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It is a recurrent issue in astronomical data analysis that observations are incomplete maps with missing patches or intentionally
masked parts. In addition, many astrophysical emissions are nonstationary processes over the sky. All these effects impair data
processing techniques which work in the Fourier domain. Spectral matching ICA (SMICA) is a source separationmethod based on
spectral matching in Fourier space designed for the separation of diffuse astrophysical emissions in cosmic microwave background
observations. This paper proposes an extension of SMICA to the wavelet domain and demonstrates the effectiveness of wavelet-
based statistics for dealing with gaps in the data.
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1. INTRODUCTION

The detection of cosmic microwave background (CMB)
anisotropies on the sky has been over the past three decades a
subject of intense activity in the cosmology community. The
CMB, discovered in 1965 by Penzias andWilson, is a relic ra-
diation emitted some 13 billion years ago, when the universe
was about 370 000 years old. Small fluctuations of this emis-
sion, tracing the seeds of the primordial inhomogeneities
which gave rise to present large scale structures as galaxies
and clusters of galaxies, were first discovered in the observa-
tions made by COBE [1] and further investigated by a num-
ber of experiments among which Archeops [2], boomerang
[3], maxima [4], and WMAP [5].

The precise measurement of these fluctuations is of ut-
most importance to cosmology. Their statistical properties
(spatial power spectrum, Gaussianity) strongly depend on
the cosmological scenarios describing the properties and
evolution of our universe as a whole, and thus permit to

constrain these models as well as to measure the cosmologi-
cal parameters describing the matter content, the geometry,
and the evolution of our universe [6].

Accessing this information, however, requires disentan-
gling in the data the contributions of several distinct astro-
physical sources, all of which emit radiation in the frequency
range used for CMB observations [7]. This problem of com-
ponent separation, in the field of CMB studies, has thus been
the object of many dedicated studies in the past.

To first order, the total sky emission can be modeled as
a linear superposition of a few independent processes. The
observation of the sky in direction (θ,ϕ) with detector d is
then a noisy linear mixture of Nc components:

xd(ϑ,ϕ) =
Nc∑
j=1

Adjs j(ϑ,ϕ) + nd(ϑ,ϕ), (1)

where s j is the emission template for the jth astrophysi-
cal process, herein referred to as a source or a component.
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The coefficients Adj reflect emission laws while nd accounts
for noise. When Nd detectors provide independent observa-
tions, this equation can be put in vector-matrix form:

X(ϑ,ϕ) = AS(ϑ,ϕ) +N(ϑ,ϕ), (2)

whereX andN are vectors of lengthNd, S is a vector of length
Nc, and A is the Nd ×Nc mixing matrix.

Given the observations of such a set of independent de-
tectors, component separation consists in recovering esti-
mates of the maps of the sources s j(ϑ,ϕ). Explicit component
separation has been investigated first in CMB applications by
[7, 8, 9]. In these applications, recovering componentmaps is
the primary target, and all the parameters of the model (mix-
ing matrix Adj , noise levels, statistics of the components, in-
cluding the spatial power spectra) are assumed to be known
and are used to invert the linear system.

Recent research has addressed the case of an imperfectly
known mixing matrix. It is then necessary to estimate it (or
at least some of its entries) directly from the data. For in-
stance, Tegmark et al. assume power law emission spectra for
all components except CMB and SZ, and fit spectral indices
to the observations [10].

More recently, blind source separation or independent
component analysis (ICA) methods have been implemented
specifically for CMB studies. The work of Baccigalupi et
al. [11], further extended by Maino et al. [12], imple-
ments a blind source separation method exploiting the non-
Gaussianity of the sources for their separation, which permits
to recover the mixing matrix A and the maps of the sources.
Accounting for spatially varying instrumental noise in the
observation model is investigated by Kuruoglu et al. in [13],
as well as the possible inclusion of prior information about
the distributions of the components using a generic Gaussian
mixture model.

Snoussi et al. [14] propose a Bayesian approach in the
Fourier domain assuming known spectra for the compo-
nents as well as possibly non-Gaussian priors for the Fourier
coefficients of the components. A fully blind, maximum like-
lihood approach is developed in [15, 16], with the new point
of view that spatial power spectra are actually the main un-
known parameters of interest for CMB observations. A key
benefit is that parameter estimation can then be based on a
set of band-averaged spectral covariance matrices, consider-
ably compressing the data size.

Working in the frequency domain offers several benefits
but the nonlocality of the Fourier transform creates some dif-
ficulties. In particular, one may wish to avoid the averaging
induced by the nonlocality of the Fourier transform when
dealing with strongly nonstationary components or noise. In
addition, in many experiments, only an incomplete sky cov-
erage is available. Either the instrument observes only a frac-
tion of the sky or some regions of the skymust bemasked due
to localized strong astrophysical sources of contamination:
compact radio sources or galaxies, strong emitting regions in
the galactic plane. These effects can be mitigated in a simple
manner thanks to the localization properties of wavelets.

Blind component separation (and in particular estima-
tion of the mixing matrix), as discussed by Cardoso [17], can
be achieved in several different ways. The first of these ex-
ploits non-Gaussianity of all, but possibly one, components.
The component separation method of Baccigalupi [11] and
Maino [12] belongs to this set of techniques. In CMB data
analysis, however, the main component of interest (the CMB
itself) has a Gaussian distribution and the observed mixtures
suffer from additive Gaussian noise, so that better perfor-
mance can be expected from methods based on Gaussian
models. A second set of techniques exploits spectral diver-
sity and works in the Fourier domain. It has the advantage
that detector–dependent beams can be handled easily, since
the convolution with a point spread function in direct space
becomes a simple product in Fourier space. SMICA follows
this approach in the context of noisy observations. Finally, a
third set of methods exploits nonstationarity. It is adapted to
situations where components are strongly nonstationary in
real space.

It is natural to investigate the possible benefits of ex-
ploiting both nonstationarity and spectral diversity for blind
component separation using wavelets. Indeed wavelets are
powerful tools in revealing the spectral content of nonsta-
tionary data. Although blind source separation in the wavelet
domain has been previously examined, the setting here is
different. We should mention, for instance, the separation
method in [18] which is based on the non-Gaussianity of the
source signals but after a sparsifying wavelet transform and
the Bayesian approach in [19] which adopts a similar point
of view although with a richer source model accounting for
correlations in the wavelet representation.

The paper is organized as follows. In Section 2, we first
recall the principle of spectral matching ICA. Then, after
a brief reminder of some properties of the à trous wavelet
transform, we discuss in Section 3 the extension of SMICA to
component separation in wavelet space in order to deal with
nonstationary data. Considering the problem of incomplete
data as a model case of practical significance for the compar-
ison of SMICA and its extension wSMICA, numerical exper-
iments and results are reported in Section 4.

2. SMICA

Spectral matching ICA, or SMICA for short, is a blind
source separation technique which, unlike most standard
ICA methods, is able to recover Gaussian sources in noisy
contexts. It operates in the spectral domain and is based on
spectral diversity: it is able to separate sources provided they
have different power spectra. This section gives a brief ac-
count of SMICA. More details can be found in [16]; first ap-
plications to CMB analysis are in [16, 20].

2.1. Model and cost function

For a second-order stationary Nd-dimensional process, we
denote byRX(ν) theNd×Nd spectral covariancematrix at fre-
quency ν, that is, the (i, i)th entry of RX(ν) is the power spec-
trum of the ith coordinate of X while the offdiagonal entries
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of RX(ν) contain the cross-spectra between the entries of X .
If X follows the linear model of (2) with independent addi-
tive noise, then its spectral covariance matrix is structured as

RX(ν) = ARS(ν)A† + RN (ν) (3)

with RS(ν) and RN (ν) being the spectral covariance matrices
of S and N , respectively. The assumption of independence
between the underlying components implies that RS(ν) is a
diagonal matrix. We will also assume independence of the
noise processes between detectors: matrix RN (ν) also is a di-
agonal matrix.

In the definition of RX(ν), we have not explicitly defined
the frequency ν. This is because SMICA can be applied for
the separation of components in many contexts: each ob-
servation Xd can be a time series (one-dimensional), an im-
age (two-dimensional random fields), a random field on the
sphere (as in full-sky CMB studies). In each case, the appro-
priate notions of frequency, stationarity, and power spectrum
should be used.

SMICA estimates all (or a subset of) the model parame-
ters

θ = {RS
(
νq
)
,RN

(
νq
)
,A
}

(4)

by minimizing a measure of “spectral mismatch” between
sample estimates R̂X(ν) (defined below) of the spectral co-
variance matrices and their ensemble averages which de-
pend on the parameters according to (3). More specifically,

an estimate θ̂ = {R̂S(νq), R̂N (νq), Â} is obtained as θ̂ =
argminθ φ(θ) where the measure of spectral mismatch φ(θ)
is defined by

φ(θ) =
Q∑
q=1

αqD
(
R̂X
(
νq
)
,ARS

(
νq
)
A† + RN

(
νq
))
. (5)

Here, {νq|1 ≤ q ≤ Q} is a set of frequencies, {αq|1 ≤ q ≤
Q} is a set of positive weights, and D(·, ·) is a measure of
mismatch between two positive matrices.

This approach is a particular instance of moment match-
ing. As such, if consistent estimates R̂X(νq) of the spectral
covariance matrices RX(νq) are available and if the model is
identifiable, then any reasonable choice of the weights αq and
of the divergence measure D(·, ·) should lead to consistent
estimates of the parameters. However, this does not mean
that these choices should be arbitrary: in our standard imple-
mentation, we make specific choices (described next) in such
a way that minimizing φ(θ) is identical to maximizing the
likelihood of θ in a model of Gaussian stationary processes.
Hence, these choices guarantee a good statistical efficiency
when the underlying processes are well modeled as Gaussian
stationary processes. When this is not the case, though, the
performance of SMICA may not be as good as (but not nec-
essarily worse than) the performance of other methods de-
signed to capture other aspects of the statistical distribution
of the data, such as non-Gaussian features, for instance.

Given a data set, denote by X̃(ν) its discrete Fourier trans-
form at frequency ν and denote by {Fq|1 ≤ q ≤ Q} a set
of Q frequency domains with Fq centered around frequency
νq. Spectral covariance matrices are estimated nonparamet-
rically by

R̂X
(
νq
) = 1

nq

∑
ν∈Fq

X̃(ν)X̃(ν)†, (6)

where nq denotes the number of Fourier points X̃(ν) in the
spectral domain Fq. We always use symmetric domains in the
sense that frequency ν belongs to Fq if and only if −ν also

does. This symmetry guarantees that R̂X(νq) is always a real-
valued matrix when X itself is a real-valued process.

In its standard form, the SMICA technique uses positive
weights αq = nq and a divergenceD defined as

DKL
(
R1,R2

) = 1
2

(
trace

(
R1R

−1
2

)−log det (R1R
−1
2

)−m) (7)

which is the Kullback-Leibler divergence between two m-
variate zero-mean Gaussian distributions with covariance
matrices R1 and R2. These choices stem from the Whittle ap-
proximation according to which each X̃(ν) has a zero-mean
normal distribution with covariance matrix RX(ν) and is un-
correlated with X̃(ν′) for ν �= ν′. In this case, it is easily
checked that −φ(θ) evaluated with αq = nq and D = DKL

is (up to a constant) the log-likelihood for T data samples.
This is actually true when the spectral domains are shrunk to
just one DFT point (nq = 1 for all q); when the spectral do-
mains Fq are chosen to contain several (usually many) DFT
points, then −φ(θ) is the log-likelihood, in the Whittle ap-
proximation, of the Gaussian stationary model with constant
power spectrum over each domain Fq. This approximation is
at small statistical loss when the spectrum is smooth enough
to show little variation over each spectral domain.

The major gain of assuming constant spectrum over each
Fq is the resulting reduction of the data set to a small num-
ber of covariance matrices. This may be a crucial benefit in
applications like astronomical imaging where very large data
sets are frequent.

Regarding our application to CMB analysis, the hypoth-
esized isotropy of the distribution of the sources leads to in-
tegrate over spectral domains with the corresponding sym-
metry. For sky maps small enough to be considered as flat,
the spectral decomposition is the two-dimensional Fourier
transform and the “natural” spectral domains are rings cen-
tered on the null frequency. For larger maps where curva-
ture cannot be neglected, the spectral decomposition is over
spherical harmonics and the natural spectral domains con-
tain all the modes associated to a set of scales [20].

2.2. Parameter optimization

Minimizing the spectral mismatch φ(θ) can be achieved us-
ing any optimization technique. However, φ being a likeli-
hood criterion in disguise, one can also resort to the EM
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algorithm. This is detailed in [16] in the case of spatially
white noise, that is, RN (ν) actually not depending on ν. Ac-
tually, this latter algorithm was slightly modified in order to
deal with the case of colored noise N in (2). Another useful
enhancement was to allow for constraints to be set on the
model parameters so that prior information such as bounds
on some entries of the mixing matrix A could be included.
Details are given in the appendix.

The EM algorithm is straightforwardly implemented and
does not require any tuning. It can quickly drive the spec-
tral mismatch down to small values but is often unable to
complete the optimization. Slow EM finishing is inherent to
noisy models [21] and we have found it necessary to imple-
ment a mixed ad hoc strategy based on alternating EM steps
and BFGS steps [16].

We have also found that initialization is critical: criterion
(5) is probably multimodal for many data sets. This issue is
not addressed in this paper though, since our prime inter-
est is in the study of the statistical performances of different
estimators of the model parameters θ. In the simulations re-
ported below, the minimization of φ(θ) is initialized at the
true mixing matrix and with spectral covariance matrices es-
timated from the initial separate source and noise maps.

2.3. Componentmap estimation

When running SMICA, power spectral densities for the
sources and detector noise are obtained along with the es-
timated mixing matrix. They are used in reconstructing the
source maps via Wiener filtering in Fourier space: a Fourier
mode X(ν) in frequency band ν ∈ Fq is used to reconstruct
the maps according to

Ŝ(ν) =
(
Â†R̂N (ν)−1Â + R̂S(ν)−1

)−1
Â†R̂N (ν)−1X(ν). (8)

In the limiting case where noise is small compared to signal
components, the Wiener filter reduces to

Ŝ(ν) =
(
Â†R̂N (ν)−1Â

)−1
Â†R̂N (ν)−1X(ν). (9)

Note however that the above Wiener filter is optimal only
in front of stationary Gaussian processes. For weak, point-
like sources such as galaxy clusters seen via the Sunyaev–
Zel’dovich effect (defined in Section 4.1), much better recon-
struction can be expected from nonlinear methods.

3. SPECTRALMATCHING INWAVELET SPACE

The SMICA method for spectral matching in Fourier space
has already shown significant success for CMB spectral esti-
mation in multidetector experiments. It is in particular able
to identify and remove residuals of poorly known correlated
systematics and astrophysical foreground emissions contam-
inating CMB maps. However, SMICA suffers from several
practical difficulties when dealing with real data.

Indeed, actual components are known to depart slightly
from the ideal linear mixture model (2). The mixing matrix

(in particular those columns ofAwhich correspond to galac-
tic emissions) is known to depend somewhat on the direction
of observation or on spatial frequency. Measuring the depen-
dence A(ϑ,ϕ) is of interest for future experiments as Planck,
and cannot be achieved directly with SMICA. Further, the
components are known to be both correlated and nonsta-
tionary. For instance, galactic dust emissions are strongly
peaked towards the galactic plane. A nonlocal spectral repre-
sentation (via Fourier coefficients or via spherical harmon-
ics) mixes contributions from high galactic sky, nearly free of
foreground contamination, and contributions from within
the galactic plane. Noise levels themselves may be quite non-
stationary, with high SNR regions observed for a long time
and low SNR regions poorly observed.

When there are sharp edges on the maps or gaps in the
data, corresponding to unobserved or masked regions, spec-
tral estimation using the smooth periodogram of (6) is not
the most satisfactory procedure. Although apodizing win-
dowsmay help cope with edge effects in Fourier analysis, they
are not very straightforward to use in the case of arbitrarily
shaped maps with arbitrarily shaped gaps, such as those en-
countered in the Archeops experiment [2].

Clearly, the spectral analysis of gapped data requires tools
different from those used to process full data sets, if only be-
cause the hypothesized stationarity of the data is greatly dis-
turbed by the missing samples. Common such methods of-
ten amount to using standard spectral estimators after the
gaps were filled with estimates of the missing samples. How-
ever, the data interpolation stage is critical and cannot be
completed without prior assumptions on the data. Another
idea, applicable to CMB analysis, is to process gapped data
as if they were complete but to correct afterwards the spec-
tral estimates from the bias induced by the gaps [22]. We
preferred to rely on methods intrinsically dedicated to the
analysis of nonstationary data such as the wavelet transform,
widely used to reveal variations in the spectral content of
time series or images, as they permit to single out regions
in direct space while retaining localization in the frequency
domain. We see next how to reformulate (5) in the wavelet
domain in order to deal with missing data. Note that, in the
following, the locations of the missing samples are assumed
to be known.

3.1. Wavelet transform

The experiments described further downmake use of the un-
decimated à trous algorithm with the 2D cubic B3 spline [23]
as scaling function, for implementing a wavelet transform.
Although, depending on the data analysis problem, it is pos-
sible that a different choice can lead to better results, for our
specific application, the à trous wavelet transform has several
favorable properties. First, it is a shift invariant transform,
the wavelet coefficient maps on each scale are the same size as
the initial image, and the wavelet and scaling functions have
small compact supports on the data map. Hence, missing
patches in the observed maps are easily handled. Second, the
2D wavelet and scaling functions are nearly isotropic which
is best for the analysis of an isotropic Gaussian field such as
the CMB, or of data sets such as maps of galaxy clusters,
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which contain only isotropic features. The undecimated
isotropic à trous wavelet transform has been shown to be
well suited to the analysis of astrophysical data where transla-
tion invariance is desirable and where the emphasis is seldom
on data compression [23]. Further, with this choice of scal-
ing function, the so-called scaling equation is satisfied, and
therefore fast implementations of the decomposition and re-
construction steps of the à trous transform are available [23].

Given a 2D data set c0(k, l), the à trous algorithm pro-
duces recursively a set of detail maps wi(k, l) on a dyadic res-
olution scale and a smooth approximation cJ(k, l) [23]. We
note that the lowest resolution Jmax is obviously limited by
the data map size. The transform is readily inverted by

c0(k, l) = cJ(k, l) +
J∑

i=1
wi(k, l), (10)

which is a simple addition of the smooth array with the detail
maps.

3.2. Spectral matching in wavelet space: wSMICA

In order to define a sensible wavelet version of SMICA, we
first rewrite the SMICA criterion (5) in terms of covariance
matrices in the initial domain, where, for instance, the gaps
are best described, rather than in the Fourier domain.

Consider a batch of T data samples Xt=1,T where t is an
appropriate index depending on the dimension of the data,
and the set of Q ideal bandpass filters Fq associated with the
nonoverlapping frequency domains Fq used in SMICA. De-
noting by Xq(t) the data filtered through Fq, we define sam-
ple covariance matrices

R̂T,X(q) = 1
T

T∑
t=1

Xq(t)Xq(t)† (11)

obtained by averaging in the original domain. Owing to the
unitary property of the discrete Fourier transform, one has

R̂T,X(q) =
nq
T
R̂X
(
νq
)
, (12)

where nq was defined as the number of Fourier modes in
spectral band Fq. These matrices are estimates of RT,X(q) =
E(Xq(t)Xq(t)†), the covariance matrix of Xq(t). Again, ac-
cording to model (3), the covariance matrices are again
structured as

RT,X(q) = ART,S(q)A† + RT,N (q), (13)

where RT,S(q) and RT,N (q) are defined similarly to RT,X(q).
Hence, minimizing the SMICA objective function (5) is then
equivalent to minimizing

φ(θ) =
Q∑
q=1

nqDKL

(
R̂T,X(q), ART,S(q)A† + RT,N (q)

)
(14)

with respect to the new set of parameters θ = (A,RT,S(q),
RT,N (q)).
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Figure 1: Magnitudes averaged over spectral rings of the nearly
isotropic cubic spline wavelet filters ψ1, ψ2, . . . ,ψ5 used in the sim-
ulations described further down. The vertical dotted lines for ν =
{0.013, 0.025, 0.045, 0.09, 0.2} delimit the five frequency bands used
with SMICA in these simulations.

We now consider using another set of filters in place of
the ideal bandpass filters used by SMICA. In dealing with
nonstationary data or, as a special case, with gapped data,
it is especially attractive to consider finite impulse response
(FIR) filters. Indeed, provided the response of such a filter is
short enough compared to data size T and gap widths, most
of the samples in the filtered signal will be unaffected by the
presence of gaps. Using exclusively these samples yields esti-
mated covariance matrices which are not biased by the miss-
ing data, at the cost of a slight increase of variance due to
discarding some data samples. In the following, we use fil-
ters ψ1, ψ2, . . . ,ψJ , φJ (see Figure 1) and the wavelet à trous
algorithm.

Consider again a batch ofT regularly spaced data samples
Xt=1,T . Possible gaps in the data are simply described with a
mask µ, that is, an array of zeroes and ones of the same size as
the data Xt=1,T with ones corresponding to samples outside
the gaps. Denoting by W1, W2, . . . ,WJ and CJ the wavelet
scales and the smooth approximation of X , obtained with
the à trous transform and µ1, . . . ,µJ+1 the masks for the dif-
ferent scales determined from the original mask µ knowing
the different filter lengths, wavelet covariances are estimated
as follows:

R̂W,X(1 ≤ i ≤ J) = 1
li

T∑
t=1

µi(t)Wi(t)Wi(t)†,

R̂W,X(J + 1) = 1
lJ+1

T∑
t=1

µJ+1(t)CJ(t)CJ(t)†,

(15)

where li is the number of nonzero samples in µi. With source
and noise covariances RW,S(i), RW,N (i) defined in a similar
way, the covariance model in wavelet space becomes

RW,X(i) = ARW,S(i)A† + RW,N (i). (16)
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(a) (b) (c)

Figure 2: Samples of simulated component maps of CMB, dust, and SZ.

Our wavelet-based version of SMICA consists in minimizing
the wSMICA criterion:

φ(θ) =
J+1∑
i=1

αiDKL

(
R̂W,X(i),ARW,S(i)A† + RW,N (i)

)
(17)

with respect to θ = (A,RW,S(i),RW,N (i)) for some sensible
choice of the weights αi.

The weights in the spectral mismatch (17) should be cho-
sen to reflect the variability of the estimate of the correspond-
ing covariance matrix. Examining first (14), we see weights
which are proportional to nq, that is, to the number of DFT
points used in computing the sample covariance matrix, be-
cause this is in fact the number of uncorrelated values of X̃(ν)
entering in the estimation of R̂X(νq). It is also proportional to

the size of the frequency domain over which R̂X(νq) is eval-
uated. Since wSMICA uses wavelet filters with only limited
overlap, we choose to use the same strategy as in SMICA
since the latter amounts to using ideal bandpass filters. In
other words, when no data points aremissing, the weights for
wSMICA are taken proportional to the size of the frequency
domains covered at each scale. This is

{
α1,α2, . . . ,αJ ,αJ+1

} = {1
2
,
1
4
, . . . ,

1
2J
,
1
2J

}
(18)

in the one-dimensional case and

{
α1,α2, . . . ,αJ ,αJ+1

} = {3
4
,
3
16

, . . . ,
3
4J
,
1
4J

}
(19)

in the two-dimensional case.
In the case of data with gaps, we must further take into

account that some wavelet coefficients are discarded. Let βi
denote the fraction of wavelets coefficients which are unaf-
fected by the gaps at scale i. The number of effective points is
reduced by this fraction and one should use the weights

{
α1,α2, . . . ,αJ ,αJ+1

} = {β1
2
,
β2
4
, . . . ,

βJ
2J
,
βJ+1
2J

}
(20)

in the one-dimensional case and

{
α1,α2, . . . ,αJ ,αJ+1

} = {3β1
4

,
3β2
16

, . . . ,
3βJ
4J

,
βJ+1
4J

}
(21)

in the two-dimensional case. The fraction 1−βi of discarded
points depends on scale i (even with the à trous algorithm)
because the length of the wavelet filter itself depends on i.
However, it is roughly scale independent, if the missing data
are large patches of much bigger size than the length of the
wavelet filters used at any scale in the wavelet decomposition.

Before closing, we note that the different wavelet filter
outputs Wi(t) are correlated due to the overlap between fre-
quency responses (Figure 1). Optimal inference should take
this correlation into account but we have chosen not to do
so and rather to stick to a simple criterion like (17) which ig-
nores the correlations between sample covariance matrices.
No big loss is expected from this choice because the wavelet
bands do not overlap very much.

4. NUMERICAL EXPERIMENTS

4.1. Simulation of realistic maps

We have simulated observations consisting of m = 6 mix-
tures of n = 3 components, namely, CMB, galactic dust, and
SZ emissions for which templates were obtained as described
in [16]; see Figure 2 for typical realizations.

Dust emission is the greybody emission of small dust
particles in our own galaxy. The intensity of emission is
strongly concentrated towards the galactic plane, although
cirrus clouds at high galactic latitudes are present as well. The
dust emission law is of the form ναBν(Tdust) where α � 1.7,
Bν(T) is the blackbody emission law, and Tdust � 17K is the
typical dust temperature in the interstellar medium.

The Sunyaev-Zel’dovich effect (SZ) is a small distortion
of the CMBblackbody emission law caused by inverse Comp-
ton scattering of CMB photons on free electrons in hot ion-
ized gas, present mostly in clusters of galaxies. The energetic
electron, in the interaction, gives a fraction of its energy to
the scattered CMB photon, shifting its frequency to a higher
value. As a result, the SZ effect causes a shift in CMB photon
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Figure 3: Simulated observation maps based on the templates shown in Figure 2 and the mixing matrix in Table 1 for the nominal Planck
HFI noise levels.

Table 1: Entries of A, the mixing matrix used in our simulations.

CMB Dust SZ Channel

7.452× 10−1 3.654× 10−2 −8.733× 10−1 100GHz

5.799× 10−1 7.021× 10−2 −4.689× 10−1 143GHz

3.206× 10−1 1.449× 10−1 −2.093× 10−3 217GHz

7.435× 10−2 3.106× 10−1 1.294× 10−1 353GHz

6.009× 10−3 5.398× 10−1 2.613× 10−2 545GHz

6.115× 10−5 7.648× 10−1 5.268× 10−4 857GHz

energy distribution, depleting the occupation of low energy
levels and populating high energy levels. The net effect, to
first order, is a small additive emission, negative at frequen-
cies below 217GHz, and positive at frequencies above. A re-
view on SZ effect can be found in [24].

The templates, and thus the mixtures in each simulated
data set, consist of 300 × 300 pixel maps corresponding to a
12.5◦ × 12.5◦ field located at high galactic latitude. The six
mixtures in each set mimic observations that will eventually
be acquired in the six frequency channels of the Planck HFI
(Figure 3). The entries of the mixing matrix A used in these
simulations actually are estimated values of the electromag-
netic emission laws of each component at 100, 143, 217, 353,
545, and 857GHz; see Table 1.

White Gaussian noise is added to the mixtures accord-
ing to model (2) in order to simulate instrumental noise.

While the relative noise standard deviations between chan-
nels are set according to the nominal values of the Planck
HFI, we also experiment with five global noise levels at −20,
−6, −3, 0, and +3 dB from nominal values. Table 2 gives the
typical energy fractions that are contributed by each of the
n = 3 original sources and noise, to the total energy of each of
the m = 6 mixtures, considering Planck nominal noise vari-
ance. In fact, because SMICA and wSMICA actually work on
spectral bands, a much better indication of signal-to-noise
ratio in these simulations is given by Figure 4 which shows
how noise and source energy contributions distribute with
respect to frequency in the six mixtures.

Finally, in order to investigate the impact of gaps in the
data, and the benefits of using wSMICA in place of SMICA to
deal with these gaps, the mask shown in Figure 5 was applied
onto the mixture maps. The case where no data is missing
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Table 2: Energy fraction contributed by each source to the total energy of each mixture, for the nominal noise variance on the Planck HFI
channels.

CMB Dust SZ Noise Channel

9.91× 10−1 1.18× 10−4 7.92× 10−3 2.53× 10−6 100GHz

9.97× 10−1 7.25× 10−4 3.79× 10−3 5.17× 10−7 143GHz

9.98× 10−1 1.01× 10−2 2.48× 10−7 1.34× 10−7 217GHz

5.55× 10−1 4.8× 10−1 9.78× 10−3 7.47× 10−8 353GHz

2.5× 10−3 1.0 2.75× 10−4 3.78× 10−9 545GHz

1.29× 10−7 1.0 5.56× 10−8 1.24× 10−10 857GHz

was also considered as a reference case. Spectral matching
with wSMICA is conducted using the output of the five
wavelet filters ψ1, . . . ,ψ5 associated to higher frequency de-
tails. For the sake of comparison, SMICA is run using five
bands in Fourier space which are similar to the dyadic bands
imposed by the wavelet transform, as shown in Figure 1. This
latter choice of frequency bands is made to ease comparison
between SMICA and wSMICA.

4.2. Experiments with noise-freemixtures

Preliminary experiments were conducted in the case of van-
ishing instrumental noise variance. In this case, the blind
component separation problem is “equivariant,” entailing
that the quality of separation on a given mixture does not
depend at all on the mixing matrix A but only on the par-
ticular realization of the sources and on the algorithm used
for separation. More specifically, in the case of SMICA and
wSMICA, separation performance depends on the spectral
diversity of the components and on the ability of both objec-
tive functions to exploit this diversity. Hence, the noise-free
experiments in this section are indicative of the spectral di-
versity of the components, of the ability of (w)SMICA to cap-
ture it, and of the robustness of the (w)SMICA with respect
to missing data.

Note that in a noise-free model, the spectral matching
objective boils down to an objective of joint diagonalization
of the covariance matrices, as shown in [25]. Hence, spectral
matching can be implemented using an efficient dedicated
algorithm [26].

The estimated components are related to the true one ac-
cording to

Ŝ = IS, (22)

where I is the product of the mixing matrix used in simula-
tions and of the separating matrix obtained by joint diago-
nalization. It also includes any normalization needed for the
components and their estimates to have total energy in all
bands equal to 1. With this normalization, the square of any
offdiagonal term Ii j is directly related to the residual level
of contamination by component j in the recovered compo-
nent i. Since performance in separating noise-free mixtures
is independent of the mixing matrix, the choice of A in the
simulations is irrelevant: it does not change the distribution
of I. In practice, our noise-free experiments are conducted

without any mixing, that is, we take A to be the 3×3 identity
matrix. The following steps were repeated 1000 times.

(i) Randomly pick one of each component maps out of
the available 200 CMB maps, 30 dust maps, and 1500
SZ maps.

(ii) Compute covariance matrices in the five wavelet or
Fourier bands, both with and without masking part of
the maps.

(iii) Normalize each source so that its total energy over the
five bands is equal to one.

(iv) Estimate a separating matrix by joint diagonalization
of the covariance matrices.

These noise-free experiments are complemented using
“surrogate” data in order to assess the effect of any non-
Gaussianity or nonstationarity in the source templates. We
repeat the simulations on Gaussian stationary maps gener-
ated with the same spectra as the CMB, dust, and SZ compo-
nents. The resulting distribution of I then only reflects the
ability of (w)SMICA to exploit the spectral diversity of the
components independently of the other aspects of their dis-
tribution.

The histograms on Figure 6 are for the offdiagonal term
corresponding to the residual corruption of CMB by Gaus-
sian dust in the second set of experiments (using surrogate
data). In Tables 3 and 4, the results obtained with the syn-
thetic component maps are given as well as those obtained
with the surrogate Gaussian maps, in terms of the standard
deviations of the offdiagonal entries Ii j defined by (22).

When working on surrogate Gaussian maps without
masks, using covariance matrices in Fourier space or in
wavelet space gives similar performances. It is also satisfac-
tory, when covariances in wavelet space are used with surro-
gate Gaussian maps, that each computed standard deviation
only slightly increases when a mask is applied on the data.
Indeed, as a consequence of incomplete coverage, there are
less samples from which to estimate the covariances. This in-
crease is also observed when covariance matrices in Fourier
space are used with the surrogate Gaussian maps but it can
be as high as fivefold and it does not affect all the coeffi-
cients equally. Although this can again be attributed to the re-
duced data size, the lowered spectral diversity between com-
ponents, because of the correlations and smoothing induced
in Fourier space by the mask, is also part of the explanation.
In fact, as shown on Figure 4, CMB and dust spatial power
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Figure 4: Energy contributed by each source and noise in each bolometer as a function of frequency, for the nominal noise variance on the
Planck HFI channels: (a) 100GHz, (b) 143GHz, (c) 217GHz, (d) 353GHz, (e) 545GHz, and (f) 857GHz. Note how SZ is expected to be
always below nominal noise, that CMB and dust strongly dominate in different channels, and that CMB and dust spectra, without being
proportional, display the same general behavior dominated by low modes.

spectra are somewhat similar, that is, show low spectral di-
versity, and further smoothing can only degrade the perfor-
mance of the source separation algorithm based on Fourier
covariances.

In the case of realistic component maps, we note first that
the comparison of the performance of component separation
using wavelet-based covariance matrices with and without
mask again agrees with the different data sizes, which is not
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Figure 5: (a) Mask used to simulate a gap in the data. (b)–(f) Mod-
ified masks at scales 1 through 5. The discarded pixels are in black.

the case with covariances in Fourier space. Next, whether
covariance matrices are computed in Fourier space or in
wavelet space, we note that the terms coupling CMB and
dust are again much higher than with surrogate data, even
on complete maps. This is probably to be attributed to the
nonstationarity and/or non-Gaussianity of the Dust com-
ponent. Another point is that the CMB and dust templates
as in Figure 2 exhibit sharp edges compared to SZ and this
inevitably disturbs spectral estimation using a simple DFT.
To assess this effect, simulations were also conducted where
the covariances in Fourier space were computed after an
apodizing Hanning window was applied on the complete
data maps. The results reported in Table 3, to be compared
to Table 4, do indicate a slightly positive effect of windowing,
but still the separation using wavelet-based statistics appears
better. To further complete this preliminary study, we con-
ducted similar experiments using JADE [27], an ICA algo-
rithm based on fourth-order statistics. This algorithm does
not use spectral information at all. As discussed earlier, such
a method is not expected to work well on CMB data and
the results reported in Table 5 do show lower performance
in comparison to Tables 3 and 4.

4.3. Realistic experiments

The results of the previous section show that, in the noise-
less case, using wavelet-based covariance matrices provides
a simple and efficient way to cancel the bad impact that
gaps actually have on the performance of estimation using
Fourier-based statistics. We move on to investigate the effect
of additive noise on SMICA and wSMICA.

Picking at random one of each component maps out of
the available 200 CMB maps, 30 dust maps, and 1500 SZ
maps, 1000 sets of six synthetic mixture maps were gener-
ated as previously described, for each of the 5 noise levels
chosen. Then, component separation was conducted using
the spectral matching algorithms SMICA and wSMICA both
with and without part of the maps being masked. A typi-
cal run of SMICA or wSMICA in the setting considered here
(i.e., 300 by 300 maps, 6 mixtures, 3 sources, 5 wavelet scales,
no constraints on the mixing matrix) takes only a few sec-
onds on a 1.25Ghz Mac G4 when coded in IDL. The same
optimization techniques are used for SMICA and wSMICA
since the two criteria have the same form.

Each run of SMICA and wSMICA on the data returns es-
timates Â f and Âw of the mixing matrix. These estimates are
subject to the indeterminacies inherent to the instantaneous
linearmixturemodel (2). Indeed, in the case where optimiza-
tion is over all parameters θ, any simultaneous permutation
of the columns of A and of the lines of S leaves the model
unchanged. The same occurs when exchanging a scalar pos-
sibly negative factor between any column in A and the corre-
sponding line in S. Therefore, columnwise comparison of Â f

and Âw to the original mixing matrix A requires first fixing
these indeterminacies. This is done “by hand” after Â f and

Âw have been normalized columnwise.
The results we report next focus on the statistical proper-

ties of Â f and Âw as estimated from the 1000 runs of the two
competing methods in the several configurations retained. In
fact, the correct estimation of the mixing matrix in model
(2) is a relevant issue, for instance, when it comes to deal-
ing with the cross-calibration of the different detectors. Fig-
ures 7, 8, and 9 show the results obtained, using the quadratic
norm

QEj =
( m∑

i=1

(
Aij − Âi j

)2)1/2

(23)

with Â = Â f or Âw and j = CMB, dust, or SZ, to assess the
residual errors on the estimated emissivities of each compo-
nent. The plotted curves show how the mean of the above
positive error measure varies with increasing noise variance.
For the particular case of CMB, Table 6 gives the estimated
standard deviations of the relative errors (Aij−Âi j)/Ai j on the
estimated CMB emission law in the six channels of Planck’s
HFI in the different configurations retained.

Closer to our source separation objective, a more signif-
icant way of assessing the quality of Â f and Âw as estima-
tors of the mixing matrix A would be to use the following
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Figure 6: Histograms of the offdiagonal term of I, defined in (22), corresponding to the residual corruption of “CMB” by “dust” while
separating Gaussian maps generated with the same power spectra as the astrophysical components, by joint diagonalization of covariance
matrices in (a) Fourier and (b) wavelet spaces, with (black, which appears grey when seen through white ) and without (white) masking
part of the data. The dark widest histogram on the left highlights the impact of masking on source separation based on Fourier covariance
matrices.

Table 3: Standard deviations of the offdiagonal entries Ii j defined by (22) obtained while separating realistic component maps by joint
diagonalization of covariance matrices in Fourier space, with (M) or without masking (NM) part of the data, or applying an apodizing
Hanning window (Han). Components 1, 2, and 3, respectively, stand for CMB, dust, and SZ. The numbers in italic were obtained with
Gaussian maps and the underlined numbers correspond to the histograms in Figure 6.

Offdiag. entry NM M Han

I1,2 0.097 0.0076 0.074 0.038 0.024

I1,3 0.0049 0.0044 0.005 0.006 0.0094

I2,1 0.017 0.0066 0.018 0.01 0.017

I2,3 0.0064 0.0077 0.0066 0.0096 0.011

I3,1 0.0024 0.0026 0.0028 0.0037 0.0039

I3,2 0.0054 0.0071 0.0054 0.0079 0.01

Table 4: Standard deviations of the offdiagonal entries Ii j defined by (22) obtained while separating realistic component maps by joint
diagonalization of covariance matrices in wavelet space, with (M) and without masking (NM) part of the data. Components 1, 2, and 3,
respectively, stand for CMB, dust, and SZ. The numbers in italic were obtained with Gaussian maps and the underlined numbers correspond
to the histograms in Figure 6.

Offdiag. entry NM M

I1,2 0.015 0.0071 0.018 0.0079

I1,3 0.0025 0.0029 0.0028 0.0031

I2,1 0.016 0.0077 0.019 0.0089

I2,3 0.0041 0.0051 0.0048 0.0075

I3,1 0.0024 0.0029 0.003 0.0039

I3,2 0.0039 0.0054 0.0053 0.0085
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Table 5: Standard deviations of the offdiagonal entries Ii j defined
by (22) obtained while separating realistic component maps using
JADE, with (M) and without masking (NM) part of the data. Com-
ponents 1, 2, and 3, respectively, stand for CMB, dust, and SZ.

Offdiag. entry I1,2 I1,3 I2,1 I2,3 I3,1 I3,2

NM 0.021 0.25 0.022 0.02 0.31 0.02

M 0.023 0.29 0.025 0.018 0.34 0.018

interference-to-signal ratio:

ISR j =
∑

i �= j I
2
j,iσ

2
i

I2
j, jσ

2
j

, (24)

where the σj are the source variances and

I =
(
Â†R̂−1N Â

)−1
Â†R̂−1N A (25)

with RN the noise covariance. The plots on Figures 10, 11,
and 12 show how themean ISR from the 1000 runs of SMICA
and wSMICA in different configurations varies with increas-
ing noise. Figure 13 typically estimated component maps ob-
tained using SMICA and wSMICA. For the sake of compari-
son, component maps estimated using the JADE source sep-
aration method are also included.

We note again that the performance of wSMICA behaves
as expected when noise increases and if part of the data is
missing. However, this is not always the case with SMICA.
Finally, this set of simulations, conducted in a more realistic
setting with respect to ESA’s Planck mission, again confirms
the higher performance, over Fourier analysis, that we indeed
expected from the use of wavelets. The latter are able to cor-
rectly grab the spectral content of partly masked data maps
and from there allow for better component separation.

5. CONCLUSION

This paper has presented an extension of the spectral match-
ing ICA algorithm to the wavelet domain, motivated by
the need to deal with components which exhibit spatial
correlations and are nonstationary. Maps with gaps are a
particular instance of practical significance. Substituting co-
variance matching in Fourier space by covariance matching
in wavelet space makes it possible to cope with gaps of any
shape in a very straightforwardmanner.Mainly, it is the finite
length of the wavelet filters used here that allows the impact
of edges and gaps on the estimated covariances and hence on
component separation to be lowered. Optimally choosing the
FIR filter bank regarding a particular application is a possible
further enhancement.

Our numerical experiments, based on realistic simula-
tions of the astrophysical data expected from the Planck mis-
sion, confirm the benefits of correctly processing existing
gaps. Clearly, other possible types of nonstationarities in the
collected data such as spatially varying noise or component
variance, and so forth could be dealt with very simply in a
similar fashion using the wavelet extension of SMICA.

Regarding future work, a few points are in order. First,
we note that possible correlations between the components
are not accounted for in SMICA or wSMICA as presented
here. However, it is not difficult in principle to handle such
known or suspected correlations by adding offdiagonal pa-
rameters in the model spectral covariances of the sources.
Still, in the case of CMB analysis from high frequency obser-
vations which contain only one galactic component (dust) as
in our simulations, spatial correlations between components
should not be a problem.

We note that the proposed wavelet-based approach, as
implemented with the standard à trous wavelet transform,
offers little flexibility in the spectral bands available for wS-
MICA while the Fourier approach gives complete flexibility
in this respect. But it is possible, even straightforward, to use
other transforms such as the à trous wavelet packet trans-
form, or the continuous wavelet transform, or in fact any set
of linear filters, preferably FIR filters. This in turn raises the
question of optimally choosing this set of filters, keeping in
mind that higher resolution in Fourier space requires longer
filters, which is not desirable in the case of incomplete or
nonstationary data. In fact, the optimal selection of bands is
clearly a meaningful question both for SMICA and wSMICA.

We also note that in the CMB application, the com-
ponents have quite different statistical properties: some are
expected to be very close to Gaussian (like the CMB)
whereas others are strongly non-Gaussian (like SZ). The
non-Gaussianity of some components does not affect the
consistency of our estimator but, for a given spectrum, it
does affect the distribution of the estimates although this im-
pact is not easily predicted. It is clear, however, that ignoring
the strong non-Gaussianity of some components is a loss of
information. Devising a method able, with reasonable com-
plexity, to exploit jointly non-Gaussianity (as in traditional
ICA techniques) and spectral information (as in Fourier or
wavelet SMICA) appears as a difficult challenge.

APPENDIX

EM ALGORITHMWITH CONSTRAINTS ON
THEMIXINGMATRIX

Considering Q separate frequency bands of size nq with∑
nq = 1, the EM functional derived for the instanta-

neous mixing model (2) with independent Gaussian station-
ary sources S and noise N is

Φ(θ, θ) = E
{
log p

(
X , S|θ)|θ} (A.1)

with θ = (A,RS,1, . . . ,RS,Q,RN ,1, . . . ,RN ,Q) and θ = (A,
RS,1, . . . ,RS,Q,RN ,1, . . . ,RN ,Q). The maximization step of the
EM algorithm seeks then to maximize Φ(θ, θ) with respect
to θ and the optimal θ is used as the value for θ at the next
EM step, and so on until satisfactory convergence is reached.
Explicit expressions are easily derived for the optimal θ in the
white noise case where an interesting decoupling occurs be-
tween the reestimating equations for noise variances, source
variances, and the mixing matrix [15].
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Figure 7: Comparison of the mean squared errors on the estima-
tion of the emission law of CMB as a function of noise in five dif-
ferent configurations: wSMICA without mask, wSMICAwith mask,
fSMICA without mask, and fSMICA with mask, and fSMICA with
Hanning apodizing window.
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Figure 8: Comparison of the mean squared errors on the estima-
tion of the emission law of dust as a function of noise in five differ-
ent configurations: wSMICA without mask, wSMICA with mask,
fSMICA without mask, and fSMICA with mask, and fSMICA with
Hanning apodizing window.

Linear equality constraints

When A is subject to linear constraints, the joint maximiza-
tion of the EM functional with respect to all model parame-
ters is no longer easily achieved in general. In fact, one cannot
simply decouple the reestimating rules for the noise param-
eters and the mixing matrix and these have to be optimized
separately. We give next the modified reestimating equations
for the mixing matrix and the source variances in the case of
constant noise (i.e., θ = (A,RS,1, . . . ,RS,Q)).
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Figure 9: Comparison of the mean squared errors on the estima-
tion of the emission law of SZ as a function of noise in five different
configurations: wSMICA without mask, wSMICA with mask, fS-
MICA without mask, fSMICA with mask, and fSMICA with Han-
ning apodizing window.

First, we exhibit the quadratic dependence of the EM
functional Φ(θ, θ) on A:

Φ(θ, θ)

= −1
2

∑
q

nq trace
(
ARss

q A
†R−1N ,q − ARxs†

q R−1N ,q − Rxs
q A

†R−1N ,q

)
+ constA,

(A.2)

where

Cq =
(
A†R−1N ,qA + R−1S,q

)−1
,

Wq =
(
A†R−1N ,qA + R−1S,q

)−1
A†R−1N ,q,

Rxs
q = R̂X ,qW

†
q ,

Rss
q =WqR̂X ,qW

†
q + Cq.

(A.3)

In the white noise case, RN ,q = RN , (A.2) becomes

Φ(θ, θ) = −1
2
trace

((
A− RxsRss−1)Rss

(
A− RxsRss−1)†R−1N )

+ constA,
(A.4)

where

Rxs =
∑
q

nqR
xs
q , Rss =

∑
q

nqR
ss
q . (A.5)

Again, this can be rewritten as

Φ(θ, θ) = −1
2
(A−M)†Q(A−M) + constA, (A.6)
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Table 6: Standard deviations of the relative errors on the estimated emission laws Ai1 of CMB in Planck’s HFI six channels. The column
labels WNM,WM, FNM, FM, FHan are for the different configurations, respectively: wSMICA without mask, wSMICA with mask, fSMICA
without mask, fSMICA with mask, and fSMICA with Hanning apodizing window. The five figures in each box are for noise variance -20, -6,
-3, 0, and 3 dB from nominal Planck values.

Emission law WNM WM FNM FM FHan

4.4∗ 10−4 5.0∗ 10−4 6.2∗ 10−4 7.3∗ 10−4 7.2∗ 10−4

5.4∗ 10−4 7.5∗ 10−4 7.1∗ 10−4 8.5∗ 10−4 9.5∗ 10−4

A11 6.6∗ 10−4 9.2∗ 10−4 8.2∗ 10−4 8.9∗ 10−4 1.3∗ 10−3

9.4∗ 10−4 1.2∗ 10−3 1.0∗ 10−3 1.0∗ 10−3 1.7∗ 10−3

1.2∗ 10−3 1.7∗ 10−3 1.2∗ 10−3 1.4∗ 10−3 2.3∗ 10−3

1.6∗ 10−4 2.1∗ 10−4 2.1∗ 10−4 2.0∗ 10−4 2.7∗ 10−4

5.3∗ 10−4 7.8∗ 10−4 5.6∗ 10−4 5.7∗ 10−4 1.0∗ 10−3

A21 7.0∗ 10−4 1.1∗ 10−3 7.6∗ 10−4 8.4∗ 10−4 1.4∗ 10−3

1.0∗ 10−3 1.6∗ 10−3 1.0∗ 10−3 1.0∗ 10−3 2.1∗ 10−3

1.4∗ 10−3 2.2∗ 10−3 1.5∗ 10−3 1.7∗ 10−3 3.1∗ 10−3

1.5∗ 10−3 1.8∗ 10−3 2.2∗ 10−3 2.5∗ 10−3 2.3∗ 10−3

1.7∗ 10−3 2.1∗ 10−3 2.3∗ 10−3 2.6∗ 10−3 2.9∗ 10−3

A31 2.1∗ 10−3 2.6∗ 10−3 2.6∗ 10−3 2.8∗ 10−3 3.7∗ 10−3

2.7∗ 10−3 3.0∗ 10−3 2.9∗ 10−3 3.0∗ 10−3 4.2∗ 10−3

3.3∗ 10−3 4.6∗ 10−3 3.3∗ 10−3 3.5∗ 10−3 6.1∗ 10−3

1.8∗ 10−2 2.0∗ 10−2 2.7∗ 10−2 3.0∗ 10−2 2.5∗ 10−2

1.9∗ 10−2 2.1∗ 10−2 2.7∗ 10−2 2.1∗ 10−2 2.7∗ 10−2

A41 2.1∗ 10−2 2.4∗ 10−2 2.8∗ 10−2 3.1∗ 10−2 2.9∗ 10−2

2.7∗ 10−2 2.8∗ 10−2 3.1∗ 10−2 3.0∗ 10−2 3.5∗ 10−2

3.0∗ 10−2 4.1∗ 10−2 2.5∗ 10−2 2.7∗ 10−2 4.9∗ 10−2

4.0∗ 10−1 4.5∗ 10−1 6.1∗ 10−1 6.6∗ 10−1 5.6∗ 10−1

4.2∗ 10−1 4.7∗ 10−1 6.1∗ 10−1 6.5∗ 10−1 5.8∗ 10−1

A51 4.5∗ 10−1 5.0∗ 10−1 6.1∗ 10−1 6.7∗ 10−1 6.4∗ 10−1

5.7∗ 10−1 5.9∗ 10−1 6.7∗ 10−1 6.7∗ 10−1 7.5∗ 10−1

6.2∗ 10−1 8.4∗ 10−1 5.0∗ 10−1 5.5∗ 10−1 1.0

5.7∗ 101 6.2∗ 101 8.5∗ 101 9.2∗ 101 7.8∗ 101

5.8∗ 101 6.5∗ 101 8.6∗ 101 9.1∗ 101 8.1∗ 101

A61 6.2∗ 101 6.9∗ 101 8.6∗ 101 9.4∗ 101 8.9∗ 101

7.9∗ 101 8.2∗ 101 9.3∗ 101 9.2∗ 101 1.0∗ 102

8.6∗ 101 1.2∗ 102 6.9∗ 101 7.7∗ 101 1.4∗ 102

where

A = vectA, Q = RN
−1 ⊗

∑
q

nqR
ss
q ,

M = vect


∑

q

nqR
xs
q

∑
q

nqR
ss
q

−1
 .

(A.7)

Here “vect” builds a column vector with the entries of a ma-
trix taken along its rows. Now we consider linear constraints
on the mixing matrix, specified as follows:

C†
(
A−A0

) = 0, (A.8)

whereC is a matrix with asmany columns as constraints, and
the columns of C have the same size asA. The maximum of
the EM functional with respect to θ subject to the specified
linear constraints is then reached for

A =M −Q−1C
(
C†Q−1C

)−1
C†
(
M −A0

)
,

RS,q = diag
(
Rss
q

)
,

(A.9)

where “diag” returns a diagonal matrix with the same diago-
nal entries as its input argument.

In the free noise case, things are quite similar except that
the noise covariance matrices RN ,q do not factor out as nicely.
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Figure 10: Comparison of the mean ISR for CMB as a function
of noise in five different configurations, namely, wSMICA without
mask, wSMICA with mask, fSMICA without mask, and fSMICA
with mask, and fSMICA with Hanning apodizing window.
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Figure 11: Comparison of the mean ISR for dust as a function
of noise in five different configurations, namely, wSMICA without
mask, wSMICA with mask, fSMICA without mask, fSMICA with
mask, and fSMICA with Hanning apodizing window.

The EM functional is again expressed as

Φ(θ, θ) = −1
2
(A−M)†Q(A−M) + constA, (A.10)

where in this case

Q =
∑
q

nqR
−1
N ,q ⊗ Rss

q , M = Q−1 vect
(∑

q

nqR
−1
N ,qR

xs
q

)
.

(A.11)

−20 −6 −3 0 3
10−5

10−4

10−3

10−2

Noise level in dB relative to nominal values

M
ea
n
in
te
rf
er
en
ce
-t
o-
si
gn

al
ra
ti
o

Wavelet + no mask
Wavelet + mask
Fourier + Hanning

Fourier + no mask
Fourier + mask

Figure 12: Comparison of the mean ISR for SZ as a function of
noise in five different configurations, namely, wSMICA without
mask, wSMICA with mask, fSMICA without mask, fSMICA with
mask, and fSMICA with Hanning apodizing window.

Then, the maximum of the EM functional with respect to θ
subject to the specified linear constraints is again reached for

A =M −Q−1C
(
C†Q−1C

)−1
C†
(
M −A0

)
,

RS,q = diag
(
Rss
q

)
.

(A.12)

These expressions of the reestimates of themixingmatrix can
become algorithmically very simple when, for instance, the
linear constraints to be dealt with affect separate lines of A,
or even simpler when the constraints are such that the entries
of A are affected separately.

Positivity constraints on the entries ofA

Suppose a subset of entries of A are constrained to be posi-
tive. The maximization step of the EM algorithm on A alone,
again has to be modified. We suggest dealing with such con-
straints in a combinatorial way rephrasing the problem in
terms of equality constraints. If the unconstrainedmaximum
of the EM functional is not in the specified domain, then
one has to look for a maximum on the borders of that do-
main: on a hyperplane, on the intersection of two, three, or
more hyperplanes. One important point is that the maxi-
mum of the EM functional with respect to A subject to a
set of equality constraints will necessarily be lower than the
maximum of the same functional considering any subset of
these equality constraints. Hence, not all combinations need
be explored, and a branch-and-bound-type algorithm is well
suited [28]. A straightforward extension allows to deal with
the case where a set of entries of the mixing matrix is con-
strained by upper and lower bounds.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 13: (a)–(f) Estimated component maps obtained with SMICA and wSMICA, respectively. These estimates result from applying a
Wiener filter in each frequency band or wavelet scale based on the optimized model parameters (see Section 2.3). (g)–(i) The initial source
templates after applying the optimal Wiener filter obtained with SMICA, that is, the same as (a)–(c) but leaving out noise and residual
contaminations. (j)–(l) Maps estimated using JADE [27]. The initial source maps are shown in Figure 2.
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