EURASIP Journal on Applied Signal Processing 2005:2, 242-247
(© 2005 Hindawi Publishing Corporation

Passing Corrupt Data Across Network Layers:
An Overview of Recent Developments and Issues

Michael Welzl

Distributed and Parallel Systems Group, Institute of Computer Science, University of Innsbruck, 6020 Innsbruck, Austria

Email: michael welzl@uibk.ac.at

Received 6 August 2003; Revised 16 June 2004

Recent Internet developments seem to make a point for passing corrupt data from the link to the network layer and above instead
of ensuring data integrity with a checksum and ARQ. We give an overview of these efforts (the UDP Lite and DCCP protocols)
and explain which circumstances would justify delivery of erroneous data; clearly, the missing piece in the puzzle is efficient and

meaningful interlayer communication.

Keywords and phrases: UDP Lite, DCCP, TCP, checksum, wireless links, link layer ARQ.

1. INTRODUCTION

Network layers are a powerful concept of abstraction; a pro-
grammer of a web browser cannot be aware of lower-layer
issues such as routing or even parity control. The ISO/OSI
model is very valuable as a means to classify mechanisms,
thereby facilitating communication among network profes-
sionals as well as teachers and their students. From a purely
technical, efficiency oriented perspective however, it turns
out that strict layering can lead to duplicated functionality
(checksums in TCP, IP, and underneath) as well as misused
(TCP over the ATM “available bit rate” (ABR) service), inef-
ficient (if a frame belonging to a large IP packet is lost, the
whole packet becomes useless), or even unusable technology
(ATM and Internet QoS).

The OSI model sometimes seems to contradict the im-
portant design principles (in a sense, they have become com-
mandments for Internet designers) called “end-to-end argu-
ments,” which say that functions required by communicating
applications can be correctly and completely implemented
only with the knowledge and help of the applications them-
selves [1]. Basically, this means that most decisions should
be left up to applications and functions should be moved up-
ward in the stack as far as possible.!

In this paper, we are concerned with one particular func-
tion which is normally (but should not always be) performed

INotably, the end-to-end arguments also explicitly mention that an in-
complete version of the function provided by the communication system
may sometimes be useful as a performance enhancement. These rules are
frequently misinterpreted as being more strict than they really are (“keep
the inner network as dumb as possible at all costs”).

at the data link layer: checking a packet or frame for trans-
mission errors, discarding it, and maybe requesting its re-
transmission if the checksum fails. After looking at two trans-
port protocols that encompass features which only make
sense if the link layer hands over corrupted data, we discuss
what it would really mean to do so in Section 4. Possibilities
to cope with these problems via interlayer communication
are discussed in Section 5; Section 6 concludes.

2. UDPLITE

The “UDP Lite” protocol, a simple yet far reaching proposal,
has been under discussion in the IETF for several years [2]. It
differs from UDP in the following aspects.

(i) The redundant (except when padding is used after
the UDP payload, which does not fill any purpose)
“length” field in the UDP header is replaced by a
“checksum coverage” field.

(ii) The checksum now covers the UDP Lite header and
the so-called “pseudoheader” (some fields from the TP
header which are used to ensure end-to-end integrity)
and, depending on the checksum coverage field, a part
of the payload. A UDP Lite packet with a checksum
coverage value equal to the packet length (or 0) would
be treated just as a normal UDP packet whereas a value
of 8 means that only the header is checked and payload
errors are ignored.

This simple design was motivated by ease of deployment and
being backward compatible with UDP; it introduces extra
flexibility without adding virtually any complexity.

mailto:michael.welzl@uibk.ac.at

Passing Corrupt Data Across Network Layers

243

The goal of UDP Lite is to support applications which
would rather have damaged data delivered than discarded
by the network. This includes, for example, real-time mul-
timedia applications using codecs that are designed to cope
with such errors. The main problem with this concept is that
link layers typically do not pass erroneous data to the net-
work layer, and UDP Lite will hardly encounter an erroneous
packet. The protocol was therefore tested using a patched de-
vice driver [3].

In reality, it turns out that one partial checksum may
not even be enough for certain applications. For instance,
the standard for RTP transmission of “adaptive multirate”
(AMR) and “adaptive multirate wideband” (AMR-WB) en-
coded speech signals allows to send several speech frames
within one RTP packet, each of which could correspond with
an optional CRC [4]. Since it would obviously not make
sense to specify support for an arbitrary number of check-
sums with corresponding coverage fields in UDP Lite, such
an application would simply have to restrict the checksum to
the header by setting the checksum coverage field to 8 and
realize the several embedded payload checksums itself.

3. DCCpP

A new and very promising protocol that is currently being
developed in the IETF is called “datagram congestion con-
trol protocol” (DCCP). Unlike TCP, it provides a connec-
tionless service and is intended to be used by many of the
applications that were implemented directly on top of UDP
so far. Basically, DCCP provides access to existing conges-
tion control mechanisms in a uniform manner, thereby al-
lowing application programmers to merely choose between a
number of available schemes instead of implementing an ap-
propriate one from scratch (which is supposedly bothersome
enough to make some programmers abandon the idea of de-
ploying any kind of congestion control at all). DCCP is a tool
that can finally help turn some of the existing “TCP-friendly”
(i.e., fair towards TCP) congestion control ideas into real
services.

In addition to this basic functionality, the DCCP spec-
ification encompasses a wealth of other features—some ex-
amples are authentication via nonces, path MTU discovery
(a mechanism to detect the ideal packet size), support for
explicit congestion notification (ECN) [5], and last but not
least, partial checksums as in UDP Lite in order to support
applications that can cope with known corrupt data.

Since, unlike UDP Lite, DCCP is performing congestion
control, the means of interpreting transmission errors had to
be refined; thus, in its present state, the specification encom-
passes a so-called “data checksum option” which was pro-
posed by the author of this paper [6]. It works as follows.

(i) An additional checksum is introduced; if the regular
checksum does not cover all of the packet, the remaining part
is covered by the new one.

(ii) The idea is to support applications which require
error-free data while making use of corrupt packets for con-
gestion control. In this context, two different things can hap-
pen.

(1) A packet arrives with ECN = 1 in the IP header. The
receiver can now notify the sender that congestion has
occurred, leading to earlier and possibly more precise
congestion detection: a lost (unacknowledged) packet
could invoke a timeout, which usually corresponds
with a more severe reaction than an ECN notification.
TCP, for example, would enter the “slow start” phase
instead of staying in “congestion avoidance” state and
halving the congestion window.

(2) A packet arrives with ECN = 0 in the IP header. The
message to the sender is “corruption has occurred.”
Since corruption does not necessarily correspond with
congestion, one could imagine designing a different—
perhaps less conservative—reaction to such a notifica-
tion.

In any case, the intact header information from such an ac-
knowledgment could be used to drive the RTT estimation,
and certain control information are retained.

(iii) Optionally, a DCCP implementation may provide
an API through which an application can access the corrupt
data. In this case, the advantage of the data checksum option
is the fact that application is explicitly informed about cor-
ruption.

These issues, and especially the idea of a less strict re-
sponse to corruption than to congestion, raised a lot of ques-
tions and led to long discussions in the IETE Eventually, it
was decided that they must be seen in a broader context; for
example, it does not suffice to talk about DCCP and UDP Lite
when interpretation of corruption notifications could also be
relevant for TCP. The pros and cons were presented in the
“IAB Plenary” session of the 57th IETF Meeting which took
place in Vienna, Austria. It thoroughly subsumed the current
state of the discussions. In what follows, we will take a closer
look at some of the problems that were mentioned during
this presentation (which does not necessarily mean that a
conveyed opinion matches the presenter’s point of view) and
discuss the tradeoffs when tuning (or even disabling) link
layer ARQ.

4. ISSUES
4.1. Thelink layer perspective

One recurring argument against protocols like UDP Lite is
that most link layers already take care of corrupted data via
FEC and ARQ, and that obtaining corrupted data at the
transport layer is therefore a false notion. Clearly, this is a
“chicken-and-egg” problem: link layer designers will not be
motivated to disable ARQ unless there is a mechanism on
top which shows advantages with corrupt data.? While de-
signing, standardizing and deploying such a mechanism that
will not really show an immediate advantage is quite critical,
it has the potential to change the situation.

2Tuning link layer mechanisms is often a tradeoff among various factors
including system economics, application tolerance, and other things; such
considerations are beyond the scope of this paper.

244 EURASIP Journal on Applied Signal Processing
4.2. IPv6 O

Vi))> ’ o
CPU cycles are scarce in core Internet routers; since the IP .
header changes at each hop (e.g., a router must decrease the - E g
IPv4 “time-to-live (TTL)” field (“hop limit” in IPv6) by at (® 1 1 C) ®>
least 1 on forwarding), it is necessary to constantly recom- 2

pute the header checksum. As most links use a CRC any-
way, this is usually a waste of costly processing power. In
addition, IETF transport layer protocols are typically de-
signed to include the relevant fields of the IP header (a so-
called pseudoheader) in their checksum calculation in or-
der to ensure end-to-end integrity at all times. For IPv6, it
was therefore decided to remove this checksum altogether.
As a compensation, transport protocols are required to in-
clude a pseudoheader consisting of the source address, desti-
nation address, upper-layer packet length, and next header
field which identifies the type of header immediately fol-
lowing the IPv6 header. This means that fields which con-
vey per-hop semantics—the “flow label,” which is used for
quality of service, the “version” field which is used to identify
IPv6, IPv4, and other protocols, and the hop-by-hop options
which can define nodes that must be “visited” along the way
to the destination—remain unchecked by the network layer
[7].

The problem with this design is that it makes assump-
tions about underlying layers, thereby conflicting with the
common notion of “IP over everything” When IPv6 was
crafted, UDP Lite was not around. Now, IPv6 aggravates the
chicken-and-egg problem: if we deploy UDP Lite, how are
we going to convince a link layer designer to disable payload
checksums when this can mean sending IPv6 packets to Mars
(in accordance with the vision of the “interplanetary Inter-
net”)?

4.3. Encryption and authentication

Obviously, one has to be very careful about why and when to
use erroneous packets: even a few damaged bits of encrypted
data can destroy a large chunk of data. According to [2], the
decryption transform will typically spread errors such that
the packet becomes too damaged to be of use. Notably, there
are encryption mechanisms called “stream ciphers” which do
not spread errors in this way provided that the damage occurs
in the insensitive part of the packet.

Authentication mechanisms require a path to provide
end-to-end data integrity, that is, having the payload change
on the way to the receiver is completely unacceptable. It must
therefore be ensured that such mechanisms only operate on
the checked part of a packet (or partial checksums are simply
disabled). These issues do not seem to play a severe role. It
is simply a matter of knowing when and how to use partial
checksums.

4.4. Congestion versus corruption

As explained earlier, congestion control mechanisms nor-
mally rely on packet loss as an indicator of network overload.
This can lead to a misinterpretation of loss from corruption
as a sign of congestion. Partial checksums may circumvent
this problem by allowing an end node to better distinguish

FIGURE 1: An example of the scenario showing advantageous link
layer ARQ.

between these two network effects. Here, the problem is that
the information “a packet experienced corruption” can be
misleading; some congestions are in fact known to mani-
fest as corruption, for example, on shared wireless links. Ap-
parently, there is no thorough study available which clearly
shows when corruption is caused by congestion and when it
is not; the Internet community still seems to be somewhat
unsure about the best way to react upon a corruption notifi-
cation.

4.5. Linklayer ARQ considerations

Perhaps the greatest problem with link layer ARQ is that
sometimes it is more efficient than handing over corrupt
data, and sometimes it is not. For instance, if the trans-
port protocol is TCP (or TCP-friendly, as could be expected
of DCCP), retransmission of frames at the link layer ba-
sically means installing a control loop on top of a con-
trol loop; such design is known to cause strange interac-
tions and was studied thoroughly in the case of TCP over
ATM ABR. The specific problem with TCP and link layer
ARQ is that local retransmissions artificially prolong the end-
to-end round-trip time (RTT). The estimated RTT, which
is continuously updated with each acknowledgment using
an exponentially weighted moving average function, plays
a crucial role in TCP: its stability depends on a property
called “ACK clocking” (sometimes also called the “con-
servation of packets principle”), which is based on the
RTT estimate. In equilibrium, a packet should only be
sent into the network when a packet has left the network
[8].

Feedback delay also has a direct impact on the rate of a
TCP sender. The following equation models the steady-state
behaviour of TCP:

N

T = .
R\[2p/3 + trro (3,/3p/8) p(1 + 32p?)

(1)

Here, the sending rate T is described as a function of the
packet size s, RTT R, steady-state loss event rate p, and the
TCP retransmit timeout value frro (roughly 4R) [9].

On the other hand, in a scenario like the one depicted
in Figure 1, enabling link layer ARQ is clearly beneficial: the
feedback delay (RTT) of loop 1 is much shorter than the feed-
back delay of the end-to-end TCP connection from sender S
to receiver R (loop 2). Link layer optimization is also a conve-
nient and an easily deployable way of enhancing performance
because it is transparent to the end systems.

Passing Corrupt Data Across Network Layers

245

In this example, it is hardly possible for the nodes in-
volved in loop 1 to be aware of the satellite connection; if
strict layering is enforced, it cannot be aware of it. There
may be many TCP connections on a wireless link, and an
unknown number of them may resemble the S-R connec-
tion in Figure 1 unless the wireless link layer can distinguish
between individual network layer flows (distinguishing be-
tween two transport flows is unnecessary up to now, but
this may change as transport level multihoming is deployed
[10]). Ideally, link layer ARQ should be tuned (in varying
degrees of persistence [11]) for each individual flow based
on the signal-to-noise ratio and (1), which means that the
link layer would have to be aware of all the variables in-
volved.

If the end node is capable of utilizing the information “a
packet is corrupt,” the decision for or against link layer ARQ
would ideally have to involve the specific advantage gained
with this kind of message in addition to all of the factors
above. Given the complexity, it seems to be impossible for
the link layer to make a sensible decision on its own. At this
point, it may be helpful to remember the end-to-end argu-
ments; Functions required by communicating applications can
be correctly and completely implemented only with the knowl-
edge and help of the applications themselves. Providing these
functions as features within the network itself is not possible
[1].

The arguments have several facets, and, according to
[12], two complementary goals:

(1) higher-level layers, more specific to an application, are
free to (and thus expected to) organize lower-level net-
work resources to achieve application-specific design
goals efficiently (application autonomy);

(2) lower-level layers, which support many independent
applications, should provide only resources of broad
utility across applications, while providing to applica-
tions usable means for effective sharing of resources
and resolution of resource conflicts (network trans-
parency).

In our case, it seems to make sense if we apply these rules
as follows:

(1) higher-level layers, more specific to an application,
should have some means to “organize lower-level net-
work resources,” that is, communicate their require-
ments to lower layers;

(2) lower-level layers, which support many independent
applications, should use mechanisms of broad utility
across applications (general purpose, tunable link layer
ARQ), while reacting to commands from applications.

In other words, since only higher layers can be expected to
be aware of what they need and the requirements that should
be met, the solution seems to be link layer ARQ with various
degrees of persistence, to be tuned and/or disabled via effec-
tive interlayer communication. In what follows, we will take
a look at some possibilities to enable such communication
(for simplification, we restrict our observations to the possi-

bility of enabling/disabling link layer ARQ and notifying end
nodes of corruption).

5. INTERLAYER COMMUNICATION

5.1. TrigTran: corruption experienced

There was a recent IETF effort called “triggers for trans-
port” (TrigTran) (now continued in the framework of
another effort called “access link intermediaries assist-
ing services” (ALIAS) available at http://mailman.berkeley.
intel-research.net/mailman/listinfo/alias), which is about
messages (“triggers”) between transport end points (S and
R in Figure 1) and the network as a performance enhance-
ment. In addition to notifications for links going down or
up, a message called “corruption experienced” was discussed.
So far, there does not seem to be a concise outcome, which
is apparently due to the aforementioned difficulties with the
interpretation of such a message.

It is an open question when a corruption experienced no-
tification should be sent, and who should receive it. Ques-
tions of timescale and scalability arise, and having interme-
diate systems that send messages to end nodes on their own
has been identified as a bad idea before [13].

5.2. Transport protocol detection

The UDP Lite specification [2] makes a set of recommenda-
tions for link layers; basically, UDP Lite packets should be
identified, and there should only be partial error detection
for such packets. This means that link layer end points (the
left and right ends of loop 1 in Figure 1) must examine each
and every packet and, in the case of fragmented datagrams
carrying UDP Lite payload, maintain state until all fragments
were received or a timeout occurred. Keeping per-flow state
is a highly critical operation as it is known not to scale well.

Internet quality of service efforts have therefore evolved
from a completely stateful to a hierarchical approach, where
core routers are not aware of individual connections and edge
routers of a domain do most of the work. Thus, one can-
not expect a core router (or an equivalently overloaded net-
work node) to keep per-flow state, that is, fully support the
implicit interlayer communication model suggested in [2].
However, if the network node in question resembles a typical
edge router in terms of resource availability, the method may
be feasible.

5.3. Other possibilities

There are, of course, numerous other ways to inform the data
link layer that corrupted packets should be handed over to
the network layer instead of performing link layer ARQ or
notifying an end system about corruption within the net-
work. However, each method seems to have its distinctive
disadvantages.

As an example, to circumvent the problems that occur
when the data link layer has to examine the transport layer,
one might consider introducing a corruption acceptable
(and/or corruption experienced) bit in the IP header. The
IP header, however, has no bits to spare. As an alternative,

http://mailman.berkeley.intel-research.net/mailman/listinfo/alias
http://mailman.berkeley.intel-research.net/mailman/listinfo/alias

246

EURASIP Journal on Applied Signal Processing

it would be possible to design a new IP option.> On the other
hand, common Internet routers are known to process “stan-
dard” packets in the so-called “fast path” (pure hardware)
whereas packets requiring special treatment end up in the
“slow path” (software or mixed hardware/software process-
ing). Option interpretation is one such special treatment be-
cause the work involved is hard to determine beforehand.

The negative effects of delaying IP packets (artificially
prolonging the RTT) were already discussed at the beginning
of this section. IP options should therefore be used with care.
While per-flow state could be avoided by adding an IP op-
tion to every packet of a connection, the extra delay perhaps
outweighs the advantage. Sometimes, routers are configured
to handle only a certain number of IP options per second.
This kind of configuration makes the use of IP options in all
packets pointless. If only a certain number of packets carry
the special option, the data link layer has to keep track of
transport flows, and the advantage over transport protocol
detection is lost. The same is true for extra signaling from
end points to the data link layer (e.g., an ICMP message car-
rying a corruption-acceptable notification).

It seems as though the best method to set up commu-
nication between the transport and data link layers remains
to be found; sensibly introducing such a mechanism would
require to carefully study the tradeoffs in a large number of
possible scenarios—a work that has yet to be carried out.

6. CONCLUSION

In this paper, we examined some recent developments that
have been taking place in the IETFE. The underlying idea is
that it may sometimes make sense to pass corrupt data from
the data link layer to the transport layer and above—a con-
cept that brings about a large number of design issues and
led to many discussions in the related IETF working groups.

The list of developments that were presented in this pa-
per is, of course, not comprehensive. An immense amount
of work has been done in the area of TCP enhancements for
wireless links, ranging from ideas of connection splitting to
more sophisticated mechanisms like the “Snoop protocol.”
A good overview can be found in [14, 15], which includes
a proposal for a new cross-layer communication method.
Also, there are mechanisms like explicit congestion notifi-
cation (ECN) [5], which is the congestion counterpart to a
corruption-experienced message; while it is not sensible to
solely rely on ECN and ignore packet loss for various rea-
sons, such usage would avoid the typical misinterpretation
that occur with noisy links. Thus, ECN is at least a step in
the direction of separating these two fundamental network
effects.

Another example is the “congestion avoidance with dis-
tributed proportional control” (CADPC) mechanism, which
exclusively relies on explicit traffic feedback from the “per-
formance transparency protocol” (PTP) and ignores packet

31t has been brought to the author’s attention that such an idea was once
proposed in the IETF as a “crappy link IP option.”

loss; this mechanism, which has been shown to perform very
well with long-term flows in isolated simulations, does not
have the problem of misinterpreting corruption for conges-
tion [16]. “TCP-HACK” is a TCP enhancement based on par-
tial checksums; it was shown to perform well in a large num-
ber of scenarios and implemented for Linux [17]. A similar
TCP enhancement is currently under discussion in the IETF
[18].

Given all these efforts and the fact that none of them are
deployed, it seems to be clear that the main issue is the lack
of effective and well-designed interlayer communication. To
solve this problem would mean to carry out a thorough in-
vestigation of pros and cons that come with various commu-
nication methods; it is a purpose of this paper to motivate
such research.

ACKNOWLEDGMENTS

The author would like to thank everybody who contributed
to the UDP Lite and DCCP discussions on partial and sepa-
rate checksums in the TSVWG and DCCP Working Groups
of the IETE In particular, this includes Gorry Fairhurst,
Aaron Falk (who held the IAB Plenary Presentation entitled
“Passing errored-packets to applications”), Eddie Kohler, and
Colin Perkins.

REFERENCES

[1] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end argu-
ments in system design,” in Proc. 2nd International Conference
on Distributed Computing Systems (ICDCS °81), pp. 509-512,
Paris, France, April 1981.

[2] L.-A. Larzon, M. Degermark, S. Pink, L.-E. Jonsson Ed., and
G. Fairhurst Ed., “The lightweight user datagram protocol
(UDP-Lite),” REC 3828, July 2004.

[3] L.-A. Larzon, M. Degermark, and S. Pink, “UDP lite for real-

time multimedia applications,” in Proc. IEEE International

Conference of Communications (ICC °99), Vancouver, British

Columbia, Canada, June 1999.

J. Sjoberg, M. Westerlund, A. Lakaniemi, and Q. Xie, “Real-

time transport protocol (RTP) payload format and file stor-

age format for the adaptive multi-rate (AMR) and adaptive

multi-rate wideband (AMR-WB) audio codecs,” RFC 3267,

June 2002.

[5] K. Ramakrishnan, S. Floyd, and D. Black, “The addition
of explicit congestion notification (ECN) to IP,” RFC 3168,
September 2001.

[6] E. Kohler, M. Handley, and S. Floyd, “Datagram congestion
control protocol (DCCP),” Internet Draft, February 2004,
http://www.icir.org/kohler/dccp/draft-ietf-dccp-spec-06.txt.

[7] S. Deering and R. Hinden, “Internet Protocol, Version 6
(IPv6) specification,” RFC 2460, December 1998.

[8] V. Jacobson and M. Karels, “Congestion avoidance and con-
trol,” in Proc. ACM SIGCOMM Symposium on Communica-
tions Architectures and Protocols (ACM SIGCOMM °88), pp.
314-329, Stanford, Calif, USA, August 1988.

[9] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling
TCP throughput: a simple model and its empirical valida-
tion,” in Proc. ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munication (ACM SIGCOMM ’98), pp. 303—314, Vancouver,
British Columbia, Canada, August—September 1998.

»

http://www.icir.org/kohler/dccp/draft-ietf-dccp-spec-06.txt

Passing Corrupt Data Across Network Layers

247

[10]
[11]

[12]

(13]

(14]

(15]

[16]

(17]

R. Stewart, Q. Xie, K. Morneault, and et al., “Stream control
transmission protocol,” RFC 2960, October 2000.

G. Fairhurst and L. Wood, “Advice to link designers on link
automatic repeat request (ARQ),” RFC 3366, August 2002.

D. P. Reed, J. H. Saltzer, and D. D. Clark, “Comment on active
networking and end-to-end arguments,” IEEE Network, vol.
12, no. 3, pp. 69-71, 1998.

S. Floyd, “ECN vs. source quench,” Technical Note, November
1997, http://www.icir.org/floyd/ecn.html.

H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H.
Katz, “A comparison of mechanisms for improving TCP per-
formance over wireless links,” in Proc. ACM SIGCOMM Con-
ference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communication (ACM SIGCOMM ’96), pp.
256-269, Stanford, Calif, USA, August 1996.

R. Krishnan, J. Sterbenz, W. Eddy, C. Partridge, and M. All-
man, “Explicit transport error notification (ETEN) for error-
prone wireless and satellite networks,” Computer Networks,
vol. 46, no. 3, pp. 343-362, 2004.

M. Welzl, Scalable Performance Signalling and Congestion
Avoidance, Kluwer Academic, Norwell, Mass, USA, 2003.

R. K. Balan, B. P. Lee, K. R. R. Kumar, L. Jacob, W. K. G. Seah,
and A. L. Ananda, “TCP HACK: TCP header checksum op-
tion to improve performance over lossy links,” in Proc. 20th
Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM °01), vol. 1, pp. 309-318, An-
chorage, Alaska, USA, April 2001.

M. Welzl, “TCP corruption notification options,” Internet
Draft, June 2004, http://www.welzl.at/research/publications/
draft-welzl-tcp-corruption-00.txt.

Michael Welzl received his M.S. degree
from the University of Linz, Austria, and
passed his Ph.D. defense at the University
of Darmstadt, Germany, with distinction, in
November 2002. His thesis “Scalable per-
formance signalling and congestion avoid-
ance,” which was written under the supervi-
sion of Professor Max Muehlhaeuser (Uni-
versity of Darmstadt, Germany) and Pro-

fessor Jon Crowcroft (University of Cam-

bridge, United Kingdom), introduced the PTP protocol and
showed its benefits in isolation; a revised version of this work is
available at Kluwer Academic Publishers. Dr. Welzl spent two years
as a Research Assistant at the Telecooperation Department, Univer-
sity of Linz, Austria, before joining the faculty of the newly founded
Institute of Computer Science, the University of Innsbruck, Aus-
tria, in November 2001, where he is doing research on computer
networks with a focus on grid computing.

http://www.icir.org/floyd/ecn.html
http://www.welzl.at/research/publications/draft-welzl-tcp-corruption-00.txt
http://www.welzl.at/research/publications/draft-welzl-tcp-corruption-00.txt

	1. INTRODUCTION
	2. UDP LITE
	3. DCCP
	4. ISSUES
	4.1. The link layer perspective
	4.2. IPv6
	4.3. Encryption and authentication
	4.4. Congestion versus corruption
	4.5. Link layer ARQ considerations

	5. INTERLAYER COMMUNICATION
	5.1. TrigTran: corruption experienced
	5.2. Transport protocol detection
	5.3. Other possibilities

	6. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

