereo is highly dependent
on the matching strategy used to solve the correspondence
problem.

The future work will focus on the design of other test-
ing strategies and extending the evaluation domain to in-
clude different 3D reconstruction techniques. In addition, we
will investigate if there is a link between the distribution of
the errors that appear in the reprojected images and actual
errors in the 3D space to validate the use of the images as
ground truth in testing methodologies of 3D reconstruction
techniques.
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