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This paper presents an efficient video filtering scheme and its implementation in a field-programmable logic device (FPLD). Since
the proposed nonlinear, spatiotemporal filtering scheme is based on order statistics, its efficient implementation benefits from a
bit-serial realization. The utilization of both the spatial and temporal correlation characteristics of the processed video significantly
increases the computational demands on this solution, and thus, implementation becomes a significant challenge. Simulation
studies reported in this paper indicate that the proposed pipelined bit-serial FPLD filtering solution can achieve speeds of up to
97.6Mpixels/s and consumes 1700 to 2700 logic cells for the speed-optimized and area-optimized versions, respectively. Thus, the
filter area represents only 6.6 to 10.5% of the Altera STRATIX EP1S25 device available on the Altera Stratix DSP evaluation board,
which has been used to implement a prototype of the entire real-time vision system. As such, the proposed adaptive video filtering
scheme is both practical and attractive for real-time machine vision and surveillance systems as well as conventional video and
multimedia applications.

Keywords and phrases: VHDL implementation, FPLD, bit-serial approach, pipelined solution, video filtering and enhancement,
nonlinear adaptive filter design.

1. INTRODUCTION

Computer vision methods are becoming increasingly im-
portant for the development of novel commercial devices
such as wireless phones, vision-based pocket devices, sen-
sor networks, and surveillance and automotive apparatus
[1, 2, 3, 4]. This increases the demand for hardware-based
implementations of new, relatively complex video process-
ing algorithms [5]. It is not difficult to see that incorporat-
ing recent advances in the fields of computer and machine
vision, hardware, software, digital signal/image processing,
graphics, and telecommunications into integrated intelligent
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computer vision systems extends the possibilities of the tra-
ditional vision-based communication between end-users or
between machine and human. At the same time, it increases
the proliferation of the vision systems.

Due to imperfections in image sensors, digital images are
often contaminated with noise [6, 7]. Althoughmany sources
of noise, including fixed pattern noise and on-chip/off-chip
amplifier noise, can be significantly reduced [8], images are
still affected by the corruption caused by photon shot noise
and dark-current shot noise resulting from the photoelectric
process with Poisson statistics [8]. Due to the complex nature
of the noise process, the overall acquisition noise is usually
modeled as a zero mean white Gaussian noise [9, 10]. Aside
from this type of noise, image imperfections resulting from
impulsive noise are generated during transmission through
a communication channel [11, 12, 13], with sources ranging
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from human-made sources (switching and interference) to
signal representation (bit errors) and natural (atmospheric
lightning) ones. The resulting noisy samples, so-called out-
liers, differ significantly inmagnitude from the noise-free sig-
nal elements. It has been widely observed that outliers, as well
as noise in general, affect the perceptual quality of the image,
decreasing not only the appreciation of the image but also the
performance of the task for which the image was intended
[14]. Therefore, image filtering is of paramount importance
[6, 7, 14].

Nonlinear filters have replaced linear filters in many im-
age processing applications [15, 16, 17, 18, 19], since (i) they
can operate effectively in various noisy conditions and po-
tentially preserve the structural information of the image,
(ii) image signals are nonlinear in nature, and (iii) images
are perceived via the human visual system which has strong
nonlinear characteristics [20]. Among numerous nonlinear
filters, the most popular filtering schemes are based on ro-
bust order statistics [6] due to excellent robust properties and
simplicity of design. The order-statistics-based filters utilize
algebraic ordering of a windowed set of data to compute
the output signal [7]. They constitute a rich class of nonlin-
ear filtering operators whose comprehensive overview can be
found in [15, 16]. The most interesting examples include the
well-known median filter [21], rank-order filters [22], com-
bination filters [23, 24], multistage filters [25], weighted me-
dian filters [26, 27], weighted order-statistic filters [28, 29],
lower-upper-middle (LUM) filters [30, 31], morphological
filters [6, 32], and stack filters [33, 34, 35, 36].

In the last decade, technological advances in hardware
and software have allowed the extension of nonlinear fil-
tering algorithms to multidimensional image processing.
Therefore it is not a surprise that nonlinear filters are suc-
cessfully used today in color image [7, 14, 37, 38, 39, 40]
and/or video processing [9, 41, 42, 43, 44, 45] applications.
Since many applications require the processing of signals un-
der real-time constraints, significant research efforts have
been dedicated to the hardware implementation and em-
bedding of nonlinear filtering techniques in various circuits
[46, 47, 48, 49, 50].

This paper introduces the field-programmable logic de-
vice (FPLD) implementation of the simplified variant [51,
52] of the nonlinear adaptive video filtering (NAVF) tech-
nique [53]. Utilizing an adaptive design based on order-
statistics and incorporating both temporal correlation exist-
ing among the frames and spatial correlation of the samples
within the frames, the three-dimensional (3D), so-called spa-
tiotemporal scheme under consideration is capable of track-
ing video nonlinearities. Due to the extra degrees of freedom
achieved through the use of three different smoothing levels
(as opposed to the conventional fixed smoothing operator),
the proposed scheme is capable of tracking varying image
and noise statistics. At the same time, the scheme produces
an excellent tradeoff between noise attenuation and signal-
detail preservation resulting in reconstructed video with im-
pressive visual quality. Based on the simplified structure of
[51, 52], the NAVF complexity has been reduced, without
significant loss in performance, to a level useful for practical

implementation in FPLDs. The use of the FPLD-based re-
configurable technology makes the proposed filtering sys-
tem sufficiently adaptable and flexible for different types of
camera and video processing applications; modification of
the architecture may be required due to changes in the na-
ture/representation of the signal, varying image and noise
statistics, and various end-user needs.

The rest of this paper is organized as follows. The video
filtering scheme under consideration is briefly described and
analyzed in Section 2. Performance comparisons with rele-
vant filtering schemes are provided in terms of commonly
used image quality measures. An overview of the prior art in
filter implementation is provided. The proposed implemen-
tation approach is outlined in Section 3, withmotivation and
design characteristics discussed in detail. In Section 4, exper-
imental results corresponding to the implementation of the
proposed method using the selected Altera FPLD are ana-
lyzed in terms of maximum usable clock frequency, hardware
resources, and power consumption for both the stand-alone
filter and complete 3D filtering solution. Finally, this paper
concludes in Section 5.

2. MOTIVATION AND BACKGROUND

Consider a K1 × K2 × K3 image sequence x : Z3 → Z rep-
resenting a 3D image signal or a time sequence of K1 × K2

two-dimensional (2D) images with samples x(p, q, t) ∈ Z,
where K3 denotes the number of image frames. Each im-
age pixel x(p, q, t), for p = 1, 2, . . . ,K1, q = 1, 2, . . . ,K2, and
t = 1, 2, . . . ,K3, is a function of the spatial coordinates (p, q)
and time t.

The most common approach to the problem of noise
reduction is the utilization of some kind of smoothing op-
eration which filters out random fluctuations due to noise.
This approach is based on a sliding window W(p, q, t) =
{x(p−m, q−n, t−o) ∈ Z; m,n, o ∈ S} centered in x(p, q, t),
with S denoting the 3D support of the window [9] of fi-
nite size N . Assuming, for simplicity, that the index i, for
i = 1, 2, . . . ,N , denotes the position of the samples within the
filtering window (Figure 1), the data population ofW(p, q, t)
can be equivalently rewritten to W = {x1, x2, . . . , xN}. The
filtering procedure replaces the center x∗ = x(p, q, t) of the
window by some function f (·) of the local neighborhood
samples {x1, x2, . . . , xN}. Thus, the value of the estimated
sample y(p, q, t) = y = f (W) depends on the values of the
image samples in its neighborhoodW . The window operator
slides over the image to affect individually all the image pix-
els. This is based on the assumption that the processes gen-
erating the image are stationary within the window and the
probability of a particular behavior does not depend on the
image coordinates.

2.1. Algorithm description

Following the robust theory of order statistics [6], most pop-
ular filtering algorithms developed to suppress impulsive
noise in images operate on the ordered values within the ob-
servation window. Using sample ordering, both correlation



2028 EURASIP Journal on Applied Signal Processing

x1 x2 x3

x4 x5 x6

x7 x8 x9

x10 x11 x12

x13 x∗ x15

x16 x17 x18

x19 x20 x21

x22 x23 x24

x25 x26 x27

t
q

p

Next (t + 1)th
frame

Actual tth
frame

Previous (t − 1)th
frame

Figure 1: A 3× 3× 3 (cubic) spatiotemporal filtering window cen-
tered in x∗ = x(N+1)/2.

and time information is ignored and the estimate is purely
constituted based on magnitude information [9]. The fact
that the noisy samples usually correspond to the extreme
ranks in the ordered sequence makes the samples occupying
the middle ranks favorable to complete the filtering task.

Let W = {x1, x2, . . . , xN} be the set of the input samples
within the observation window (Figure 1). Based on magni-
tude information, the ordering of x1, x2, . . . , xN results in the
ordered set commonly defined as follows [6, 15, 17, 19]:

x(1) ≤ x(2) ≤ · · · ≤ x(N), (1)

where x(i) ∈ W , for i = 1, 2, . . . ,N , represents the ith order
statistic.

Using the smoothing parameter k = 1, 2, . . . , (N + 1)/2,
the comparison of the lower and upper order statistics x(k)
and x(N−k+1) of (1), respectively, along with the middle sam-
ple x∗ = x(N+1)/2 in W forms a lower-upper-middle (LUM)
smoothing function [30, 31], defined as follows:

yk = med
{
x(k), x∗, x(N−k+1)

}
, (2)

where yk denotes the LUM smoother output and med is a
median operator.

If x∗ lies in the range formed by x(k) and x(N−k+1), it is
not modified. If x∗ lies outside this range, it is replaced with
one of the two extremes that lies closer to the sample me-
dian (x(N+1)/2). By varying the filter parameter k, the amount
of smoothing done by the LUM smoother can range from
no smoothing equivalent to the identity operation (k = 1) to
the maximum amount of smoothing provided by the median
(k = (N + 1)/2). It is evident that the LUM smoothing capa-
bility increases with k. However, with large k, the smoothing
operation often results in image blurring [30]. Therefore, de-
pending on varying image and noise statistics, the adaptive
choice of k is of paramount importance.

In order to track the changes in local image statistics
and provide the best balance between the smoothing and

detail-preserving LUM characteristics, the NAVF scheme has
been introduced [53]. Its adaptive behavior is achieved by the
comparison of the absolute differences |x∗ − yk| with associ-
ated thresholds ξk ≥ 0, for k = 1, 2, . . . , (N+1)/2. Since k = 1
denotes the identity filter y1 = x∗ whose filtering operation
does not affect the input, and the smoothing capability of the
LUM smoother increases with k, it is reasonable to say that
|x∗ − yk| increases in magnitude as follows:

∣∣y1 − x∗
∣∣ ≤ ∣∣y2 − x∗

∣∣ ≤ · · · ≤ ∣∣y(N+1)/2 − x∗
∣∣, (3)

where |y1 − x∗| = 0. Following the terms of (3), the associ-
ated thresholds should be set according to

ξ1 ≤ ξ2 ≤ · · · ≤ ξ(N+1)/2 (4)

with ξ1 = 0. The zero value of ξ1 corresponds to the use of
the identity operator y1 which keeps the central sample x∗

unchanged.
Based on (3) and (4), the NAVF output y is equivalent to

yη, with η =∑(N+1)/2
k=1 λk defined via the parameters

λk =


1 if

∣∣yk − x∗
∣∣ ≥ ξk ,

0 otherwise,
(5)

where ξ1, ξ2, . . . , ξ(N+1)/2 are the thresholds used to control the
accuracy of the NAVF estimates. In the case of the 3 × 3 × 3
spatiotemporal filter window (N = 27) shown in Figure 1,
the NAVF scheme requires the calculation of (N + 1)/2 = 14
different yk’s. For this spatiotemporal processing commonly
used in video filtering applications and a conventional 8-bit-
per-pixel image representation, the recommended setting of
ξ1, ξ2, . . . , ξ(N+1)/2 found through a genetic algorithm opti-
mization is defined as follows [53]:

{
ξ1, ξ2, . . . , ξ14

} =
{0, 4, 5, 7, 9, 12, 15, 16, 22, 23, 38, 43, 48, 52}. (6)

These values are sufficiently robust for a wide range of test
videos with various image statistics and/or motion com-
plexity [53]. During optimization of the filter parameters
ξ1, ξ2, . . . , ξ14, it has been observed that larger threshold val-
ues spoil the noise attenuation characteristics of the NAVF
scheme and result in unremoved outliers in the filter output.
While smaller thresholds improve this situation, the detail-
preserving characteristics are, in turn, negatively impacted.

It is clear that the NAVF scheme requiring the determi-
nation of 14 different yk’s is computationally demanding and
cannot be used as a cost-effective solution for real-time video
and multimedia applications. Therefore, the NAVF structure
controlled by (6) has been reduced as follows [51]:

{
ξ1, ξ7, ξ14

} = {0, 15, 52}, (7)

where ξ1, ξ7, ξ14 are associated with the identity operation y1,
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Inputs: K3 noisy frames of K1 × K2 image pixels
Moving window spawning the input set {x1, x2, . . . , xn}
Thresholds ξ7 = 15, ξ14 = 52

Output: K3 frames of K1 × K3 image pixels
For t = 1 to K3

For p = 1 to K1

For q = 1 to K2

Determine the input setW(p, q, t) = {x1, x2, . . . , xN}, for N = 27
Let x∗ = x(N+1)/2 denote the central sample
Sort {x1, x2, . . . , xN} to the ordered set x(1) ≤ x(2) ≤ · · · ≤ x(N)

Let filter output y = x∗

Let the LUM smoother y7 = med{x(7), x∗, x(N−7+1)}
Let the LUM smoother y14 = med{x(14), x∗, x(N−14+1)}
If |y7 − x∗| ≥ ξ7 OR |y14 − x∗| ≥ ξ14
Update filter output to y = y7

End
If |y7 − x∗| ≥ ξ7 AND |y14 − x∗| ≥ ξ14
Update filter output to y = y14

End
End

End
End

Algorithm 1: Algorithm of the reduced NAVF scheme.

the balanced LUM smoothing y7, and the median (the maxi-
mum smoothing) operation y14, respectively. The robustness
of the setting defined in (7) has been verified, through the use
of the linear and evolutionary optimization tools, in [52].
The results indicate that the filter is sufficiently robust to
relatively large deviations from the assumed during-training
conditions. In the case of substantial qualitative difference
in terms of noise characteristics, reoptimization of the filter
parameters may be recommended. It should be emphasized
that both the full (original) and reduced NAVF solutions are
primarily geared to address the problem of impulsive noise
removal. For such a task, the proposed solution results in ex-
cellent performance.

The algorithmic steps performed by the reduced
NAVF scheme are summarized, in pseudocode format, in
Algorithm 1. The scheme requires in each processing loca-
tion (p, q, t): (i) to determine the window center x∗ and the
input set W = {x1, x2, . . . , xN}, (ii) to order the input sam-
ples according to their magnitude, (iii) to determine the out-
puts of the two LUM smoothers y7 and y14, (iv) to compare
the absolute differences |y7−x∗| and |y14−x∗|with the cor-
responding thresholds ξ7 and ξ14, respectively, and (v) based
on these comparisons, to set one of x∗, y7, and y14 as the
filter output y.

2.2. Filtering efficiency

Experimentation with a number of test videos corrupted by
impulsive noise [15] showed that the reduced NAVF scheme
of (7) is sufficiently robust and operates without significant
loss in performance [52]. This is demonstrated here using
test image sequences consisting of 30 frames with an 8-bit-
per-sample representation and 256 × 256 spatial resolution.
For better illustration, Figures 2a, 2b, and 2c depict the 5th
frame of the test videos. The example of the noisy frame

is shown in Figure 2d. This image corresponds to a video
frame contaminated by 10% random-valued impulsive noise
[15, 53], with the rate denoting the amount of the corrupted
pixels and the noise magnitude independent from pixel to
pixel.

The method is applied to the test videos degraded by
5% and 10% noise and performance is measured via the
mean absolute error (MAE) and mean square error (MSE)
measures commonly used in the image processing commu-
nity. Using these error criteria, the reduced NAVF scheme
[51, 52] is compared to other video filtering techniques, in-
cluding the previously mentioned full NAVF scheme [53],
median filter (MF) [6], standard LUM smoothers [30], and
multistage median filters (MMFs) [41] as well as some spa-
tiotemporal switching median filters with the switching con-
trol based on the averaging operations defined over the
middle-ranked samples (ICM) [54], local contrast proba-
bility (LCP) [55], center-weighted median switching filter
(CWMSF) [56], variance of the input set (VSMF) [57], and
advanced multilevel processing (ASM) [58].

Tables 1 and 2 summarize the objective, numerical results
corresponding to the test videos shown in Figures 2a, 2b, and
2c. The results indicate that the full NAVF scheme achieves
the best performance in terms of MAE and MSE among all
the tested filtering schemes. Moreover, it can be seen that
the reduced NAVF scheme also produces excellent results, al-
though its filtering structure has been simplified from 14 to
3 smoothing levels yk compared to the full NAVF scheme.
Therefore it can be concluded that the reduced NAVF scheme
is useful for video filtering purposes and, because of its sim-
plicity, it is suitable also for cost-effective applications.

Figures 2c, 2d, 2e, and 2f show the visual comparison of
the original frame, the contaminated frame, and the filtered
outputs produced using the MF technique and the reduced
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(e) (f) (g) (h)

Figure 2: The 5th frame of the test videos: (a) Salesman, (b) Woman, (c) People, (d) image contaminated with 10% impulsive noise, (e) MF
output, (f) reduced NAVF output, (g) MF estimation error emphasized by a factor of 3, and (h) reduced NAVF estimation error emphasized
by a factor of 3.

Table 1: Comparison of the presented algorithms using test videos corrupted with 5% impulsive noise.

Test video Salesman Woman People

Method MAE MSE MAE MSE MAE MSE

Noisy 3.709 419.2 3.461 353.3 3.645 399.7

MF 4.107 57.3 3.190 27.7 6.852 117.9

LUM k = 6 0.970 18.0 0.757 8.5 1.624 29.6

LUM k = 10 2.070 28.8 1.530 11.9 3.452 52.4

MMF 1.664 19.9 1.720 16.0 3.720 58.3

ICM 0.706 22.8 0.487 11.9 0.792 23.2

LCP 1.880 39.7 1.327 17.5 2.494 47.6

CWMSF 0.545 13.9 0.412 7.6 0.783 21.3

VSMF 1.288 31.5 0.846 12.9 1.672 36.7

ASM 0.459 11.9 0.308 5.4 0.717 19.7

Full NAVF 0.386 8.2 0.265 3.8 0.863 22.9

Reduced NAVF 0.436 9.7 0.284 4.4 0.859 24.1

NAVF scheme. Figure 2e illustrates that the MF scheme blurs
image edges, structural content, and fine details. On the
other hand, the reduced NAVF scheme preserves the image
details and removes outliers (Figure 2f). Due to this impres-
sive performance, the reduced NAVF produces a denoised
image similar to the original depicted in Figure 2c. Figures
2g and 2h show the estimation errors of the standard MF
scheme compared to the reduced NAVF scheme. It can be
seen that the MF approach is characterized by large estima-
tion error, which corresponds to edge blurring and destruc-
tion of fine details (Figure 2g). The reduced NAVF scheme
tends to avoid the blurring of structural content and excel-
lently preserves the desired signal features. This results in
very small estimation error, as depicted in Figure 2h.

2.3. Filter implementation: prior art
Apart from the numerical behavior (actual performance) of
any proposed algorithm, its computational complexity is a
realistic measure of its practicality and usefulness. The (full
and reduced) NAVF filtering schemes belong to the class
of filters based on order statistics. To determine the output
based on their rank within a group of inputs, various tech-
niques have been proposed for implementing these kinds of
filters [46, 47, 48, 49, 50].

Based on the amount of information processed concur-
rently, implementation approaches can be classified into two
main groups [47]: word-based and bit-based techniques.
Word-based architectures (or bit-parallel architectures) pro-
cess the bits of the input samples in parallel, but the samples
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Table 2: Comparison of the presented algorithms using test videos corrupted with 10% impulsive noise.

Test video Salesman Woman People

Method MAE MSE MAE MSE MAE MSE

Noisy 7.287 825.1 6.738 688.4 7.069 772.8

MF 4.237 59.6 3.265 29.2 6.991 121.1

LUM k = 6 1.527 38.5 1.117 18.4 2.254 54.2

LUM k = 10 2.288 34.8 1.674 14.9 3.706 59.9

MMF 2.286 50.6 2.142 33.3 4.420 92.1

ICM 1.211 35.4 0.938 22.7 1.356 37.6

LCP 1.833 42.8 1.235 19.2 2.444 51.0

CWMSF 0.923 24.3 0.761 12.8 1.234 33.9

VSMF 1.397 38.5 0.927 18.3 1.720 42.8

ASM 0.860 21.6 0.609 10.9 1.165 30.2

Full NAVF 0.736 16.2 0.523 8.1 1.283 32.6

Reduced NAVF 0.776 17.1 0.553 8.8 1.299 34.1

are usually processed sequentially. On the contrary, bit-based
filters (or bit-serial architectures) process input samples bit-
wise, but the samples included in the window are pro-
cessed in parallel. In contrast to bit-parallel algorithms, the
bit-serial algorithms often enable the creation of efficient
pipelined structures.

Another kind of classification recognizes nonrecursive
and recursive algorithms [50]. Since recursive algorithms use
the same piece of hardware in an iterative manner, they are
usually more area-efficient, but slower. Because of the ex-
isting loop, the pipelining cannot be applied. On the other
hand, nonrecursive algorithms enable speeding up the filter-
ing process via pipelining techniques and block processing
[59].

The architectures of the rank-order-based filters can be
divided into three main categories [50]: array architectures,
sorting network architectures, and stack filter-based architec-
tures. In array architectures [50], each element in the win-
dow is associated with a rank, and with each window shift,
the ranks of the elements are updated. The array architec-
tures with window sizeN consist of a semisystolic linear array
of N processors. These architectures are suited for both bit-
parallel and bit-serial implementations. Furthermore, they
can be easily pipelined, thereby supporting high throughput
applications. However, this kind of architecture is not suit-
able for large processing windows such as those used in spa-
tiotemporal (3D) video filters considered in this paper.

The sorting network architectures implement the rank-
order filter by first sorting the samples and then selecting the
sample of corresponding rank [46, 50, 59, 60, 61, 62]. The
filtering can be faster, if the sorting of samples from the pre-
vious position of the sliding window is maintained and only
the incoming sample is positioned to the correct rank. Sort-
ing network architectures with presorted values can be rela-
tively efficient for one dimensional (1D) filters, where only
one sample has to be classified in each sample period. How-
ever, these architectures are not suitable for 3D filters, since
multiple samples (in our case, 9 samples for a cubic 3× 3× 3
window) arrive at each new sample period.

Probably the most efficient implementation approach re-
lated to the use of rank-order-based filters for image process-
ing applications is based on stack filters. A stack filter trans-
lates the filtering operation to the binary domain through
the use of threshold decomposition [49, 63]. The bit-parallel
realization of the stack filter decomposes the input sample
to 2B − 1 bit levels [49, 50], where B is the sample word-
length. Each level is processed separately. It is clear that if B
is high, the bit-parallel architecture of the stack filter is not
suitable for a cost effective application, since the number of
processing levels depends on B exponentially. In the bit-serial
version of the stack filter [50, 64, 65, 66], the input samples
are processed bitwise in only B bit levels using (i) a majority
function [67, 68, 69], (ii) a positive Boolean function (PBF)
[64, 70], or (iii) a polarizing function [71, 72]. Since the area
of the bit-serial stack filters depends linearly on the number
of bit levels, these stack filters usually permit the most area-
efficient implementations [50, 65].

While there are several implementations of rank-order-
based filters in field-programmable gate arrays (FPGAs) pub-
lished in the literature [62, 73, 74], we did not find any FPGA
implementation of 3D rank-order-based filters suitable for
video processing applications. In fact, due to the significant
growth in time delays and hardware requirements in spa-
tiotemporal video filtering such as the considered reduced
NAVF scheme, very few algorithms are suitable for hardware
implementation. Based on the aforementioned facts, we have
selected the nonrecursive, bit-serial stack architecture based
on a PBF function as the best candidate. Besides its area-
efficient implementation, it enables the use of a pipelined
structure and thus an increase in the speed of the filtering
process. The proposed hardware structure is presented in the
next section.

3. PROPOSED HARDWARE IMPLEMENTATION

The FPLD target technology is selected in this paper to im-
prove adaptability and flexibility of the filtering system for
different types of cameras and video processing applications.
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Inputs: Set of noisy samples (input set) {x1, x2, . . . , xN}
Bit word length B

Output:Image sample y

For i = 1 to N do in parallel

Let gB−1i = 1

End

For j = B − 1 to 0 do in serial

For i = 1 to N do in parallel

If g
j+1
i = 0

Let x
j
i = x

j+1
i

Let y j = fk,N (x
j
1, x

j
2, . . . , x

j
N )

If g
j+1
i = 1 and y j ⊕ x

j
i = 1

Let g
j
i = 0

Else

Let g
j
i = g

j+1
i

End

End

Let output y = yB−12B−1 + yB−22B−2 + · · · + y12 + y0

Algorithm 2: Algorithm of the pipelined bit-serial realization of
the PBF-based LUM smoother.

The scalability of the filter together with the reconfigurable
technology used for filter implementation should enable easy
modification of the proposed architecture for video signals
differing in parameters such as sample frequency and frame
size, as well as the number of bits used for sample represen-
tation. Since not all filter implementations are directly ex-
ploitable in FPLD technology, the utilization of FPLD devices
in video signal filtering sometimes needs a special approach.
Our goal is to (i) propose a cost-effective and flexible solu-
tion using FPLD devices, and (ii) ensure its suitability for
real-time spatiotemporal (3D) video filtering.

3.1. Bit-serial structure implementation

The bit-serial approach of [64] reduces the filtering pro-
cedure to binary calculations and simplifies the smoothing
operators to become PBFs. In this way, the designer avoids
implementing time-consuming ordering operations, which
make the filtering algorithm significantly slower and difficult
for realization especially for large window shapes such as the
employed 3×3×3 spatiotemporal window shown in Figure 1.

Algorithm 2 summarizes the steps performed using the
bit-serial realization of the PBF-based LUM smoother. Note
that the LUM smoother is required to process the set of N
image samples coded with B bits per sample. Each input sam-
ple xi ∈ W = {x1, x2, . . . , xN} is expressed in binary form as

xi = (xB−1i , xB−2i , . . . , x0i ), where x
j
i , for j = B−1,B−2, . . . , 0,

represents jth bit of xi. The algorithm produces the output
sample y = (yB−1i , yB−2i , . . . , y0i ). Note that propagation (bi-
nary) flags gB−1i , gB−2i , . . . , g0i are associated with each input

sample xi. When the flag g
j+1
i is high (g

j+1
i = 1), the binary

inputs x
j
i , x

j−1
i , . . . , x0i remain unchanged. When x

j
i �= y j ,

all the bits x
j−1
i , x

j−2
i , . . . , x0i change to x

j
i for the re-

maining algorithmic steps. This is also indicated by flags

g
j−1
i , g

j−2
i , . . . , g0i , which are updated to low (g

j−1
i = g

j−2
i =

· · · = g0i = 0) for the remaining steps.
The most important part of the procedure summarized

in Algorithm 2 corresponds to the LUM-PBF expression
in [75]. This simplifies the LUM smoother defined by the
smoothing parameter k and the window size N into the PBF
defined as follows:

y j = fk,N (·) =




1 if x∗ j = 1,
∑
W∗ j ≥ k − 1,

1 if
∑
W∗ j ≥ N − k + 1,

0 otherwise.

(8)

It has been proven [75] that the output bit y j = fk,N (x
j
1,

x
j
2, . . . , x

j
N ) of the LUM smoother can be simply determined

using the jth bit of the central input sample x∗ and 1’s in
the set W∗ j of neighboring binary samples associated with
the jth bit. This results in the fast, binary LUM smoothing
defined in (8).

For illustrative purposes, Table 3 summarizes the com-
putational steps of the bit-serial LUM-PBF approach. We
consider the window size N = 9, the smoothing param-
eter k = 4, the word length B = 8, and the input set
W = {140, 135, 31, 152, 145, 141, 138, 141, 142} with the
central sample x∗ = 145. The procedure starts by evaluat-
ing the most significant bit ( j = 7) of the output. At this bit
level, x∗7 = 1 and the number of 1’s in W∗7 is equal to 7.
Thus, applying (8), y7 = 1. This binary output is compared
with the most significant bits (MSBs) of the other window
elements. Sample x3, whose MSB is different from the filter
output y7, propagates its actual bit value x73 to all less signif-
icant bits in all the following steps. This replaces the orig-
inal, lower bits with the jth bit resulting in x63 = x73, x

5
3 =

x73, . . . , x
0
3 = x73. The procedure continues by evaluating x

∗6,
W∗6, and (8) down to the least significant bit related to j = 0.
The output bits yB−1, yB−2, . . . , y0 constitute the output pixel
y = x6 = x8 = 141. Applying the LUM smoother, defined
by k = 3, to the identical input set W , the output sample is
changed to y = x9 = 142 as shown in Table 4.

The hardware implementation of the conventional LUM
smoothing algorithm consists of two basic types of blocks
[76]: (i) N × B LUM propagation cells, and (ii) B combi-
natorial blocks implementing the LUM-PBF defined by (8).

Figure 3 presents the propagation cell structure. The cell

output x
j
i , which is obtained from the output of the multi-

plexer, is the same as the output of the flip-flop, if the prop-

agation flag from the upper level g
j+1
i = 1; otherwise the cell

output is replaced with x
j+1
i propagated from upper levels.

This new bit value is then passed to the fk,N (·) PBF function
and to the lower-level cells. To determine a new value of the
propagation flag g

j
i , the binary output y j = fk,N (·) of the

PBF function is compared with the data bit x
j
i using a XNOR

gate. If y j �= x
j
i , the propagation flags (AND gate outputs)

for all lower levels will be 0.
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Table 3: LUM-PBF smoothing (N = 9 and k = 4) realized via the bit-serial approach.

Sample x1 x2 x3 x4 x∗ x6 x7 x8 x9 — y

Value 140 135 31 152 145 141 138 141 142 — 141

Bit j x
j
1 x

j
2 x

j
3 x

j
4 x∗ j x

j
6 x

j
7 x

j
8 x

j
9 W∗ j y j

7 1 1 0 1 1 1 1 1 1 7 1

6 0 0 0(0) 0 0 0 0 0 0 0 0

5 0 0 0(0) 0 0 0 0 0 0 0 0

4 0 0 1(0) 1 1 0 0 0 0 1 0

3 1 0 1(0) 1(1) 0(1) 1 1 1 1 6 1

2 1 1(0) 1(0) 0(1) 0(1) 1 0 1 1 5 1

1 0 1(0) 1(0) 0(1) 0(1) 0 1(0) 0 1 2 0

0 0 1(0) 1(0) 0(1) 1(1) 1(0) 0(0) 1 0(1) 3 1

Table 4: LUM-PBF smoothing (N = 9 and k = 3) realized via the bit-serial approach.

Sample x1 x2 x3 x4 x∗ x6 x7 x8 x9 — y

Value 140 135 31 152 145 141 138 141 142 — 142

Bit j x
j
1 x

j
2 x

j
3 x

j
4 x∗ j x

j
6 x

j
7 x

j
8 x

j
9 W∗ j y j

7 1 1 0 1 1 1 1 1 1 7 1

6 0 0 0(0) 0 0 0 0 0 0 0 0

5 0 0 0(0) 0 0 0 0 0 0 0 0

4 0 0 1(0) 1 1 0 0 0 0 1 0

3 1 0 1(0) 1(1) 0(1) 1 1 1 1 6 1

2 1 1(0) 1(0) 0(1) 0(1) 1 0 1 1 5 1

1 0 1(0) 1(0) 0(1) 0(1) 0 1(0) 0 1 2 1

0 0(0) 1(0) 1(0) 0(1) 1(1) 1(0) 0(0) 1(0) 0 1 0
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Figure 3: The ith propagation cell at the jth bit plane of the LUM
smoother.

The combinatorial block representing the PBF imple-
mentation according to (8) is composed of the adder and
the comparator (see Figure 4). The adder counts the number
of 1’s (high bits) present at 26 binary inputs (included in
W∗ j) of the block. The comparator produces the output bit
of one binary LUM smoother by comparing the result of the
addition with the value k − 1 for x∗ j = 1 or N − k + 1 for
x∗ j = 0 (8).

x
j
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x
j
((N+1)/2)+1

x
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(N+1)/2

x
j
((N+1)/2)−1

x
j
1

··
·

··
·

∑

k

Comp
≥

(N)

y j

Figure 4: Internal structure of the N-input PBF function fk,N (·).

Figure 5 shows one-bit level of the proposed 3D adap-
tive filter with N = 27. Nine groups of 3 propagation cells—
because of the space limitation, only two extremes and one
central group are depicted—are connected to 9 horizontal
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Figure 5: The jth bit plane of the 3D LUM smoother with N = 27.

data inputs (samples x1, x2, x3, x10, x11, x12, x19, x20, and
x21 from Figure 1). Vertical propagation flags and propagated
data bits coming from upper levels are updated and transmit-
ted to lower levels. The PBF has 26 equivalent inputs and one
special input for the central sample. The output of the PBF
represents the bit-level filter output.

3.2. Parallel and pipelined filter structure

In the parallel version of the LUM filter, all the bit levels
of the input set are processed in parallel. However, one of
the main advantages of the bit-serial structure is that the bit
levels can be processed independently and thus faster. This
feature can be successfully used in the pipelined version of
the filter, in which each bit level of the filter processes corre-
sponding bit of one of B subsequent samples. The differences
between these two implementations of the filter will now be
discussed.

The complete LUM filter with parallel structure contains
B identical levels. The critical data path (the longest data path
between any two registers determining the maximum clock
frequency of the filter) starts at the highest bit-level cells and
passes horizontally through the PBF at the same level, com-
ing back to the input of the XNOR gate of the bit cell. It con-
tinues vertically to the next lower level and so on until the
lowest level of the filter. Thus, the parallel version of the filter
has B propagation cells and B PBFs in the data path.

Figure 6 shows the pipelined version of the LUM filter
propagation cell. Comparing Figures 3 and 6, it can be ob-
served that the standard structure shown in Figure 3 has been
extended with two pipeline registers. Due to the bit-serial na-
ture of the algorithm, the bit-level pipelining allows concur-
rent processing of B subsequent bits corresponding to differ-
ent bit levels using a set of B identical bit-slices from Figure 5.
Since the bits of the input sample are not processed concur-
rently, they have to be delayed in input/output delay lines
composed of triangles of shift registers (Figure 7). The criti-
cal data path of the pipelined version includes only one prop-
agation cell and one PBF at the same level. It is therefore up
to B times faster than the standard parallel version. However,
the pipelined version is larger, because each propagation cell
has two additional registers and B + 1 clock periods latency.

Flag g
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i Bit x

j
i

D D

y j
clk

Serial input x
j
i

D

Flag g
j+1
i Bit x

j+1
i

To neighbor cell

To fk,N (·)

Figure 6: Pipelined version of the LUM smoother propagation cell.

Because of its higher speed, the pipelined scheme is much
more appropriate for the real-time video applications. There-
fore, the pipelined version is used throughout this paper.

Figure 8 presents the complete structure of the pipe-
lined reduced NAVF scheme. Two pipelined B-level LUM
smoothers (for k = 7 and k = 14) process B levels of in-
put samples concurrently. Since nine new samples appear
at the input of the proposed filter for each updated loca-
tion (p, q, t), nine input shift register blocks are necessary.
The use of two LUM filters necessitates the implementation
of two output shift register blocks. Because the central sam-
ple is used for computing the output, it has to be delayed by
B + 1 clock periods in a B-bit shift register. This delay corre-
sponds to the sum of delays of input and output shift regis-
ters. The complete reduced NAVF scheme has a B+3 latency,
because both subtraction block and comparators contain one
pipeline register, too.

3.3. Area/cost reduction

Since the LUM filter contains N × B propagation cells, it
should be designed very carefully. One FPLD logic cell (or
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Figure 8: Pipelined structure of the reduced NAVF scheme.

bit slice) usually contains one 16-bit lookup table (LUT) fol-
lowed by a configurable register. We could expect that the
propagation cell from Figure 6 will be implemented in three
such logic cells. However, the combinatorial function at the
output of the multiplexer represents the pipeline register
input and at the same time represents the propagation cell
output. Therefore, the propagation cell will occupy four logic
cells instead of three: one cell where only a register is em-
ployed (data bit register), two cells where both LUTs and reg-
isters (pipeline registers) are utilized, and one cell with only
a LUT employed (output to PBF). Some FPLD technologies
enable the output of both the combinatorial function and
its registered version from the same logic cell (register pack-
ing). This option would lead to a filter-area reduction of up
to 20%.

The fact that the reduced NAVF filter from Figure 8 con-
tains two similar LUM smoother structures can be used to
further reduce the filter area through efficient resource shar-
ing. This possibility is based on the observation that the
most important part of the PBF function area is occupied by
the adder from Figure 4. This has the consequence that the
PBF function area changes only slightly with the parameter k
(about 53 ± 1 logic cells per PBF). For the same reason, the
double PBF function block for the two parameters k1 and k2,
based on the sharing of the adder by two comparators from
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Figure 9: N-input double PBF function fk,N (·) internal structure.

Figure 9, will increase the size of the block by an insignificant
amount (about 55± 1 logic cells per double PBF). The price
to be payed for this efficient resource sharing is a reduction
in speed by a factor of 2, as the binary outputs corresponding
to k1 and k2 must be multiplexed in time.

Unfortunately, the sharing of the propagation cell is not
as successful as it is in the case of the PBF function. Since
propagated values of the shared smoothers are not the same,
two pairs of the pipeline registers will be necessary (see
Figure 10) to propagate the bit and flag for both of them. Two
new multiplexers on the vertical outputs of the propagation
cell are also added. However, the data register on the input of
the propagation cell, the multiplexer, the XNOR, and AND
gates remains sharable. Therefore, we can expect that the size
of the double propagation cell will grow from three to at least
five logic cells. The clock-enable signal employed in the dou-
ble propagation cell does not influence the overall cell size,
because it is a standard signal available in all logic cells in the
FPLD device.

3.4. Implementation issues of a complete
video processing system

We have used the Stratix EP1S25 DSP board from Altera
[77] to verify the overall area and performance of a complete
video system based on the proposed filter. Besides the Stratix



2036 EURASIP Journal on Applied Signal Processing

y j
clk

Sel

Serial input x
j
i
D
Ena.

Flag g
j+1
i Bit x

j+1
i

To neighbor cell

To fk,N (·)

D
Ena.

D
Ena.

D
Ena.

D
Ena.

Sel Sel

Flag g
j
i Bit x

j
i

Figure 10: Double-propagation-cell internal structure.

Camera

Expansion
board

ADC
12 8

DWC ILB

DSI

Control
unit

Stratix
EP1S25
device PLL

OSC
80MHz

TLB

Stratix DSP
evalution board

32

L
S
R

L
S
R

L
S
R

32

32

8 8 8 8 8 8 8 8 8

NAVF

1MB SRAM 1MB SRAM

32 32 32

T
L
B

T
L
B

OLB

DAC
8

Figure 11: Block diagram of the complete video filtering system based on the 3D reduced NAVF filter.

EP1S25 FPLD being in the fastest speed grade, the board fea-
tures other components, which has been used in our design:
one of two 14-bit 165MHz D/A converters, two synchronous
1MB SRAM blocks with independent data and control buses
and common address bus, an expansion prototype connec-
tor (EPC), oscillator, and so forth. We have placed a video
amplifier and a double 12-bit A/D converter with a max-
imum rate of 50 mega-samples per second to a small ex-
pansion board connected to the EPC, because two A/D con-
verters (ADCs) available in the DSP board were not suitable
for the video signal conversion. All other hardware blocks
were implemented in the STRATIX device (see Figure 11):
the detector of synchronization impulses (DSI), 12-bit-to-
8-bit data width converter (DWC), input line buffer (ILB),
three triple line buffers (TLBs) containing three line shift reg-
isters (LSRs) each, two data bus demultiplexers, output line
buffer (OLB), control unit, and PLL-based clock generator.

Buffers ILB, OLB and the first LSR of each TLB block use
the dual-port feature of the embedded memory blocks. They
can therefore have independent read and write frequency.
The control frequency of the external memory blocks can
thus be much higher than the input/output filter speed. Since
the memory data bus is four times wider than input/output
data stream, all the memory accesses can be realized during
inactive portion of the line. In fact, this interval is divided
in two halves: in the first part input data from the camera
and output data from the reduced NAVF filter are written
simultaneously to two external memory blocks; in the sec-
ond half of the inactive line portion two lines of two previ-
ous images are read to TLB buffers. Since each line buffer can
store up to 1024 pixels, any camera having up to 60 images of
1024×1024 pixels can be connected to the system. Please note
that the detailed description of the system exceeds the scope
of this paper. The reader can find more information in [78].
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Table 5: Mapping of fk,N (·) for k = 7 and N = 27 into Altera
STRATIX EP1S25-5 device.

Compiler
Parameter

LCs tpd (ns)

Quartus II v. 4.1 54 12.9

4. RESULTS

The basic structures and blocks utilized in the reduced NAVF
have been described in very high-speed integrated circuit
hardware description language (VHDL). Filter components
have been synthesized using Altera Quartus II v. 4.1 VHDL
compiler. We have chosen the Quartus II development sys-
tem to implement the complete filtering scheme, because it
enables good control over compilation, placement, and rout-
ing parameters, namely, register packing and shift-register
implementation in embeddedmemory. VHDL output gener-
ated by the fitter was used as simulation input for ModelSim
v. 5.8c VHDL simulator. Output values have been compared
with Matlab-generated test values in an automatic test bench
procedure.

The reduced NAVF scheme has been mapped into the Al-
tera STRATIX EP1S25 device. This device is also used in the
Altera STRATIX EP1S25 DSP development board, which has
been used to implement the whole video system including
the filter. We have used power calculator for Stratix devices,
version 3.0 from Altera, to estimate typical power consump-
tion of various filter versions for the toggle rate of 12.5%. We
have selected a typical power estimation instead of a worst-
case one, because the filter structure occupies only a small
part of the device (up to 13%) and the standby power con-
sumption is higher (typical standby power consumption of
the device is about 135mW) or much higher (worst-case
standby power consumption is about 450mW) than that of
the filter. The standby power consumption estimation preci-
sion has thus a dominant influence on the overall precision
of the method.

Most of the blocks are realized as parameterizedmodules.
Top-level parameters include the window size correspond-
ing to the spatiotemporal filtering window (default value
N = 27), the word-length B (8 bits by default), smoothing
parameters (k = 7 and k = 14 by default), and the associated
thresholds (ξ7 = 15 and ξ14 = 52 by default).

4.1. LUM-PBF function implementation results

Since the LUM-PBF function represents a relatively complex
N-input combinatorial function and it is included in the crit-
ical path of the smoother, it was important to analyze the im-
pact of the smoothing parameter k on the overall complex-
ity and speed of the PBF function realization. Fortunately,
the function size and speed change insignificantly with k and
both of them are dominated by the adder block present in
the function entry, as explained in the previous section. As
it can be seen in Table 5, the LUM-PBF function f7,27(·) oc-
cupies 54 logic cells (note that carry-chain must be enabled).
Table 5 also illustrates the input/output point-to-point de-
lay (tpd) corresponding to the LUM-PBF implementation us-

ing the selected STRATIX [79] device. We can conclude that
a low number of logic cells and small point-to-point delays
of the LUM-PBF function demonstrate the cost efficiency of
(8). This is a very important fact, because these parameters
determine, to a great extent, the size and especially the clock
frequency of the reduced NAVF scheme.

4.2. LUM smoother implementation results

Given N = 27, B = 8, and k = 7, the first two lines of
Table 6 allow the quantitative comparison of the standard
and pipelined LUM, in terms of logic cell count, static tim-
ing analysis frequency, and estimation of the power dissipa-
tion. In both of these mappings, register packing was not
employed. The pipelined realization achieves a sevenfold in-
crease in processing speed with the tradeoff of a 50% increase
in area compared to the parallel version. Higher count of
logic cells in the pipelined version is caused by the use of
the shift registers, namely, ten input and one output register
blocks of [B · (B + 1)/2] registers.

The LUM cells matrix area remains very similar in both
standard and pipelined filter versions (for 8 bit levels and
27 input elements, the LUM area is realized by less than
27 × 8 × 4 = 864 logic cells). Since 8 PBFs occupy ap-
proximately 400 LCs, the total area estimation of the LUM
smoother without input/output shift registers (1048) is close
to the values obtained for both implementations (subtract-
ing the 360 logic cells necessary for the implementation of
the input/output shift registers in the pipelined version).

However, the size of the pipelined version can be signifi-
cantly reduced using register packing, as shown in the third
line of the table. The small reduction in speed is insignifi-
cant. Additional area reduction can be obtained by imple-
menting the shift registers in the embedded memory. Al-
though Xilinx devices allow the implementation of up to 16-
element shift registers in one LUT, this is not available in
Altera devices. Some limited functionality (concerning the
minimal length of the chain) exists for the implementation
of small shift registers in the M4K or M512 embedded mem-
ory blocks available in the STRATIX family [77, 79]. The
fourth line of Table 6 presents results obtained using this
method of shift register implementation. Using the afore-
mentioned techniques, the pipelined LUM smoother’s size
becomes comparable to the size of its parallel version, with
the pipelined smoother being about six times faster.

It can be observed in Table 6 that the parallel structure
(PRS) has the smallest power consumption (note that the
typical standby power consumption is 135mW). However,
if we reduce the clock frequency for the pipelined version of
the smoother with register packing and embedded shift reg-
isters (PPS + RP + ESR) to 14.3MHz, we will obtain a very
similar result (145mW instead of 142mW).

4.3. Reduced NAVF scheme implementation results

Table 7 allows for the comparison of the proposed method
to the efficient adaptive switching ASM video filtering solu-
tion. It can be seen that the proposed architecture consumes
significantly less hardware resources compared to the ASM
scheme. This advantage is obtained using unique binary
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Table 6: Mapping of the LUM smoother for k = 7 and N = 27 into Altera STRATIX EP 1S25-5 device using the Quartus II v. 4.1 compiler
and fitter. The filter has been implemented using the parallel structure (PRS), pipelined structure (PPS), PPS with register packing (RP), and
embedded shift registers (ESRs).

Structure

Parameter

Area Speed Power

LCs RAM f Estimation

No. (bits) (MHz) (mW)

PRS 1090 0 14.3 142

PPS 1605 0 103.5 221

PPS + RP 1260 0 96.4 212

PPS + RP + ESR 899 263 97.2 199

Table 7: Mapping of the ASM scheme and the proposed reduced NAVF scheme into Altera STRATIX EP 1S25-5 device using Quartus II v.
4.1 compiler and fitter. The reduced NAVF scheme has been implemented using the pipelined structure without and with register packing
(RP) and embedded shift registers (ESRs).

Structure

Parameter

Area Speed Power

LCs RAM f Estimation

no. (bits) (MHz) (mW)

ASM 4655 0 91.0 280

Reduced NAVF 2670 0 97.6 243

Reduced NAVF + RP 2108 0 93.2 234

Reduced NAVF + RP + ESR 1736 323 93.2 220

Reduced NAVF + shared LUMs + RP 1715 0 81.7(/2) 222

Reduced NAVF + shared LUMs + RP + ESR 1410 202 82.0(/2) 219

operations required in the LUM smoothers which are ef-
fectively utilized in the proposed reduced NAVF structure
from Figure 8. The second line of the table presents the re-
sults obtained for the pipelined version of the reduced NAVF
scheme without register packing and without implementa-
tion of the shift registers in the embedded memory. The
overall LC count is, in this case, slightly lower than that for
the two pipelined LUM smoothers from the second line of
Table 6. This is because nine input shift register fields can be
shared by the LUM smoothers. Absolute value computation
and comparison blocks are realized using the standard Li-
brary of Parameterized Modules (functions lpm abs and
lpm compare). Since the outputs of these modules are regis-
tered, they do not influence the final filter speed. The speed is
therefore limited mostly by the PBF implementation and can
be as high as 97.6Mpixels per second. Because the obtained
speeds are much faster than required in common video ap-
plications, we have concentrated our effort on the reduc-
tion of the filter area. As can be observed in the third line
of Table 7, register packing remains an efficient method for
LUM smoother size reduction (about 20%) while preserving
the speed of the filter. The use of embedded shift registers
in the STRATIX family can further reduce the logic area (see
the fourth line of Table 7). Another significant reduction in
the area proposed in this paper (about 16%) can be obtained
using the LUM function sharing in a double LUM smoother
structure described in the previous subsection. However, the

LUM smoother sharing slightly increases the complexity of
the PBF function and it thus decreases the clock speed. An
even more important fact is that the use of double struc-
tures necessitates time multiplexing. The overall speed of the
reduced NAVF structure based on the shared LUM smoother
is thus two times slower (as indicated by the parenthesis in
the fifth and sixth lines of the Table 7). While this reduced
filtering speed is still higher than the speed of most conven-
tional video cameras, the proposed reduced NAVF scheme
with LUM smoother sharing is the most area- and energy-
efficient.

4.4. Complete video filtering system
implementation results

The proposed reduced NAVF scheme needs 9 pixels to be
available at the filter input at each video sample period. The
set of input/output line buffers and data bus-width converter
together with a control logic described in Section 3.4 were
implemented in the same reconfigurable device. As it can
be seen in Table 8, this additional logic occupies few logic
cells (about 2% of the cells available in the selected device)
and a small amount of RAM bits (about 4% of all available
bits). The frequency 123.1MHz given in the table specifies
the maximum clock frequency of the 32-bit data bus. Thanks
to the use of the true dual-port embedded memory blocks,
this frequency can be independent of the video signal sam-
pling rate. This memory access frequency is high enough to
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Table 8: Mapping of the complete video filtering system including control logic, line buffers, and the proposed reduced NAVF scheme into
Altera STRATIX EP 1S25-5 device using Quartus II v. 4.1 compiler and fitter. The fastest and the most economic reduced NAVF schemes are
considered.

Structure

Parameter

Area Speed Power

LCs RAM f estimation

No. (%) (bits) (%) (MHz) (mW)

Filter control + buffers 521 2 90112 4 123.1 —

Fast video filtering system 3191 12.4 90112 4 97.4 283

Economic video filtering system 1918 7.5 90368 4 41.2 249

store incoming lines and to read two lines of the past im-
ages from the external memories during inactive portion of
the video line. The speed of the complete filtering solution is
thus limited only by the used reduced NAVF scheme. Table 8
presents also the area, speed, and power dissipation estima-
tion of the complete systems using the fastest (the reduced
NAVF filter) and the most economic version of the filter (the
reduced NAVF filter with the LUM sharing, register packing,
and embedded shift registers). As it can be seen, the unused
part of the device (about 90%) is still big enough to consti-
tute the necessary resources for implementing additional im-
age processing functions, such as compression, analysis, and
others utilized in computer vision.

When considering the speed of the system, two parame-
ters have to be taken into account [47]: the delay Td (some-
times called the latency) is the time from the presentation of a
set of input until the output of the results and the period Tp

is the time between successive presentations of problem in-
stances. The period Tp of the proposed solution corresponds
to the maximum usable sampling period and it is limited by
the speed of the reduced NAVF scheme (10.2 nanoseconds
and 24.3 nanoseconds for the fast and economic solutions).
Since both the fast and economic solutions are faster than the
output pixel rate of a common video camera, the data can be
filtered in real time. The latency of the proposed solution is
defined by the principle of the sliding window and its dimen-
sion (3× 3× 3 pixels). The output of the system is therefore
delayed by two frames, two lines, and two pixel periods be-
cause of the window size, plus B+3 pixel periods imposed by
the pipelining principle applied in the reduced NAVF filter.

We did not specify power consumption estimates for fil-
ter control and buffers (first line of Table 8), because it would
be dominated by the standby power and the control unit, and
buffers do not represent a stand-alone part of the filtering
scheme. However, the consumption estimation of this block
is included in the next two lines of the table.

5. CONCLUSIONS

In this paper, an efficient video filtering technique useful for
real-time computer vision applications was introduced. The
behavior of the filtering scheme under consideration was an-
alyzed in detail with respect to the parameters used. Exper-
imentation with a wide range of test videos and noise in-
tensities showed that the reduced NAVF structure produces

excellent results. Moreover, its simple structure suggests the
possibility of implementation as a cost-effective FPLD solu-
tion, keeping the majority of available resources unused for
the implementation of a compact, modern, integrated com-
puter vision system. Recent FPLD devices have the capac-
ity and performance comparable to application-specific in-
tegrated circuits (ASICs), while maintaining flexibility and
low development costs. The main disadvantages of FPLD
devices—higher unit price in high-volume applications and
higher power consumption—can be successfully resolved
using their mask-programmed equivalents (e.g., HardCopy
version of FPLD devices for Altera). Although the choice of
the Altera Stratix EP1S25 device was motivated by the use of
Altera STRATIX DSP development board, the filter area is so
small that it can be mapped into almost any low cost FPLD
device (e.g., the smallest Cyclone device [80]). The flexibility
of the complete video filtering system structure is only lim-
ited by the architecture of the development board and size of
the memory blocks (embedded and external memory used
for line and frame buffers). The proposed system structure
enables modification of the pixel and frame frequency, and
is able to process videos with different frame spatial dimen-
sions. Thus, the proposed solution allows for easy adaptation
to the camera chosen by the end-user. However, the reduced
NAVF filtering structure is more flexible itself. It can be eas-
ily adapted to the window size (by the use of the parameter
N), to the number of bits per pixel (parameter B), and to
the statistics of the processed video (smoothing parameters
k1 and k2), and thus reused in a large variety of image pro-
cessing applications. It can be therefore concluded that the
efficiency and versatility of the proposed solutions make our
video filtering system ideal for a new generation of advanced
and intelligent vision systems.
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Slovak Republic, in 1998 and 2001, respec-
tively. From February 2001 to August 2002
he was an Assistant Professor at the Depart-
ment of Electronics and Multimedia Com-
munications at the Technical University of
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