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An Application of MAP-MRF to Change Detection
in Image Sequence Based onMean Field Theory
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Change detection is one of the most important problems in video segmentation. In conventional methods, predetermined thresh-
olds are utilized to test the variation between frames. Although certain reasonings about the thresholds are provided, appropriate
determination of these parameters is still problematic. We present a new approach to change detection from an optimization
point of view. We model the video frames and the change detection map (CDM) as Markov random fields (MRFs), and formulate
change detection into a problem of seeking the optimal configuration of the CDM. Under the MRF assumption, the optimal solu-
tion, in the sense of maximum a posteriori (MAP), is obtained by minimizing the energy function associated with the MRF which
is designed by utilizing the prior knowledge of noise and contextual constraints on the video frames. An algorithm that computes
the potentials and optimizes the solution is constructed by applying the mean field theory (MFT). The experimental results show
that the new method detects changes accurately and is robust to noise.

Keywords and phrases: change detection, image processing, Markov random field, mean field theory, video segmentation.

1. INTRODUCTION

Content-based video processing has been widely studied and
is supported by a number of standards, such as MPEG-4 for
video object-based compression and MPEG-7 for video con-
tent description [1, 2]. These standards involve functional-
ities that rely on segmenting video sequences into semantic
regions or video objects. Change detection, which generates
an initial segmentationmask, usually constitutes the first step
of video segmentation [3, 4].

Much research effort has been devoted to change detec-
tion in recent years [5, 6, 7, 8]. Most existing approaches
focus on thresholding which contains two essential steps of
defining a metric function of intensity variation and choos-

ing a proper threshold to be applied to the metric function.
The key issue of these methods is to determine the thresh-
old. However, it is often problematic choosing the threshold,
since a large threshold removes noise as well as the signal
(change caused by motion), while a small threshold makes
the detection sensitive to noise. One way to determine the
threshold is to introduce contextual constraints. Aach pro-
posed a multiple-threshold approach from a framework of
maximum a posteriori (MAP) estimation [9]. Unfortunately,
this method in general does not provide a MAP solution, be-
cause the thresholds are chosen in a deterministic fashion.

In this work, we present a new approach from a strict op-
timization point of view. We consider the change detection
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problem in a global perspective. If we take the change de-
tection map (CDM) as a 2D binary random field, then la-
beling each pixel as “changed” or “unchanged” becomes a
problem of finding an appropriate configuration of this ran-
dom field. This concept may be implemented by employing
Markov random fields (MRF) theory, which is a well-known
model in describing image characteristics [10]. In general,
this theory says that the value of a random variable at one
site in a MRF is only affected by the values of variables at
its neighboring sites (determined by a neighborhood sys-
tem that is defined). If one can describe the interactions be-
tween the neighboring sites, then it is possible to obtain a
global description of the whole field. Moreover, if an a pri-
ori of image characteristics is applied in describing the in-
teraction between neighboring sites (pixels), then one may
obtain an optimal solution associated with the MRF in MAP
sense [11]. For the change detection problem, the interac-
tion between neighboring sites can be translated into con-
textual constraints between neighboring pixels. A simple ex-
ample would be the constraint of smoothness, which means
that the neighboring pixels of a changed/unchanged pixel are
likely to be changed/unchanged too. These contextual con-
straints come from prior knowledge of our assumption on
the image sequence being analyzed. Based upon this knowl-
edge, the CDM from a pair of frames can be appropriately
modeled asMRFs, by choosing the neighborhood system and
formulating the impact between the neighboring sites. The
rest of the task is then to search for a configuration of the
CDM that satisfies the MAP criterion. In the literature, there
are several methods to perform this search using, for exam-
ple, simulated annealing and iterative conditional mode al-
gorithms [12, 13]. The former aims at providing the global
extremum, but requires extensive computation; the latter re-
duces the computational cost, but may converge to a local
extremum. We adopt the mean field theory (MFT) approach
as studied recently in [14, 15], which trades off between these
two approaches.

This paper is organized as follows: Section 2 gives a
brief review of the related theories; Section 3 describes the
proposed methods and algorithms of change detection;
Section 4 presents the experimental results based on the pro-
posed method; and Section 5 provides a conclusion.

2. BACKGROUND THEORIES

Fundamentals of the MRF and the MFT are briefly intro-
duced in this section.

2.1. Markov randomfield theory in change detection

Let F̄ = {F1,2, . . . ,Fi, j , . . . ,Fm,n} be a 2D random array, where
Fi, j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, is a random variable at site
(i, j). Let S = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n} be the set of
all sites. Frame f̄ = { fi, j , (i, j) ∈ S} is a realization of F̄. Let
p( f̄ ) denote the joint probability density function (pdf) of
F̄ = f̄ , where p( f̄ ) = p{F̄ = f̄ } = p{Fi, j = fi, j , (i, j) ∈ S}.
Then, with the same notation, F̄ is a MRF if (1) p( f̄ ) > 0,
for all f̄ ∈ F̄, and (2) p( fi, j| fS′) = p( fi, j| fNi, j ), where

(i, j)

(a) (b) (c)

Figure 1: (a) A first-order neighborhood system, (b) single-site
clique, and (c) double-site cliques.

S′ = S − (i, j), with symbol “−” denoting exclusion, and
Ni, j = {(i′, j′)|(i − i′)2 + ( j − j′)2 ≤ k, (i′, j′) ∈ S′}, with k
being a positive integer. Ni, j defines the set of the kth order
neighboring sites of (i, j).With the definition ofNi, j , a clique,
denoted by c, is defined as a set containing single or multiple
sites that are connected within Ni, j , (i, j) ∈ S. Figure 1 illus-
trates an example of cliques of a first-order neighborhood,
where c may be a collection of single sites or double sites. It
was introduced in [16] that the joint pdf p( f̄ ) may be ap-
proximated by the Gibbs distribution:

p( f̄ ) = e−(1/T)U( f̄ )∑
f̄ e
−(1/T)U( f̄ )

, (1)

where T is a constant andU is an energy function of theMRF
given by

U( f̄ ) =
∑
c

Vc( f̄ ) (2)

with Vc’s being clique potentials or clique functions. The Vc

functions represent contributions to the total energy from
single-site cliques, double-site cliques, and so forth. Note that
(1) and (2) reflect the fact that the global identity p( f̄ ) is de-
termined by the local activities, namely, the clique potentials.
Considering the first-order neighborhood, we may rewrite
(2) into the following form [11]:

U( f̄ ) =
∑
(i, j)

{
V(i, j)

(
fi, j
)
+V{(i, j),(i+1, j)}

(
fi, j , fi+1, j

)

+V{(i, j),(i, j+1)}
(
fi, j , fi, j+1

)}
,

(3)

where the first, second, and third term are single-site,
horizontal double-site, and vertical double-site clique
potentials, respectively. Notice that for a double-site
clique {(i, j), (i′, j′)}, the associated clique potentials
V{(i, j),(i′, j′)}( fi, j , fi′, j′) and V{(i′, j′),(i, j)}( fi′, j′ , fi, j) are equal.
Therefore, (3) may be rearranged into

U( f̄ ) =
∑
(i, j)

{
Vc1

(
fi, j
)
+
1
2

∑
(i′, j′)∈Ni, j

Vc2

(
fi, j , fi′, j′

)}

=
∑
(i, j)

Ui, j
(
fi, j
)
,

(4)
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where c1 and c2 are single-site and double-site cliques in the
defined neighborhood, and Ui, j( fi, j) is the energy function
associated with site (i, j). As pointed out in [11], if p( f̄ ) is a
posterior distribution, minimizing the energy functionU( f̄ )
yields a MAP estimate of the joint pdf p( f̄ ).

2.2. Mean field theory

To make the MRF theory more practical, we need to intro-
duce the MFT. From the description of the MRF, we know
that the value assigned to a random variable in theMRF is af-
fected by the values at its neighboring sites, which are further
dependent on their neighbors. One way to calculate the inter-
action between one site and its neighbors is to apply theMFT
[14, 17], which assumes that the impacts from the neighbors
can be approximated by an average field.We denote themean
field for site (i, j) by f mf

i, j . As a result, if the first-order neigh-
borhood is considered, one may write the energy function
related to site (i, j) in the following form [14]:

Umf
i, j

(
fi, j
) = Vc1

(
fi, j
)
+

∑
(i′, j′)∈Ni, j

Vc2

(
fi, j , f mf

i′, j′
)
, (5)

where Vc1 (·) and Vc2 (·, ·) are potential functions of single-
site and double-site cliques, respectively; and f mf

i′, j′ is themean
field for fi′, j′ . Then, the marginal distribution of the MRF at
site (i, j) may be approximated by [14]

p
(
fi, j
) = 1∑

fi, j e
−(1/T)Umf

i, j ( fi, j )
e−(1/T)U

mf
i, j ( fi, j ). (6)

As seen from (4) and (5), the energy function is decom-
posed into local computations, where each site is treated in-
dependently. Therefore, the joint pdf p( f̄ ) can be approxi-
mated by

p( f̄ ) ≈
∏
i, j

p
(
fi, j
)
. (7)

Then, maximizing p( f̄ ) is equivalent to maximizing each
p( fi, j), or, to minimizing the corresponding Umf

i, j ( fi, j).

In order to evaluate Umf
i, j ( fi, j), the mean field values f mf

i′, j′

at the neighboring sites (i′, j′) withinNi, j must be computed.
The general way to calculate a mean field value is by the fol-
lowing form:

f mf
i, j =

∑
fi, j

fi, j · p
(
fi, j
)
. (8)

Note that (8) requires the evaluation of p( fi, j), henceforth,
Umf

i, j ( fi, j). Therefore, the computation of the mean field value
is usually carried out by iteration that stops when the change
of the results from two consecutive iterations is sufficiently
small.

3. MRF CHANGE DETECTIONMETHOD

3.1. MAP-MRF in change detection

We denote the CDM by H̄ = {H1,2, . . . ,Hi, j , . . . ,Hm,n}, and
h̄ = {h1,2, . . . ,hi, j , . . . ,hm,n} a configuration of H̄ , where
hi, j ∈ {−1, 1}, (i, j) ∈ S with “−1” denoting unchanged and
“1” denoting changed. Then, given two frames f̄ (0) and f̄ (1),
our goal is to find the optimal h̄∗ in theMAP sense, such that

h̄∗ = argmaxh̄ p
(
h̄| f̄ (0), f̄ (1))

= argmaxh̄
p
(
f̄ (1)| f̄ (0), h̄) · p(h̄| f̄ (0))

p
(
f̄ (1)| f̄ (0))

= argmaxh̄ p
(
f̄ (1)| f̄ (0), h̄) · p(h̄| f̄ (0)).

(9)

Applying MRF assumption on both F̄ and H̄ , maximiz-
ing p(h̄| f̄ (0), f̄ (1)) with respect to h̄ is equivalent to minimiz-
ing its energy function U(h̄| f̄ (0), f̄ (1)). This, as suggested by
(9), can be accomplished by minimizing the energy func-
tions U( f̄ (1)|h̄, f̄ (0)) and U(h̄| f̄ (0)), which are associated
with p( f̄ (1)| f̄ (0)) and p(h̄| f̄ (0)), respectively. U( f̄ (1)|h̄, f̄ (0))
addresses the potential of the likelihood between f̄ (1) and
f̄ (0) with the knowledge of h̄, that is, whether the sites are
changed. And, U(h̄| f̄ (0)) is always considered to represent
the spatial domain constraints, for example, the smoothness
or similarity between neighboring sites. Therefore, a general
form of the prior model of these energy functions is

U
(
h̄| f̄ (0), f̄ (1)) = γ f U

(
f̄ (1)|h̄, f̄ (0)) + γhU

(
h̄| f̄ (0)), (10)

where γ f and γh are regularization parameters. The larger the
regularization parameter values, the more the corresponding
constraint is emphasized.

Equivalently, we can write (10) by

U
(
h̄| f̄ (0), f̄ (1)) = γ f

[
U
(
f̄ (1)|h̄, f̄ (0)) + γU

(
h̄| f̄ (0))], (11)

where γ = γh/γ f . It is noticed that to minimize
U(h̄| f̄ (0), f̄ (1)) with respect to h̄ is equivalent to minimizing
U( f̄ (1)|h̄, f̄ (0)) + γU(h̄| f̄ (0)). Therefore, we define the energy
function in the following form:

U
(
h̄| f̄ (0), f̄ (1)) = U

(
f̄ (1)|h̄, f̄ (0)) + γU

(
h̄| f̄ (0)). (12)

In order to design the above energy functions, one needs
to employ the prior knowledge. In our application, the prior
knowledge includes the distribution of the frame difference
in the absence/presence of changes and the assumption of
the similarity between immediate sites (pixels). There are no
specific routines in designing potential functions. In general,
as indicated in [10], the formulation of a potential function
should maintain consistency with the prior knowledge: if the
formulation of the regions in a clique tends to be consistent
with the prior knowledge, the value of the energy function
decreases; otherwise, the value increases.
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In change detection, we interpret U( f̄ (1)|h̄, f̄ (0)) as the
sum of single-site clique potentials, which is

U
(
f̄ (1)|h̄, f̄ (0)) =∑

c1

Vc1

(
f̄ (1)|h̄, f̄ (0))

=
∑
i, j

Vc1

(
f (1)i, j |hi, j , f (0)i, j

)
,

(13)

where Vc1 is selected to be

Vc1

(
f (1)i, j |hi, j , f (0)i, j

) = − ln
(
p
(
di, j | hi, j

))
(14)

which is the negative of the natural logarithm of the pdf of

the absolute frame difference di, j = | f (1)i, j − f (0)i, j | at site (i, j) ∈
S, given the knowledge of hi, j . Therefore, if di, j is consistent
with the prior belief, the conditional probability will be high.
As a result, its logarithm value will be low, and vice versa,
as required by the design rules. Choosing the natural loga-
rithm is instinctive. First, more penalty would be assigned to
smaller probability, for example, when probability is close to
zero, the value of energy function would be extremely large.
Second, considering p( f̄ (1)| f̄ (0), h̄ = −1), which is equiva-
lent to the pdf of frame difference caused by noise, we may
assume p( f̄ (1)| f̄ (0), h̄ = −1) = ∏

i, j p(di, j | hi, j = −1), or∏
i, j Zi, j · e−(1/T)Vc1 ( f

(1)
i, j |hi, j=−1, f (0)i, j ) = ∏

i, j p(di, j | hi, j = −1),
where Zi, j are normalization constants. Furthermore, if the
noise distribution p(di, j | hi, j = −1) also has an exponential
form, such as Gaussian and Laplacian, we may reasonably
take the natural log on both sides of the above equation to
get the potential function. For the case of hi, j = 1, that is,
with the presence of change, the independence assumption
may not hold in general. However, this assumption can be
accepted as a reasonable simplification to trade off computa-
tional complexity [18]. Therefore, the above reasoning may
also apply to the case hi, j = 1. The collection of prior knowl-
edge will be described in Section 3.2.

The other energy function U(h̄| f̄ (0)) in (10) addresses
the contextual constraints on the neighboring sites. This can
be explained as follows: with the knowledge of f̄ (0), we want
to obtain h̄ that complies with the properties of f̄ (0), for ex-
ample, the continuity of h̄ if we assume that f̄ (0) is smooth.
Based upon this reasoning, we define

U
(
h̄| f̄ (0)) =∑

i, j

∑
c2⊂Ni, j

Vc2

(
h̄| f̄ (0))

=
∑
i, j

{
1
2

∑
(i′, j′)∈Ni, j

Vc2

(
hi, j ,hi′, j′

)}
,

(15)

where c2 is a double-site clique in a first-order neighborhood
Ni, j at site (i, j) ∈ S. The scaling factor 1/2 has been explained
in (3) and (4). The clique potential Vc2 (·, ·) is defined as

Vc2

(
hi, j ,hi′, j′

) = − ln
(
1− 0.5

∣∣hi, j − λ · hi′, j′
∣∣), (16)

where λ ∈ (0, 1) is a constant representing the impact of site
(i′, j′) on site (i, j). The reasons behind this design are (1)

we want the state of site (i, j) to agree with its neighboring
sites; (2) the logarithm form is consistent with that in (14).
The term 1 − 0.5|hi, j − λ · hi′, j′ | acts as a probability of the
random variable at site (i, j) when its value agrees with those
at its neighboring sites. Therefore, this definition also follows
the design rules stated previously.

To minimize U(h̄| f̄ (0), f̄ (1)), we must evaluate the clique
potential functions. A question now is how to calculate
Vc2 (hi, j ,hi′, j′). As mentioned previously, we may apply MFT
to simplify this calculation. If the first-order neighborhood
system is assumed, we have the following approximation:

U
(
h̄| f̄ (0)) ≈∑

i, j

∑
(i′, j′)∈Ni, j

Vc2

(
hi, j ,hmf

i′, j′
)
, (17)

where

Vc2

(
hi, j ,hmf

i′, j′
) = − ln

(
1− 0.5

∣∣hi, j − λ · hmf
i′, j′
∣∣). (18)

Combining (10)–(18), we have

U
(
h̄| f̄ (0), f̄ (1)) ≈∑

i, j

Umf
i, j

(
hi, j| f (0)i, j , f

(1)
i, j

)
, (19)

where

Umf
i, j

(
hi, j| f (0)i, j , f

(1)
i, j

)
= − ln

(
p
(
di, j | hi, j

))

−

γ ∑

(i′, j′)∈Ni, j

ln
(
1− 0.5

∣∣hi, j − λ · hmf
i′, j′
∣∣)

.

(20)

Essentially, to minimize U(h̄| f̄ (0), f̄ (1)), we only need to
evaluateUmf

i, j (·) at each site (i, j), and choose hi, j between−1
and 1 to render a smaller value of Umf

i, j (·).
3.2. TheMRF change detection algorithm
Equation (20) requires evaluation of p(di, j|hi, j), (i, j) ∈ S.
Instead of collecting the pdf for each site, we utilize the same
pdf, denoted by p(d|h), for all sites, where d and h have the
same sample spaces as di, j and hi, j , respectively. This choice
is motivated from a practical point of view, since it would
be extremely expensive to allocate memory for p(di, j|hi, j) for
each (i, j) ∈ S. When h(i, j) = −1, this approximation can
be justified because the value differences of unchanged sites
are driven by noise, which is usually considered to be in-
dependently and identically distributed. For moving pixels,
the above assumption is not true in general. However, if we
assume that each pixel may experience the same or similar
amounts of motion, the validity of using p(d|1) for all the
sites is also justifiable.

To train p(d|−1), we utilize the video segments contain-
ing motionless scenes. This is relatively easy to accomplish
in many applications, such as in surveillance and teleconfer-
ence videos. In general, it is difficult to train p(d|1); how-
ever, it is possible to train a prototype for specific applica-
tions. Practically, we adopt the following strategy to calculate
p(d|1): first, p(d|1) is initialized to be a uniform distribution
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across the entire range of its sample space, that is, p(d|1) =
1/(L + 1), d ∈ [0,L] for a discrete case; then, starting with
the initial value, we adapt p(d|1) during a detection process,
using the following equation:

p(r)
(
d|1) = (1− ε · ρ) · p(r−1)(d|1) + ε · ρ · p(r)d|1, (21)

where p(r)(d|1) and p(r−1)(d|1) are the pdf p(d|1) adapted
from frame 1 to frames r and r − 1, respectively, p(r)d|1 is the
pdf of the changed pixels contained in frame r, ρ is the ratio
of the number of changed pixels to the total number of pixels
in that frame, and ε ∈ (0, 1) is a control parameter. The term
ρ reflects the intuition that the more changed pixels there are,
the more p(d|1) should be adapted. Parameter ε is designed
to control the rate of adaptation.

An important question now is how the mean field value
hmf
i, j , (i, j) ∈ S is evaluated. As mentioned before, the mean

field value is usually computed iteratively until it converges.
As described in Section 2.2, with the local energy function

Umf
i, j (hi, j| f (0)i, j , f

(1)
i, j ), h

mf
i, j can be evaluated by

hmf
i, j =

∑
hi, j

hi, j · e−(1/T)U
mf
i, j (hi, j | f (0)i, j , f

(1)
i, j )∑

hi, j e
−(1/T)Umf

i, j (hi, j | f (0)i, j , f
(1)
i, j )

. (22)

Applying (20), we have

e−(1/T)U
mf
i, j (hi, j | f (0)i, j , f

(1)
i, j )

=

p(d|h) ·


 ∏

(i′, j′)∈Ni, j

[
1− 0.5

(
hi, j − λhmf

i′, j′
)]

γ


1/T

.

(23)

Note that the computing time can be greatly reduced by using
(23). The iteration continues until the following condition is
satisfied:

1
m · n

∑
i, j

∣∣hmf
i, j (k + 1)− hmf

i, j (k)
∣∣ < θ, (24)

where k is the index of iteration,m · n is the total number of
pixels, and θ ∈ (0, 1) is a chosen threshold.

With these assumptions and simplifications, we present
Algorithm 1 to implement the proposed model.

4. IMPLEMENTATION AND EXPERIMENTS

In this section, the experimental results based on the pro-
posed method are reported. We present the results of two
types of data: a synthetic image sequence generated by us-
ing Matlab (version R12, MathWorks Inc., Mass) and a se-
lected set of the reference MPEG test sequences available
in the public domain (e.g., http://sampl.eng.ohio-state.edu/
∼sampl/database.htm, http://www.neuronet.pitt.edu/∼qliu/
Links.htm). All the sequences are in the QCIF format (144×
176 in size). Only the Y component is utilized to calculate
frame differences.

Step 1. Load p(d| − 1) and initialize
p(d|1) = 1/256, for d = 0, 1, . . . , 255.
Assign values to γ, λ, ε, and θ.

Step 2. Take two frames f̄ (0) and f̄ (1), and
calculate d̄ = | f̄ (0) − f̄ (1)|; initialize
mean field values h̄mf , where for each
pixel (i, j), hmf

i, j = 0.
Step 3. For each pixel (i, j), evaluate (20) with

hi, j = −1 and 1, and calculate the new
mean field value by (22) and (23).

Step 4. Evaluate the difference between the new
mean field value and the previous one
as defined in (24); if the difference is
less than θ, then go to next step,
otherwise go to step 3.

Step 5. For each pixel, if the local energy
Umf

i, j (hi, j = −1| f (0)i, j , f
(1)
i, j ) > Umf

i, j (hi, j =
1| f (0)i, j , f

(1)
i, j ), then label pixel (i, j)

unchanged, otherwise changed.
Step 6. Update p(d|1) by (21); finish if all the

frames are done, otherwise go to step 2.

Algorithm 1: MRF-MFT change detection algorithm.

Table 1: Typical control parameters.

Parameter T γ λ ε θ

Value 2 1 0.99 0.5 0.05

As described previously, five controlling parameters T , γ,
λ, ε, and θ are required. Table 1 lists typical values of these
parameters, which were chosen experimentally and utilized
for all the test sequences. In the following, we describe these
parameters individually.

(i) T is called “temperature” in MRF-based methods, for
example, simulated annealing algorithm [12]. This pa-
rameter determines the spread of the Gibbs distribu-
tion. The larger the T , the more it spreads. In sim-
ulated annealing, T is gradually decreased. However,
as suggested by [19], a fixed T is able to render a
satisfactory result while reducing the computational
cost. Therefore, a constant T was utilized throughout
our experiments.

(ii) γ is a regularization parameter to balance the con-
straints introduced by different clique potentials.
In our application, a large γ value emphasizes the
smoothness constraint.

(iii) λ models the impact between neighboring sites. In
(16), hi, j − λhi′, j′ is utilized to represent the difference
between neighboring sites (i, j) and (i′, j′). The value
of λ controls the degree of impact from (i′, j′).

(iv) ε is utilized to control the adaptation of the pdf of d in
the presence of change. The larger the value of ε, the
more the pdf adapts to each CDM, and the faster the
adaption to test data. However, considering the risk of
false detection, we assign ε a moderate value.

(v) θ provides a stop threshold in the calculation of the
mean field values.

http://sampl.eng.ohio-state.edu/$sim $sampl/database.htm
http://sampl.eng.ohio-state.edu/$sim $sampl/database.htm
http://www.neuronet.pitt.edu/$sim $qliu/Links.htm
http://www.neuronet.pitt.edu/$sim $qliu/Links.htm
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(a) (b) (c) (d)

Figure 2: (a) Frame 1, (b) frame 2, (c) frame 35, and (d) frame 36.
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Figure 3: The upper plots represent the change detection results from frames 1 and 2: (a) the known CDM, (b) the detected CDM, and (c)
p(d|h = −1) and initial p(d|h = 1). The subplot embedded in (c) shows a close-look of the marked region (by the dashed line). The lower
plots represent the change detection results from frames 35 and 36: (d) the known CDM, (e) the detected CDM, and (f) p(d|h = −1) and
p(d|h = 1) (adapted from frames 1 ∼ 35).

4.1. Synthetic data

To evaluate the new change detection method quantitatively,
we generated a synthetic image sequence by using Matlab in
the following way: a circle (with a radius of 20, line width of
3, both in pixels, and gray-level intensity of 5) is plotted in a
frame; then, white Gaussian noise with mean 127 and stan-
dard deviation 1.6 is added to each frame. It should be noted
that the signal-to-noise (SNR) ratio of the synthetic data, de-
fined as 20 log(circle intensity/noise standard deviation), is
less than 10dB, which is much lower than the SNR in most
natural videos. The coordinates of the origins were ran-
domly generated. Two pairs of sample frames are shown in

Figure 2. We denote the ground truth CDM by h̄(r), the de-
tected CDM by h̄(t), and the set of sites with false labels by

Se = {(i, j)|h(r)i, j �= h(t)i, j , (i, j) ∈ S}. The error rate is then
defined as

Er =
∥∥Se∥∥
‖S‖ , (25)

where ‖Se‖ and ‖S‖ denote the number of sites in Se and S,
respectively.

Figure 3 demonstrates the results of the synthetic data.
The upper plots show the results obtained from frame 1 and
2. Figures 3a, 3b, and 3c show the ground truth CDM, the
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(a) (b) (c) (d)

Figure 4: (a), (b) The CDMs detected by “quadratic picture function” (QPF) method: (a) CDM from frames 1 and 2; (b) CDM from frames
35 and 36. (c), (d) The CDMs detected by the method of De Geyter and Philips (M3method): (c) CDM from frames 1 and 2; (d) CDM from
frames 35 and 36.
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Figure 5: The error rates of our methodMRF, the quadratic picture
function method (QPF), and the method of De Geyter and Philips
(M3).

detected CDM, and p(d|h = −1) and the initial p(d|h =
1), respectively. Compared with the ground truth CDM, the
detected CDM has visible false detections. However, with the
adaption of p(d|h = 1), the false detections are reduced. As
seen in the lower plots, where the results were obtained from
frame 35 and 36, the detected CDM Figure 3e contains much
less false detections. In Figure 3f it can be seen that p(d|h =
−1) was kept intact because of the assumption of stationary
noise, but p(d|h = 1) was adapted to a bell-shaped function
according to (21).

To demonstrate the robustness of the MRF approach,
we compare it with two existing methods, quadratic picture
function (QPF) method developed by Hsu et al. [6], and a
novel method (“Method 3,” abbreviated as M3 in the fol-
lowing) recently presented by Geyter and Philips [20]. In
the former method, the threshold value of 5.76 was selected,

which corresponds to a significant level of 0.005. In the lat-
ter method, the parameters α, β, and z (see [20]) were set
to 0.5, 0.9, and 3, respectively. The parameter k in M3 was
tested from 2 to 5 and k = 4 was selected, which produced
the best overall performance for the test sequences. These pa-
rameter values were utilized for all the test sequences (syn-
thetic and natural). The results of QPF and M3 methods
are illustrated in Figures 4a-4b and 4c-4d, respectively. Com-
pared with the CDMs shown in Figure 3, these two meth-
ods appear to be more sensitive to the simulated noise. The
error rates of the three methods are illustrated in Figure 5,
which shows that the MRF method performed better than
the two existing methods in terms of less false detection. It
is seen that the error rate of the MRF method decreases as
frames 1 through 30 are being processed, then becomes sta-
ble after that. The reason is that p(d|h = 1) adapts gradually
to the test data at the initial frames, and then becomes sta-
tionary. The adaptation speed is quite satisfactory for most
common applications, as indicated by our results using other
videos.

4.2. Real-world data

In this section, experimental results on selected MPEG test
sequences are presented. Change detection was carried on
these sequences at a rate of 10 frame pairs per second. First,
we report the experiment onMother &Daughter sequence by
the proposed method. Figure 6 shows frames 58 through 91
which contain both large motions (e.g., hand movement in
frame 58 and 61) and small motions (e.g., chest and shoul-
der movements). The detected CDMs are shown in Figure 7.
It can be seen that the stationary background and the mov-
ing objects are well distinguished. The background area is
quite clean, indicating that the MRF method is robust to the
salt and pepper noise contained in this sequence. Figure 8
depicts the pdf ’s calculated from this sequence. While pdf
p(d|h = −1) was calculated from a background area that
was manually selected, pdf p(d|h = 1) was initialized and
then adapted in the change detection process as described
previously. Figure 8 shows the pdf ’s calculated progressively
at frames 1,60, 300, 600, and 900.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6: Frames ofMother & Daughter sequence. (a)–(l) Frames 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, and 91.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7: The detected CDMs from frames 58 through 91 of Mother & Daughter sequence, using the parameter values listed in Table 1.
(a) (58, 61), (b) (61, 64), (c) (64, 67), (d) (67, 70), (e) (70, 73), (f) (73, 76), (g) (76, 79), (h) (79, 82), (i) (82, 85), (j) (85, 88), (k) (88, 91),
and (l) (91, 94).
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Figure 8: The pdf ’s obtained from Mother & Daughter sequence. (a) p(d|h = −1) and p(d|h = 1) at frames 1, 60, 300, 600, and 900.
(b) A close look at the pdf ’s in the marked range (by the dashed line) in (a).

Figure 9: Experimental results of test sequenceMiss America. From top to bottom: frames 75, 78, 81, and 84; CDMs detected by our method,
by the QPF method, and by the M3 method.
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Figure 10: Experimental results on test sequence Container. From top to bottom: frames 252, 255, 258, and 261; CDMs detected by the MRF
method, by the QPF method, and by the M3 method.

In the following, the comparisons with QPF and M3
methods are reported. Several representative change detec-
tion results on Miss America, Container, Table Tennis, and
News are shown in Figures 9–12. In the selected frames of
Miss America (Figure 9), the subject’s head and body were
moving to her left. It can be observed that the CDMs de-
tected by the MRF approach reflected this motion, where
changes in the face region were very well detected. The results
from QPF captured most of the changes; however, the dis-
turbance from noise appeared in the background area. The
CDMs detected by M3 had certain errors and also suffered
from noise.

The results on the container sequence, a typical outdoor
video, are presented in Figure 10. In the sample frames, the
container was moving slowly to the right and two birds flew
by quickly from the left to the right. It can be seen that all
the three methods captured the changes caused by the flying
birds. However, the motions of the container and rippling
water were only well identified by the MRF method, which
shows that the proposed method is more efficient in detect-
ing small changes than the other two methods.

Figure 11 demonstrates the results on the table tennis se-
quence, which contains very fast motion. Again, the MRF
method detected moving regions more completely than the
other two methods. The scenes selected in news sequence
contain both small motion (e.g., face of the male journal-
ist) and large motion (e.g., the spinning stage and dancers).
It can be seen in Figure 12 that, although all three methods
were robust against background noise, the MRF approach
was superior to the other two methods in detecting more
completely changing regions, including both the journalists
and the moving stage and dancers.

All the algorithms were implemented in C++ and com-
piled with Microsoft Visual C++6.0. Experiments were per-
formed on an AMD Athlon 1900 (1.66GHz) PC with 512M
DDR2100 RAM. Among the three methods implemented,
the M3 has the least computational complexity. The MRF re-
quires iterations to compute the mean field, thus is slower
than M3. The QPF required the most computation in all the
experiments. In Table 2, the average computing time of each
method on each testing sequence is listed. The computing
time of the QPF and M3 is determined by the number of
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Figure 11: Experimental results of the test sequence Table Tennis. From top to bottom: frames 132, 135, 138, and 141; CDMs detected by the
MRF method, by the QPF method, and by the M3 method.

pixels contained in a video frame, and therefore is largely
fixed for all the testing sequences. The computing time of
the MRF depends not only on the spatial resolution, but also
the number of iterations taken to compute the mean field
values. In practice, if the time of computation is critical, a
maximum number of iterations can be specified. For exam-
ple, our system required an average of 9.4 milliseconds per
iteration, so a maximum number of iterations of 10 was uti-
lized in detecting changes in image sequence at 10 frames per
second.

5. CONCLUSION

In this paper, we have presented a new approach to the
change detection problem in image sequences. This approach
employs two well-established theories: MRF andMFT. Based
upon the MRF theory, change detection is modeled as an
optimization problem, namely, the CDM is calculated in
the sense of MAP. Our approach differs from the previous

statistical methods which rely on thresholding. In order to
carry out an efficient computation, we utilized MFT, which
simplifies the procedure of searching for the optimal detec-
tion of CDM. Experimental results are reported based on this
optimization approach. Both the synthetic and real-world
data indicate that this approach accurately detects changes
between frame pairs. One remaining problem, however, is to
determine the values of control parameters in the associated
functions. Currently, the parameters are chosen in an exper-
imental manner. In the future, a meaningful cost function of
these parameters may be designed to provide the values in a
certain optimal sense.
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Figure 12: Experimental results on News. From top to bottom: frames 84, 87, 90, and 93; CDMs detected by the MRF method, by the QPF
method, and by the M3 method.

Table 2: Computational cost of MRF, QPF, and M3 methods.

Test sequence MRF (average loops/time) QPF (time) M3 (time)

Miss America 4.31 loops/40.51ms 147.2ms 5.56ms

Container 6.49 loops/61.0ms 147.2ms 5.56ms

Table Tennis 5.37 loops/50.48ms 147.2ms 5.56ms

News 3.93 loops/36.94ms 147.2ms 5.56ms
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