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An appropriate definition and efficient computation of similarity (or distance) measures between two stochastic models are of
theoretical and practical interest. In this work, a similarity measure, that is, a modified “generalized probability product kernel,”
of Gaussian hidden Markov models is introduced. Two efficient schemes for computing this similarity measure are presented.
The first scheme adopts a forward procedure analogous to the approach commonly used in probability evaluation of observation
sequences on HMMs. The second scheme is based on the specially defined similarity transition matrix of two Gaussian hidden
Markov models. Two scaling procedures are also proposed to solve the out-of-precision problem in the implementation. The
effectiveness of the proposed methods has been evaluated on simulated observations with predefined model parameters, and on
natural texture images. Promising experimental results have been observed.
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1. INTRODUCTION

Hidden Markov model (HMM) has been adopted in a wide
variety of application areas including econometrics, compu-
tational biology, statistical process control, and speech recog-
nition. Recently, it was also introduced to image processing
applications such as face recognition [1, 2] and texture analy-
sis [3, 4]. A challenging problem for HMM is that given their
model parameters, how to define an appropriate similarity
(or distance) measure for two HMMs [5].

An appropriate similarity measure between two HMMs
is of theoretical interests and it can also be a useful tool in
various applications. For instance, in computational biology,
because of the availability of large libraries of profile HMMs,
there exists the possibility of comparing sequence families by
comparing the profiles of the families rather than comparing
the individual members of the families. It is also possible to
compare a sequence family instead of its individual members
towards anHMM that is trained tomodel a particular feature
[6]. In image retrieval applications, each texture image can be
modeled by a wavelet-domain HMM and the classification is

carried out by computing distances between the model of the
query image and those of all candidate images [4].

There have been some research efforts on this prob-
lem and several techniques are proposed in the literature
[4, 5, 6, 7, 8]. To begin with, denote λ = (A,B,π) as the
model parameters of an HMM, where A is a state transition
distribution, B is the observation probability distribution, and
π is the initial state distribution. Denote X = (x1, x2, . . . , xT)
as an observation sequence generated by λ. Observations x
can be either discrete symbols chosen from a finite alphabet
(x ∈ V = {v1, v2, . . . , vM}) or continuous (vector) signals
(x ∈ ND). In [5], a distance measure between two HMMs, λ
and λ′, was proposed as

D(λ, λ′) = 1
T

[
logP(X′|λ)− logP(X′|λ′)], (1)

where X′ is an observation sequence generated by the model
λ′. A symmetrized version of this distance measure is

Ds(λ, λ′) = D(λ, λ′) +D(λ′, λ)
2

. (2)
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In [6], the coemission probability of two profile HMMs is de-
fined as ∑

X∈V×···×V
P(X|λ)P(X|λ′), (3)

where λ and λ′ are two profile HMMs. In [4], the distance be-
tween the twoHMMs is computed based on Kullback-Leibler
(KL) distance:

D(λ, λ′) =
∫
ND×···×ND

P(X|λ) log P(X|λ)
P(X|λ′)dX. (4)

Recently, a generalized probability product kernel (GPPK) be-
tween distributions, which represents the similarity between
two probability distributions p and p′, is proposed [8]:

Kρ(p, p′) =
∫
Ω
p(x)ρ p′(x)ρdx, (5)

where normally ρ ∈ {1/2, 1, 2, 3, . . .}. The motivation be-
hind this method is to combine discriminative and genera-
tive estimations to exploit their complementary advantages.
In [8], the expected likelihood kernel, that is, K1(p, p′), is used
to derive the similarity measure between Gaussian mixture
models, HMMs, and so forth. Some of the advantages of the
GPPK include the positive-definite, symmetric property and
the capability to handle a variety of generative models (in-
cluding HMMs) in a closed form (note that KL distance is
not positive definite, asymmetric and in many cases, it can
only be approximated by an upper bound). However, the
closed-form evaluation of GPPK is not readily available ex-
cept for ρ = 1. Whereas other values of ρ, especially ρ =
1/2, can also be of great interest in some cases, notice that
when ρ = 1/2, the GPPK is effectively the well-known Bhat-
tacharyya’s measure of affinity between two statistical distri-
butions [9]. In this work, we develop a modified GPPK to
efficiently evaluate similarity between HMMs in closed form
whereas the value of ρ can be chosen freely, that is, not con-
strained to 1. The modification is developed based on a new
interpretation of GPPK. Under this new interpretation, the
similarity measure of two HMMs is considered as the sta-
tistical average of similarities of all possible so-called costate
sequences drawn from the two HMMs.

Meanwhile, the brute-force computation of the simi-
larity between two Gaussian HMMs can be prohibitively
intensive, for example, the computational complexity is
O(3T(NN ′)T+1), where T is the number of transitions and
N and N ′ are the numbers of states of two HMMs. In this
work, we propose two fast schemes which can drastically ease
this burden by reducing the computational complexity to
O(3T(NN ′)2) and O((NN ′)3 log2 T), respectively. The rela-
tive computational complexity of these two schemes depends
on the complexities of the twoHMMs, for example, the num-
ber of states N and the number of transitions T to be used
in the evaluation process. It can be measured by the ratio of
3T/NN ′ log2 T .

Another important implementation issue of the pro-
posed similarity measure is the out-of-precision problem.

Because the computation of similarity between HMMs will
exceed the precision limit of any machines when T gets large,
we formulate two scaling procedures corresponding to two
proposed fast schemes. The scaling procedures can prevent
the computation from going beyond the precision range as
well as guarantee that the exact value of the similarity mea-
sure can be evaluated.

The paper is arranged as follows. Section 2 introduces
the similarity measure of Gaussian HMMs and its modifica-
tion. Section 3 presents the forward procedure and its scaling
procedure for computing the proposed similarity measure.
Section 4 presents the second fast scheme based on similarity
transitionmatrix, which is followed by the scaling procedure.
Section 5 provides the preliminary experimental results. We
conclude our work in Section 6.

2. SIMILARITYMEASURE OF GAUSSIAN HMMS
AND ITSMODIFICATION

One of the building blocks in deriving the similarity measure
of general HMMs is computing the similarity measure of any
arbitrary pair of observation distributions corresponding to
two specific states of these two HMMs, denoted as ψs,s′ . For
Gaussian HMMs, the observation probability distribution is
Gaussian. Based on (5), the GPPK of two D-dimensional
Gaussians, p(x) ∼ N (µ,Σ) and p′(x) ∼ N ′(µ′,Σ′), is com-
puted as

ψN ,N ′
�= Kρ(p, p′)

=
∫
RD

p(x)ρ p′(x)ρdx

= (2π)(1−2ρ)D/2|Σ†|1/2|Σ|−ρ/2|Σ′|−ρ/2

× exp
(
− ρ

2
µTΣ−1µ− ρ

2
µ′TΣ′−1µ′ +

1
2
µ†TΣ†µ†

)
,

(6)

where Σ† = (ρΣ−1 + ρΣ′−1)−1 and µ† = ρΣ−1µ + ρΣ′−1µ′.
Note that the computational complexity of ψN ,N ′ is mainly
determined by the complexity of matrix determinants and
inverses (which both are O(D3)) in (6).

For Gaussian HMM, given the observation sequence X
and the model parameters λ, the likelihood is

P(X|λ) =
N∑

s0,...,sT=1
πs0b

(
x0|s0

) T∏
t=1

b
(
xt|st

)
ast|st−1 , (7)

where πs0 is the initial state probability of state s0, b(xt|st)
is the Gaussian distribution corresponding to state st , and
ast|st−1 is the state transition probability from state st−1 to st .
When ρ = 1, the GPPK of two Gaussian HMMs is

Kρ(λ, λ′)

=
∫
RD×···×RD

P(X|λ)P(X|λ′)dX

=
N∑

s0,...,sT=1

N ′∑
s′0,...,s

′
T=1

πs0πs′0ψs0,s′0

T∏
t=1

ast|st−1as′t |s′t−1ψst ,s′t ,

(8)
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where ψst ,s′t , t = 0, 1, 2, . . . ,T , is the GPPK of two Gaussians
corresponding to states st and s′t of two HMMs.1

The derivation of (8) is based on the definition of GPPK
with the value of ρ being set to 1. Here we take another per-
spective to derive the similarity measure that is exactly the
same as the one depicted in (8), whereas the value of ρ is
no longer constrained to be 1. For two HMMs λ and λ′,
suppose from t = 0 to t = T that the state sequence is
s = (s0, s1, s2, . . . , sT) and s′ = (s′0, s

′
1, s

′
2, . . . , s

′
T). Then we de-

fine a “costate” sequence as ss′ = (s0, s′0, s1, s
′
1, . . . , sT , s

′
T). The

probability of such a costate sequence ss′ with model param-
eters λ and λ′ can be computed as

P(ss′|λ, λ′) = P(s|λ)P(s′|λ′) = πs0πs′0

T∏
t=1

ast|st−1as′t |s′t−1 . (9)

Define the similarity of two state sequences as

ψss′ =
T∏
t=0

ψst ,s′t . (10)

The value of ψss′ is determined by the value of ρ used in
the computation of ψst ,s′t , that is, the GPPK of two Gaus-
sians corresponding to two states st and s′t of two Gaussian
HMMs (see (6)). Then the similarity measure between λ and
λ′, given an arbitrary costate sequence ss′, is the product of
the probability of the costate sequence and the correspond-
ing similarity of the two state sequences, that is,

K∗ρ (λ, λ
′|ss′) = P(ss′|λ, λ′)ψss′

= πs0πs′0

T∏
t=1

ast|st−1as′t |s′t−1
T∏
t=0

ψst ,s′t

= πs0πs′0ψs0,s′0

T∏
t=1

ast|st−1as′t |s′t−1ψst ,s′t .

(11)

Then the similarity measure between λ and λ′ is obtained
by summing K∗ρ (λ, λ′|ss′) over all possible costate sequences,
that is,

K∗ρ (λ, λ
′) =

∑
all ss′

K∗ρ (λ, λ
′|ss′)

=
N∑

s0,...,sT=1

N ′∑
s′0,...,s

′
T=1

πs0πs′0ψs0,s′0

T∏
t=1

ast|st−1as′t |s′t−1ψst ,s′t .

(12)

From the above perspective, the resulting similarity measure
between two Gaussian HMMs is the same as that of (8),
but the value of ρ can be chosen freely rather than being

1Note that if ρ take values other than ρ = 1, it is difficult to compute the
GPPK of two HMMs in closed form based on the definition of GPPK.

confined to 1. From (11), (12), it can be seen that in the
new interpretation, the similarity measure of two Gaussian
HMMs is calculated as the statistical average of similarities of
all possible costate sequences of these two Gaussian HMMs.

The modification of GPPK in this work is developed
specifically for Gaussian HMMs, whereas (12) can still be
applicable to HMMs with discrete observation distributions
or other forms of continuous observation distributions. In
these cases, a new similarity measure ψs,s′ for the specific ob-
servation distributions needs to be developed. For two Gaus-
sian HMMs, the overall computation complexity for all pos-
sible pair of Gaussian states is O(D3NN ′). For HMMs with
discrete distributed states, this computation is usually much
lighter than that of Gaussian states. For HMMs with mixture
Gaussian, assuming the numbers of mixtures for each state
areNm andN ′

m, respectively, the overall complexity of all pos-
sible pairs of states is O(D3NmN ′

mNN ′). If large T is required
in the computation, the major computation load still lies in
the induction phase rather than in computing the similarities
between observation distributions.

3. FORWARD PROCEDURE

The brute-force computation of the similarity measure be-
tween two Gaussian HMMs, however, is prohibitively in-
tensive. The computational complexity in the evaluation of
the similarity measure under (12) is O(3T(NN ′)T+1). Pre-
cisely speaking, there will be (NN ′)T+1 − 1 additions and
(NN ′)T+1(3T − 1) multiplications. Clearly a more compu-
tational efficient procedure is needed.

In this section, we adopt a forward procedure which
is analogous to the popularly used forward procedure in
the probability evaluation of the observation sequence on
HMMs. First we define the forward similarity measure of two
Gaussian HMMs as

ατ(i, j) = K∗ρ
(
λ, λ′, sτ = i, s′τ = j

)
=

∑
s0,...,sτ−1

∑
s′0,...,s

′
τ−1

×
(
πs0πs′0ψs0,s′0

τ−1∏
t=1

ast|st−1as′t |s′t−1ψst ,s′t ai|sτ−1aj|s′τ−1ψi, j

)
,

(13)

that is, the similarity measure of two Gaussian HMMs when
only 0 ≤ t ≤ τ is considered and sτ = i, s′τ = j. Then ατ(i, j)
can be inductively computed as the following forward proce-
dure.

(1) Initialization:

α0(i, j) = πiπ
′
jψi, j , 1 ≤ i ≤ N , 1 ≤ j ≤ N ′. (14)

(2) Induction:

ατ(i, j) =
∑
m

∑
n

ατ−1(m,n)ai|maj|nψi, j ,

1 ≤ τ ≤ T , 1 ≤ i ≤ N , 1 ≤ j ≤ N ′.
(15)
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This is because for τ = 1,

α1(i, j) =
∑
m

∑
n

πmπ
′
nψm,nai|maj|nψi, j

=
∑
m

∑
n

α0(m,n)ai|maj|mψi, j ;
(16)

for τ > 1,

ατ(i, j) =
∑

s0,...,sτ−1

∑
s′0,...,s

′
τ−1

×
(
πs0πs′0ψs0,s′0

τ−1∏
t=1

ast|st−1as′t |s′t−1ψst ,s′t ai|sτ−1aj|s′τ−1ψi, j

)

=
∑
sτ−1

∑
s′τ−1

(( ∑
s0,...,sτ−2

∑
s′0,...,s

′
τ−2

πs0πs′0ψs0,s′0

×
τ−2∏
t=1

ast|st−1as′t |s′t−1ψst ,s′t asτ−1|sτ−2as′τ−1|s′τ−2

× ψsτ−1,s′τ−1

)(
ai|sτ−1aj|s′τ−1ψi, j

))
=
∑
m

∑
n

ατ−1(m,n)ai|maj|nψi, j .

(17)

(3) Termination:

K∗ρ (λ, λ
′) =

∑
i

∑
j

αT(i, j). (18)

The computational complexity of this forward procedure
isO(3T(NN ′)2). To be precise, there will beNN ′(2+3NN ′T)
multiplications and NN ′(1 + (NN ′ − 1)T) additions. Com-
paring to the brute-force computation, the complexity of the
forward procedure is much lower especially when T is large.

In (13), the initial state distribution π and the state tran-
sition probability distribution a are less than 1. It is apparent
that when τ gets big, each term of the sum in (13) goes to
zero and the dynamic range of ατ(i, j) will go beyond the pre-
cision range of any machine. Therefore a scaling procedure is
needed to maintain the value of ατ(i, j) within the dynamic
range of the machine as well as guarantee that the exact value
of the similarity measure can be realized.

We denote ατ(i, j) as the unscaled forward similarity
measure, α̂τ(i, j) as the scaled forward similarity measure,

and ̂̂ατ(i, j) as the temporary variable for the computation
of α̂τ(i, j). Below is the refined forward procedure with the
scaling procedure.

(1) Initialization. Let ̂̂α0(i, j) = α0(i, j). Define the scal-

ing coefficient c0 as c0 = (
∑

i, j
̂̂α0(i, j))−1. Let α̂0(i, j) =

c0 ̂̂α0(i, j).
(2) Induction. Let ̂̂ατ(i, j) = ∑m

∑
n α̂τ−1(m,n)ai|maj|nψi, j ,

and cτ = (
∑

i, j
̂̂ατ(i, j))−1; then α̂τ(i, j) = cτ ̂̂ατ(i, j).

(3) Termination. From the induction step, it can be found
that

α̂τ(i, j) = cτ ̂̂ατ(i, j) = · · · = cτcτ−1 · · · c0ατ(i, j). (19)

Then

K∗ρ (λ, λ
′) =

∑
i

∑
j

αT(i, j)

= 1
cTcT−1 · · · c0

∑
i

∑
j

α̂T(i, j).
(20)

Because K∗ρ (λ, λ′) and cTcT−1 · · · c0 may also go be-
yond the dynamic range of the machine, we take the
logarithm

log
(
K∗ρ (λ, λ

′)
) = log

(∑
i

∑
j

α̂T(i, j)
)
−

T∑
t=0

log ct. (21)

From the scaling procedure, for each 1 ≤ τ ≤ T , the
values of the scaled αs, α̂τ(i, j), are kept within the dynamic
range of the computer by multiplying by a scaling coefficient
cτ . By exploiting the relationship between αs and α̂s, the exact
logarithm value of K∗ρ (λ, λ′) is realized.

4. FAST SCHEME BASED ON SIMILARITY
TRANSITIONMATRIX

Comparing to the brute-force computation of the similarity
measure between Gaussian HMMs, the forward procedure is
computationally efficient. However, this procedure does not
consider the time invariant property of state transition ma-
trices of two Gaussian HMMs and their corresponding Gaus-
sian similarity measures.

More specifically, denote the initial probability distribu-
tion vector of an HMM as

π =
[
π1 π2 · · · πN

]T
. (22)

Denote the state transition matrix of an HMM as

A = {ai j} =

a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
...

...
aN1 aN2 · · · aNN

 . (23)

Define the similarity matrix of all possible pair of Gaussians
coming from two corresponding Gaussian HMMs, λ and λ′,
as

Ψ = {ψij
} =


ψ11 ψ12 · · · ψ1N ′

ψ21 ψ22 · · · ψ2N ′

...
...

...
...

ψN1 ψN2 · · · ψNN ′

 . (24)

Let α0i j = α0(i, j). Define θmn
i j = aima

′
jnψmn as the tran-

sition similarity measure of two Gaussian HMMs when the
state number of these two HMMs are transferred from i tom
and from j to n, respectively. Then based on (22)–(24), we
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define the initial similarity vector and the similarity transi-
tion matrix of two Gaussian HMMs as

α0 =
(
(π ⊗ π′)� vec

(
ΨT))T

= [α011 · · · α01N ′ α021 · · · α02N ′ · · · α0N1 · · · α0NN ′
]
,
(25)

S = (A⊗ A′)� [vec(ΨT), vec(ΨT), . . . , vec(ΨT)]︸ ︷︷ ︸
N×N ′

T

=



θ1111 · · · θ1N ′
11 θ2111 · · · θ2N ′

11 · · · θN1
11 · · · θNN ′

11
... · · · ...

... · · · ... · · · ... · · · ...
θ111N ′ · · · θ1N ′

1N ′ θ211N ′ · · · θ2N ′
1N ′ · · · θN1

1N ′ · · · θNN ′
1N ′

θ1121 · · · θ1N ′
21 θ2121 · · · θ2N ′

21 · · · θN1
21 · · · θNN ′

21
... · · · ...

... · · · ... · · · ... · · · ...
θ112N ′ · · · θ1N ′

2N ′ θ212N ′ · · · θ2N ′
2N ′ · · · θN1

2N ′ · · · θNN ′
2N ′

... · · · ...
... · · · ... · · · ... · · · ...

θ11N1 · · · θ1N
′

N1 θ21N1 · · · θ2N
′

N1 · · · θN1
N1 · · · θNN ′

N1
... · · · ...

... · · · ... · · · ... · · · ...
θ11NN ′ · · · θ1N ′

NN ′ θ21NN ′ · · · θ2N ′
NN ′ · · · θN1

NN ′ · · · θNN ′
NN ′



,

(26)

where ⊗ is the matrix operator of Kronecker product, � is the
matrix operator of Hadamard product, and vec(·) is the vec-
tor operator [10]. The dimension of the initial similarity vec-
tor α0 and the similarity transition matrix S is 1 by N × N ′

and N ×N ′ by N ×N ′, respectively.
Compare (25)-(26) with (14)–(18), it can be observed

that the sum of components of the initial similarity vector
α0 is

sum
(
α0
)

= sum
([
α011 · · · α01N ′ α021 · · · α02N ′ · · · α0N1 · · · α0NN ′

])
=
∑
i

∑
j

α0(i, j),

(27)

that is, the similarity of two Gaussian HMMs when τ = 0. It
can also be observed that

sum
(
α0S
) =∑

i

∑
j

α1(i, j), (28)

that is, the similarity of two Gaussian HMMs when τ = 1.
Likewise, for τ = T , we have

sum

(
α0 SS · · · S︸ ︷︷ ︸

T

)
=
∑
i

∑
j

αT(i, j) = K∗ρ (λ, λ
′). (29)

Similar to (25), if we define

ατ =
[
ατ11 · · · ατ1N ′ ατ21 · · · ατ2N ′ · · · ατN1 · · · ατNN ′

]
,
(30)

where ατi j = ατ(i, j), then the forward procedure proposed in
the above section can be reinterpreted as the followingmatrix
manipulation.

(1) Initialization. Compute α0 and S; see (25)-(26).
(2) Induction:

ατ = ατ−1S, 1 ≤ τ ≤ T. (31)

(3) Termination:

K∗ρ (λ, λ
′) = sum

(
αT
)
. (32)

From (31), we can see that at the induction step, the tran-
sition similarity matrix S is used iteratively. But the compo-
nents of the transition similarity matrix include state tran-
sition probabilities (ai js and a′i js) and GPPKs (ψijs) corre-
sponding to all possible pairs of Gaussians coming from the
two HMMs. They are time invariant with regard to the value
of τ. Therefore, it is clear that in order to compute αT , which
is needed in the termination step, it is not necessary to follow
the induction step of (31). Rather, we can directly compute
the T-step transition similarity matrix S(T), that is,

S(T) = SS · · · S︸ ︷︷ ︸
T

= ST ; (33)

and the computation of S(T) can be accelerated by the follow-
ing procedure (without loss of generality, we assumeT = 2n):

S(2
i) = S(2

i−1)S(2
i−1), 1 ≤ i ≤ n. (34)

So based on the similarity transition matrix, our new
proposed procedure is summarized as following:

(1) Initialization. Compute α0 and S.
(2) Induction:

S(2
i) = S(2

i−1)S(2
i−1), 1 ≤ i ≤ n; (35)

αT = α0S(T), T = 2n. (36)

(3) Termination:

K∗ρ (λ, λ
′) = sum

(
αT
)
. (37)

The computational complexity of this fast procedure is
O((NN ′)3 log2 T). Specifically, there will be (NN ′)3 log2 T +
3(NN ′)2 multiplications and (NN ′ − 1)(NN ′)2 log2 T +
(NN ′)2 additions. Comparing to the computational com-
plexity of the forward procedure, O(3T(NN ′)2), this fast
procedure is advantageous whenT 	 NN ′. So in theory, one
can choose one scheme out of the proposed two by determin-
ing the value of 3T/NN ′ log2 T . That is, if 3T/NN ′ log2 T > 1,
the second scheme is preferred. Otherwise, the first scheme is
preferred. Because the computational complexity becomes a
more critical issue when T is large, the second scheme may
have a more practical advantage over the first scheme.

In (35), when i gets big, the values of the components of
S(2

i) will go to zero and rapidly their dynamic range will again
go beyond the precision range of any machine. Then another
scaling procedure is needed.
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Table 1: Model parameter settings of Gaussian HMMs.

Experiment I Experiment II

λ1 λ2 λ3 λ1 λ2 λ3
π = [0.6 0.4]T π = [0.6 0.4]T π = [0.3 0.7]T π = [0.6 0.4]T π = [0.6 0.4]T π = [0.6 0.4]T

A=

0.4 0.6

0.2 0.8

 A=

0.3 0.7

0.4 0.6

 A=

0.6 0.4

0.3 0.7

 A=

0.3 0.7

0.4 0.6

 A=

0.3 0.7

0.4 0.6

 A=

0.6 0.4

0.8 0.2


µ1 = [1 1]T µ1 = [1 2]T µ1 = [3 5]T µ1 = [2 4]T µ1 = [2 3]T µ1 = [2 2]T

µ2 = [3 1]T µ2 = [3 2]T µ2 = [4.5 3.5]T µ2 = [4 4]T µ2 = [4 3]T µ2 = [4 2]T

Σ1=

1 0

0 1

 Σ1 =
1 0

0 1

 Σ1 =

1 0

0 1

 Σ1 =

1 0

0 1

 Σ1=

1 0

0 1

 Σ1 =

1 0

0 1



Σ2 =

1 0

0 1

 Σ2 =

1 0

0 1

 Σ2 =

1 0

0 1

 Σ2=

1 0

0 1

 Σ2 =

1 0

0 1

 Σ2 =

1 0

0 1



We denote S(2
i) as the unscaled 2i-step similarity tran-

sition matrix, Ŝ(2
i) as the scaled 2i-step similarity transition

matrix, and ̂̂S(2i) as the temporary matrix for the computa-
tion of Ŝ(2

i). Denote α̂T as the scaled αT . Below is the refined
fast procedure embedded with the scaling procedure (again
we assume T = 2n).

(1) Initialization. Compute α0 and S. Let ̂̂S(20) = S. Let the

scaling coefficient c0 be as c0 = (sum(̂̂S(20)))−1, where
sum(̂̂S(20)) is the sum of all components of ̂̂S(20). Let
Ŝ(2

0) = c0
̂̂S(20).

(2) Induction. Let ̂̂S(2i)=Ŝ(2i−1)Ŝ(2i−1), and ci=(sum(̂̂S(2i)))−1;
then Ŝ(2

i) = ci
̂̂S(2i), for 1 ≤ i ≤ n. Hence α̂T = α0Ŝ(T).

(3) Termination. From the induction step, it can be found
that

Ŝ(T) = Ŝ(2
n) = cn

̂̂S(2n) = · · · = cnc
21
n−1 · · · c2

n

0 S(2
n); (38)

then

α̂T = α0Ŝ(T) = α0cnc
21
n−1 · · · c2

n

0 S(2
n) = cnc

21
n−1 · · · c2

n

0 αT .
(39)

So the similarity measure K∗ρ (λ, λ′) is computed as

K∗ρ (λ, λ
′) = sum(αT) =

(
cnc

21
n−1 · · · c2

n

0

)−1
sum(α̂T

)
. (40)

Because K∗ρ (λ, λ′) and cnc
21
n−1 · · · c2n0 will also go be-

yond the dynamic range of the machine, we need to
take the logarithm

log
(
K∗ρ (λ, λ

′)
) = log

(
sum

(
α̂T
))− n∑

i=0
2n−i log

(
ci
)
. (41)

From the scaling procedure, for each 0 ≤ i ≤ n, the values
of the components of the scaled 2i-step similarity transition
matrix Ŝ(2

i) are kept within the dynamic range of the com-
puter by multiplying by a scaling coefficient ci. By exploit-
ing the relationship between the scaled and unscaled simi-
larity transition matrices (38), the exact logarithm value of
K∗ρ (λ, λ′) is realized.

5. EXPERIMENTAL RESULTS

Our experiments include two parts. We first use simulated
model parameters to test the effectiveness of the introduced
similarity measure of Gaussian HMMs. Secondly we test the
effectiveness on a set of real texture images for classification.

5.1. Experiments on simulatedmodel parameters

In this subsection, we perform two experiments. In each ex-
periment, three Gaussian HMMs are used to test their rela-
tive similarity measure among each other. Themodel param-
eters of the Gaussian HMMs are manually set. In the com-
putation of similarity measures between Gaussians, we set
ρ = 1/2, that is, Bhattacharyya’s measure of affinity between
Gaussians [9]. The similarity measure of all possible pairs of
Gaussian HMMs among the three Gaussian HMMs are com-
puted for T = 0, 1, 2, 22, . . . , 210. Table 1 lists the model pa-
rameters chosen for these two experiments (also depicted in
Figure 1).

The setting of simulated model parameters is based on
the consideration that it should be easy to make an in-
tuitive judgment of the relative similarity between these
models by just looking at the parameters of these mod-
els. For example, by looking at Figure 1 and parameters
in Table 1, one can intuitively tell that in experiment I,
K0.5(λ1, λ2) > K0.5(λ2, λ3) > K0.5(λ1, λ3); and in experiment
II, K0.5(λ1, λ2) > K0.5(λ2, λ3) > K0.5(λ1, λ3). Then in experi-
ments I and II, similarities of the HMMs pairs, for example,
1-2, 1-3, and 2-3, are computed with various settings of T ,
for example, T = 0, 1, 2, 22, . . . , 210. In Figure 2, it can be seen
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Figure 1: Gaussian HMMs used for experiments I and II.

that not only the similarities of pair 1-2 were always higher
than those of pair 1-3 and pair 2-3, but also the magnitudes
of the differences among these similarities increase exponen-
tially over T (note that a logarithmic scale was used for the y-
axis in Figure 2). This phenomenon suggests that with the in-
crease of T , the proposed similarity measure should become
more accurate in classification.

5.2. Experiments on texture classification
In this subsection, the method of similarity measure of
Gaussian HMMs is tested on texture classification. thirteen
texture images of Brodatz texture images (see the USC-
SIPI Image Database at http://sipi.usc.edu/services/database/
Database.html) are used for classification; see Figure 3. All 13
texture images are monochrome with size of 512× 512. Each
texture image is divided into 16 128 × 128 nonoverlapping
sub-texture images for training and test.

−10−1
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−104
0 2 8 32 128 512

T

logK0.5(1, 2)
logK0.5(1, 3)
logK0.5(2, 3)

(a)
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−102
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0 2 8 32 128 512
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logK0.5(1, 2)
logK0.5(1, 3)
logK0.5(2, 3)

(b)

Figure 2: (a) and (b) Similarity measures of all possible pairs of
Gaussian HMMs in Figures 1a and 1b, respectively.

For each sub-texture image, a Gaussian HMM is trained
by the observation vector sequence generated from the sub-
texture image. The generation of the observation vector se-
quence can be summarized by using an 8 × 8-sized sliding
window to scan the sub-texture image with 75% (or 6 pixels)
overlap between consecutive steps from left to right and from
top to bottom. The windowed image blocks are normalized
to zero mean and further transformed by an 8×8 DCT. Only
the 3 × 3 lowest frequency coefficients in the DCT domain
are used to form the 9-dimensional observation vectors. All
consecutive observation vectors form the observation vector
sequence.

http://sipi.usc.edu/services/database/Database.html
http://sipi.usc.edu/services/database/Database.html
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Figure 3: Thirteen categories of texture images. From top to bottom and from left to right, they are bark, brick, bubbles, grass, leather,
pigskin, raffia, sand, straw, water, weave, wood, and wool.

5.2.1. Experiment one
In this experiment, for each class of texture, all 16 trained
HMMs are selected for each class. Then totally there are
13 × 16 = 208 HMMs involved. The similarity measures of
all possible pairs of HMMs among all selected 208 HMMs

are computed with T = 4 and ρ = 1/2.2 Denote s
i, j
m,n as the

log of the similarity measure between themth HMM of class
i and the nth HMM of class j. The similarity measures are
arranged by the following similarity measure matrix and de-
picted in Figure 4a:

s1,11,1 s1,11,2 · · · s1,11,16 · · · s1,131,1 s1,131,2 · · · s1,131,16

s1,12,1 s1,12,2 · · · s1,12,16 · · · s1,132,1 s1,132,2 · · · s1,132,16
...

...
...

...
...

...
...

...
...

s13,116,1 s13,116,2 · · · s13,116,16 · · · s13,1316,1 s13,1316,2 · · · s13,1316,16

(42)

The brightness of each pixel in Figure 4a represents the value
of similarity measure of the corresponding pair of Gaussian
HMMs, that is, the brighter the pixel, the greater the similar-
ity measure.

It can be seen from Figure 4a that within-class similarity
measures are normally higher than between-class similarity
measures, for example, the squares along the diagonal of the
similarity measurematrix are generally brighter than the cor-
responding off-diagonal squares. To illustrate this, Figure 4b
shows a sketch of squares along the diagonal of the similarity

2We excluded the influence of the initial probability distribution π by
substituting all πi’s and π′j ’s with 1/N ’s and 1/N ′’s. Due to the limited train-
ing data (just one sub-texture image is used in the training of HMM), the
initial probability distribution is unreliable and should be excluded from the
computation of similarity measures.

measure matrix and the corresponding off-diagonal squares
(the gray areas).

5.2.2. Experiment two

In this experiment, for each class of textures, 5 trained
HMMs are randomly selected. The selected 5 HMMs of each
texture class serve as class templates. All the corresponding
unselected 11 trained HMMs of each class serve as the test-
ing data. When an arbitrary testing HMM is sent to the clas-
sification system, its similarity measures towards all the class
templates of every texture class are computed. Then the sim-
ilarity of the testing HMM towards a particular texture class
is computed as the mean value of the similarity measures of
the testing HMM towards all the 5 templates of that texture
class. The identity of the testing HMM is assigned to the tex-
ture class which has the highest similarity measure towards
the testing HMM.

For the purpose of observing the convergence property of
the similarity measure when T gets big, we tested the recog-
nition rates (the rates according to which the testing HMMs
are correctly classified) on T = 0, 20, 21, 22, . . . , 210; and the
ρ is set to be 1/2. When T = 0, the classification is actu-
ally based on the similarity measure of the observation dis-
tributions (Gaussian) of two HMMs and the state transition
matrix is not involved in the computation. Obviously, when
T gets big, the influence of the state transition matrix in the
computation of similarity score gets big. The recognition rate
when T = 0 is 0.8042. The recognition rates of other settings
of T ’s values are depicted in Figure 5. An interesting obser-
vation is that, in this experiment, the recognition rate jumps
up from 0.8042 at T = 0 to 0.9510 at around T = 22, and
then converges at around 0.90 as T increases. We attribute
this phenomenon to the simple Gaussian models used for
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Figure 4: (a) Similarity measure matrix of 13×16 Gaussian HMMs
generated from 13 × 16 texture images. (b) Illustrative plot of
squares along the diagonal of the similarity measure matrix and the
corresponding off-diagonal squares.

HMM state distributions and the inaccuracy in model pa-
rameter estimations. With texture images, the assumption
of Gaussian model for our DCT domain feature vectors is
mostly for computational simplicity; and the estimation of
HMM model parameters for subimages from the same tex-
ture class may not be consistent due to the variant appear-
ances among these subimages (e.g., note the heterogeneous
appearance in the straw image in Figure 3). The suboptimal
property of the EM algorithm may also introduce some es-
timation error. Furthermore, it is reasonable to assume that
all three components of HMM model parameters (A,B,π)
should share certain influence in determining the similarity
measures. However, as stated in the previous subsection, π
is excluded from our experiment because of its inaccuracy
due to limited training data. Therefore when T = 0, the
similarity measure is solely determined by B. On the other
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Figure 5: Recognition rates when T is set as 20, 21, . . . , 210.

hand, when T →∞, A becomes more and more dominant in
the computation of similarity score. Therefore over the en-
tire range of T , there may be some point between 0 and ∞
where the combination of contributions from A and B get
maximized. Further studies will be conducted to address this
phenomenon. When the best T value is not known, a com-
mon practice is to set T equal to the length of the observation
sequences.

6. CONCLUSION

In this work, we introduced a similarity measure of Gaussian
HMMs based on amodified “generalized probability product
kernel” definition. We also provided a new interpretation for
the derivation of this similarity measure. Two fast comput-
ing procedures embedded with corresponding scaling proce-
dures were presented. The similarity measure is evaluated on
simulated model parameters as well as texture images. En-
couraging results testified the effectiveness of the proposed
method for similarity comparison between Gaussian HMMs.
The method can be further generalized for the comparison
of mixture Gaussian HMMs and more complicated stochas-
tic models, and it may also find potential applications in
other data analysis areas. The Matlab code for the proposed
schemes will be available upon request.
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