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We evaluate the quality of spectral restoration in the case of irregular sampled signals in astronomy. We study in details a time-
scale method leading to a global wavelet spectrum comparable to the Fourier period, and a time-frequency matching pursuit
allowing us to identify the frequencies and to control the error propagation. In both cases, the signals are first resampled with a
linear interpolation. Both results are compared with those obtained using Lomb’s periodogram and using the weighted wavelet Z-
transform developed in astronomy for unevenly sampled variable stars observations. These approaches are applied to simulations
and to light variations of four variable stars. This leads to the conclusion that the matching pursuit is more efficient for recovering
the spectral contents of a pulsating star, even with a preliminary resampling. In particular, the results are almost independent of

the quality of the initial irregular sampling.
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1. INTRODUCTION

Nonuniform sampling problems arise in many astronomi-
cal fields [3, 22], particularly in Stellar physics when one ob-
serves the light curves of variable stars (asteroseismology) or
spectroscopic variabilities. The frequencies deduced from the
light variations of such stars represent an important source
of information. In particular, they can help constrain stel-
lar evolution models, because the structure of the vibration
modes and their frequency separations may yield physical
parameters of the star, such as the rotation period or the
composition of its layers [1, 16]. Another field of applica-
tion concerns the development of automatic classifiers for
variable stars, where the period is a very discriminating pa-
rameter [27]. Of course, observations have to cover a long
enough time span for the best possible resolution of the
power density spectra. The difficulty in obtaining such com-
plete observations is well known: the lack of information is
essentially due to diurnal cuts, poor weather conditions, or
equipment malfunctions. Generally, such astronomical data
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are of two types. First, evenly spaced time series separated
by wide gaps [9] (typically day/night alternation for observa-
tions of short-period stars taken over several days). In that
case, many different methods have been proposed to deal
with this problem, for example, autoregressive models which
predict data for the gaps [21] combined with observing cam-
paigns with telescopes at several different longitudes [18].
Second, unequally spaced time series with samples missing
almost everywhere. Here, data under study are from sev-
eral years of observations (long-period stars) with a mean
sampling rate of a few days (here, telescope failures or bad
weather conditions are the main causes of the gaps [4]). This
second case is considered in this paper. Of course, problems
of this kind do not arise only when processing astronomical
signals. In an astrophysical context, it is of capital importance
to solve them in order to carry out a physical interpretation
of the observations, no other experimental alternative is pos-
sible.

Another problem often arises in complement: searching
for oscillations that are characteristics of the structural prop-
erties of the star (i.e., these that arise almost everywhere in
the signal) thanks to a frequency analysis. One then under-
stands the necessity of getting information about the life-
time of a given peak of the resulting power density spectrum.
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In this context, wavelet analysis [6] and time-frequency anal-
ysis [10], which have the ability to decompose the signal into
contributions localized both in time and in scale (or fre-
quency), are thus especially attractive to obtain this informa-
tion. These analyses are widely described for simulated data
for example in Szatmary et al. [26] and in variable star re-
search in Kiss and Szatmary [14]. These authors conclude
that such methods of decomposition, labeled with a scale and
a position parameter, provide interpretable visual represen-
tations of astronomical data, as an alternative to the standard
spectral analysis.

Unfortunately, wavelet and time-frequency analyses are
generally not directly applicable to the particular case of ir-
regularly sampled data [24], thus one often uses standard
techniques like periodograms [13]. However, with such a
simple spectral technique, intervals including low-amplitude
peaks are hard to identify in the processed data because each
feature is contaminated by noise and convolved by a function
whose nature closely depends on the irregular distribution of
the data. As the corresponding aliases can be of substantial
amplitude, they can lead to the confusion of features due to
real oscillations with those arising from the segmented na-
ture of the observing window. If one deals only with signals
whose spectra are dominated by a small number of compo-
nents at discrete frequencies, nonlinear deconvolution meth-
ods like the widely used CLEAN technique are efficient [20].
Obviously, in the absence of any a priori information on the
spectrum to be recovered, the case considered here, this tech-
nique becomes unreliable.

Time-frequency methods are efficient, particularly when
an examination by eye of the periodogram leads to a failure
(see Section 4). If data sampling is not equidistant, one must
first resample the signal to build a regular sampling, before
applying a time-frequency method. Several techniques exist
to do this and the associate errors are widely discussed in
the literature. de Waele and Broersen [8] divide them into
simple and complex methods. In particular, they conclude
that linear interpolation is a robust resampling method al-
though it provides a signal whose standard deviation is bi-
ased with a systematic error. However, this error can be cor-
rected by replacing the standard deviation obtained with lin-
ear interpolation by the value given with the method they
propose: the nearest neighbor resampling. Foster [11] pro-
posed a rescaled wavelet technique called weighted wavelet
Z-transform (WWZ). It is developed specifically for unevenly
sampled data in the context of observation of variable stars:
here, the wavelet is rescaled to satisfy admissibility condi-
tion on such irregular sampling. One can for example read
the paper of Haubold [12] for an interesting analysis of this
method. In this paper, our results will also be compared with
those obtained by the WWZ technique.

The signals under consideration in this paper being ir-
regularly sampled, we have opted for a processing method
in two stages: (1) we have resampled the data by using a
linear interpolation (with a sampling rate typically equal
to one day and without applying any additional smooth-
ing or filtering—contrary to preprocessing techniques rec-
ommended by Buchler et al. [2]), (2) we have then applied

two appreciably different types of time-frequency analyses:
a global wavelet transform and the associated wavelet spec-
trum [28], which is described in Section 2, and a match-
ing pursuit decomposition [17] developed in Section 3.
The results are discussed and compared (Section4) to
those found using a periodogram and WWZ, for simu-
lated signals and for light curves of four variable stars: T
Camelopardis—a Mira variable star of period 373.2 days,
S Persei—a Type C semiregular star of period 822 days,
AC Herculis—a Type A RV Tauri variable star of period
75.01 days, and RV Tauri—a Type B RV Tauri star of pe-
riod 78.73 days. These periods are those specified in the
fourth edition of the General Catalog of Variable Stars, see
http://www.sai.msu.su/groups/cluster/gcvs/gcvs. This leads
us in particular to forecast a chaotic light curve of AC Her-
culis as predicted by Kollath et al. [15].

2. GLOBAL WAVELET SPECTRA

We recall that a wavelet decomposition is an expansion of an
arbitrary function into smoothed localized contributions la-
beled by a scale and a time parameter. Its aim is to expand a
signal into a series of coefficients of specified energy and then
to capture fine and coarse features at different scales. More-
over, it provides an easily interpretable visual representation
of the signal (see, e.g., the book of Daubechies [6] for more
details). Wavelets are generated by a function y(t) named the
analyzing wavelet. This function should have a finite energy,
and its integral should vanish. These two conditions mean
that the wavelet should oscillate like a short wave. The ana-
lyzing wavelet is the mother of the wavelet family. The wavelet
family {y} is generated by translating and dilating the ana-
lyzing wavelet. Then, one can write any function as a linear
combination of the elements of the family.

Here we consider the continuous wavelet transform of a
real signal s(t) with respect to the analyzing wavelet y(t). The
wavelet transform is defined as the function

cha- & [ (5"

on the time-scale plane. Here, a is a dilation scale and b a
translation parameter; the asterisk denotes the complex con-
jugate. The qualitative information given by the visual output
supplements the information obtained by inspection of the
signal itself, or its Fourier transform. The wavelet transform
displays information in a wide range of scale parameters on
a single picture.

The choice of the analyzing wavelet is generally guided
by a compromise between time and frequency resolutions
and by its ability to capture localized features of the signal.
As we are essentially interested in wavelet power spectra, the
wavelet we used here is the Morlet wavelet (a complex expo-
nential modulated by a Gaussian)

)s(t)dt (1)

2

vo(t) = m 4 exp (iwot) exp ( - %), withwy =6, (2)
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which offers high frequency resolution because it is very
well localized in frequencies. In contrary, using derivative of
Gaussian wavelet would result in a good time localization,
but a poor one in frequency.

The global wavelet transform used in our analysis corre-
sponds to a continuous wavelet approach allowing the defi-
nition of a global wavelet spectrum as the square of the mod-
ulus of the wavelet coefficients for each scale together with
statistical significance tests [28]. The aim of the method pro-
posed by these authors is to provide quantitative tools asso-
ciated with wavelet analysis. This leads in particular to an
equivalent Fourier period (which can be derived analytically
for each wavelet function) which can be easily compared to
the Fourier power spectrum or to the periodogram.

3. MATCHING PURSUIT ALGORITHM

The matching pursuit algorithm, introduced by Mallat and
Zhang [17], allows us to choose, in a given redundant finite
dictionary of time-frequency waveforms, a set of vectors that
match the signal as well as possible. The dictionary D is de-
fined as a family (not a basis) of time-frequency functions
obtained by dilating, modulating, and translating a single
real even function k(#) € L*(R). The atoms (elements) of
the dictionary are defined by

o (8) = %k(t = b)efw, 3)

where a is the dilation scale, b the translation parameter, and
w a frequency modulation. One defines v = (g, b, w) as the
atom index in the dictionary. Note that the factor 1/,/a nor-
malizes the L2(R) norm of k,(¢) to unity. If the window k(¢)
is Gaussian, the joint time-frequency localization of all the
atoms is a minimum, and in this case k,(t) is a Gabor func-
tion. Note that the family {k,} is not a wavelet family in the
sense that a given dilation allows several analyzing frequency
values. It can be seen as a superposition of a wavelet trans-
form and a short-term Fourier transform. In particular, the
underlying family is nonorthogonal. In practice, the atoms of
the family are thus oscillating functions modulated by win-
dow functions. They are generated by two mother functions
that satisfy localization properties: a window function k(t)
(a “Spline 0” in this paper—see Figure 1) and a wavelet-like
function. For each value of the atom index v, one has a new
atom of the family, until obtaining a complete collection of
atomic waveforms.

A matching pursuit algorithm computes adaptive sig-
nal representations: it expands any signal into a set of
atoms selected among the redundant dictionary D, to match
its components as well as possible, through iterated one-
dimensional projections.

In our particular case, it is the resampled light curve s(¢),
from which the mean value has been subtracted after resam-
pling so that it becomes zero mean, which is approximated
by a single vector k,, chosen from the dictionary D such that
[{s(t),ky, ()| is as large as possible. Here, (-, -) denotes the

Error (%)

Number of atoms

—o— Gaussian —e— Spline 0
--- Hamming — Spline 1
-~0 - Hanning —+— Spline 2
-~ - Blackman —=— Spline 3

FIGURE 1: Reconstruction error versus number of atoms of the
matching pursuit decomposition for each shape of the even real
function k(t) (in logarithmic scale).

scalar product in R. In practice, one has to compute a scalar
product for all the values of v. The vector k, giving the largest
one is ky, .

The light curve is then decomposed into the form

s(t) = (s(t), ky, ()Y ky, (t) + Rs(t), (4)

where Rs(t) is the residual vector after approximating s(¢) in
the “direction” ky, (t). Clearly, k,, (t) is orthogonal to Rs(t),
and hence, one has the relation

lIs)I[* = | (s() ko () | > + |Rs(B)]| %, (5)

where || - || denotes the Euclidian norm. Note that if the fam-
ily {k,} is nonorthogonal, the vector k,, (¢) is orthogonal to
the residual Rs(f). This important property allows the con-
struction of the algorithm: the main idea of the matching
pursuit is to subdecompose the residue Rs(t), by finding a
vector k,, (t) that matches it as well as possible, as was done
for s(t). Each time, the procedure is repeated on the obtained
residue:

s(t) = (s(t), ky, (t)) k,, () + Rs(t),

Rs(t) = (Rs(t), ky, (t))ky, (t) + R%s(t),
(6)

R"s(t) = (R"s(t), ky, (£))k,, (t) + R"1s(t).

It is easy to determine a convergence criterion of the algo-
rithm, by examining the decrease of the norm of the residue.
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Finally, the signal is decomposed into

s(6) = D (RIs(t), ky, (£)) e, (1), (7)

i=1

where the atoms k,,(¢) are the ones that match the signal
structures as well as possible. We can then build a hierarchy
of the main signal structures (ky, (t), ky,(t),...,ky, (t)) yield-
ing a time-frequency energy distribution.

An energy conservation theorem results from (5):

IshII” = > | (Ris(t), ky, (£)) . (8)
i=1

The energy density of s() in the time-frequency plane (t, u)
is defined by

(Es)(t,u) = > | (Ris(t), ky, (1)) |2(Wk1,i)(t, u), (9)

i=1

where (Wk,,)(t,u) is the Wigner-Ville distribution [29] de-
fined as follows:

(Wk,) (¢, u) = Jjomky<t+§)k:‘ (t— %)e”"”dr. (10)

In practice, it is this energy density Es (9) that is represented
in the time-frequency diagrams. Note that this density does
not include the interference terms of the Wigner-Ville distri-
butions, because it is computed from an atomic decomposi-
tion of s(t).

Decomposition onto orthonormal basis or the method of
Coifman and Wickerhauser [5] selects in a global way the ba-
sis that is best adapted to the signal properties. The results as-
sociated with these methods are hardly interpretable. On the
contrary, the matching pursuit decomposition is a construc-
tive process which allows to detect and characterize the time-
frequency components one by one, from the highest energet-
ics one to the lowest.

In a matching pursuit diagram, we can choose to select
only some atoms representing the structures of interest. In
our case, these are the most coherent ones. The correspond-
ing atoms appear as long (in time) elements in the time-
frequency plane (horizontal atoms). As the noise of the time
series does not correlate well with any long lifetime dictio-
nary element, its information is diluted and then subdecom-
posed in several “stains” localized in a short time interval.
The peaks, even of large amplitude, which do not correspond
to star oscillations but are artifacts due to the sampling or
to the gaps of the observing window or corresponding to
highly transient phenomena appear in the time-frequency
diagram localized in a very short time period, in a large fre-
quency range (vertical atoms). A simple operation, keeping
only the long lifetime atoms (whatever their frequency), al-
lows us to eliminate spurious information (e.g., correspond-
ing to noise).

The shape of the even real function k(t) can be chosen
according to various criteria, while still in agreement with
the mathematical conditions authorizing the matching pur-
suit decomposition. These criteria depend on the adaptabil-
ity of k(t) to the studied signal and on some oversensitiv-
ity to errors. Eight different window shapes have been con-
sidered: Gaussian, Hamming, Hanning, Blackman, Spline 0,
Spline 1, Spline 2, and Spline 3. Their description can be
found in Oppenheim and Schafer [19] and in de Boor [7].
Figure 1 presents the evolution of the quadratic reconstruc-
tion error versus the number of atoms used to decompose
a simulated signal with these eight different windows. The
tested signal is a regularly spaced 1200-point-long signal, the
sum of two cosines with periods of 33.3 and 100 days. The
quadratic reconstruction error is defined as the norm of the
residual signal between the simulated and the reconstructed
ones divided by the norm of the simulated signal. The Black-
man window always gives the largest error. The Gaussian and
Spline 3 windows also show large errors whatever the num-
ber of atoms. Up to 50 atoms, the Spline 0 window is clearly
the best. For a decomposition with more than 50 atoms, all
the windows, except the Blackman window, present similar
reconstruction errors. Following this, as the signals we ana-
lyze here are of quite constant amplitude, the adaptation of
k(t) to the data leads us to choose the Spline 0 window. In-
deed, the rectangular shape of this window does not create
an amplitude modulation.

4. APPLICATION EXAMPLES AND THE COMPARISON
WITH THE PERIODOGRAM AND WITH THE WWZ

Although we have analyzed the light curves of four stars, we
focus on only two of them (AC Herculis and RV Tauri—see
http://www.kusastro.kyoto-u.ac.jp/vsnet/index.html)  and
the results are summarized in Table 1.

The data set of the irregularly sampled observations
spans JD 2 440 000-2 450 000 for AC Herculis and JD 2 432
223-2 452 270 for RV Tauri (see Figure 2a). JD is the Julian
day number, number of days that have elapsed since noon
of January 1, 4713 B.C. of our civil calendar. In addition, we
have created two artificial signals (sum of two cosines with
periods of 100 and 33.3 days) with the same nonequidistant
sampling scheme as those of AC Herculis and RV Tauri, and
without added noise. The choice not to add noise is linked to
the concern of analyzing only the effect of the nonuniform
sampling and how the methods address this question.

The periodograms from these variable star observations
and those from the simulated signals made from the same ir-
regular sampling are presented in Figures 3 and 4. In these
figures (top), the two 100-day and 33.3-day periods are vis-
ible. The clearly identifiable aliases essentially correspond to
the annual cycle of the observations, proving that one finds
it effective in the sampling.

We used also the WWZ and experimented it with dif-
ferent values for the parameter ¢ [11] defining the trade-
off between time resolution and frequency resolution. Af-
ter accepting the default parameters proposed by Foster
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TaBLE 1: Results for the four variable stars (column 1). The sampling quality is defined by the mean number of observations per day (column
2). The reconstruction error computed for the matching pursuit analysis is presented (column 3). The known period and those found with
the different analyses are indicated (columns 4-8): periodogram (Pperio ), GWS (Pgws), matching pursuit decomposition (Pyp), and weighted
wavelet Z-transform (Pwwyz). In the WWZ, ¢ = 0.005 for data of S Per. and T Cam., ¢ = 0.04 for AC Her, and ¢ = 0.0125 for RV Tau. In
brackets: double periods are also found and are corresponding to the periods indicated in the fourth edition of the General Catalog of

Variable Stars.

Star O/day Error Pgevs Pperio Piws Pyp Pywwz
AC Her. 0.757 3.71% 75.01 37.74(75.19] 37.00(75.00) 37.73175.19] 38.24(71.43)
S Per. 0.112 11.22% 822.00 806.40 826.00 819.00 831.90
RV Tau. 0.190 8.53% 78.73 39.26 39.00 39.298.77) 38.8

T Cam. 0.051 10.98% 373.20 371.75 373.00 372.30 371.10
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FIGURE 2: RV Tauri sampling signal (modified Julian date = JD-2
400 000.5).

(¢ = 0.0125) for time and frequency grids, we settled on ¢ =
0.04 for time sampling of AC Herculis and kept ¢ = 0.0125
for time sampling of RV Tauri as better compromises in the
sense that they were the first lowest values for which we ob-
tained the target periods. WWZ applied on these test data
can reveal peaks at frequencies 100.5 and 33.2 days for time
sampling of AC Herculis and at frequencies 100.0 and 32.9
days for time sampling of RV Tauri. The same constants will
be used for application to the observations.

In order to perform time-frequency and time-scale anal-
yses, the data (simulated and real) have also been linearly in-
terpolated with a time step equal to one day. As the known
periods of the studied variable stars are more than 50 days,
Shannon’s theorem is satisfied. The so-interpolated signals
are presented in Figures 5 and 6 (simulated) and Figures 7
and 8 (real). Note that contrary to the case of AC Herculis,
whose missing samples are well distributed throughout the
observation, RV Tauri data contain very large gaps at the be-
ginning of the run.

We then define two “sampling” signals for which each
value is equal to the time step of the AC Herculis and RV
Tauri data, respectively. Let t; be the time when the data are
available. The sampling signal values are #;;; — t; (the wider
the gap, the larger the value—see Figure 2b). The “sampling”
signals are normalized so that their variances are the same as
the corresponding simulated signals. These sampling signals
are used in the two following sections: their wavelet trans-
forms are compared to those of simulated and real signals.

4.1. Results from the simulations

The wavelet power spectrum (WPS) and the global wavelet
spectrum (GWS) obtained for both simulations are pre-
sented in Figures 5 and 6. The Torrence and Compo [28]
approach provides statistical tools for establishing the va-
lidity of the results. This allows us to show in the GWS the
95% confidence level that would be obtained for white noise,
which is the noise present in periodic variable stars obser-
vations as those studied here (the natural assumption of red
noise is not adequate here because these data were obtained
from different observers). This level (shown by the dashed
line) is quasisuperposed on the x-axis (the linear interpola-
tion induces errors comparable to white noise). In the WPS,
the continuous white line indicates the cone of influence
(zone where the edge effects are important). Information
outside this cone is not relevant.

From an examination by eye of the WPS from the sim-
ulated signal on AC Herculis sampling (Figure 5b), one can
identify the two simulated periods at 100.5 and 33.1 days.
The corresponding GWS (Figure 5¢) shows these two periods
which are over the 95% confidence level. In the WPS from
the simulated signal from the RV Tauri sampling (Figure 6b),
one is also able to identify the two periods also at 100.5 and
33.1 days, although in a more indistinct way, and a third one
at 230 days. The large zone due to the bad sampling at the
beginning of the run, around t = 36 000 modified Julian
days (MJD = JD-2 400 000.5), appears as a large stain in
the low frequencies. Although it is inside the cone of influ-
ence, it overshadows the presence of both periods. The GWS
(Figure 6¢) highlights the same problem.

Figures 9 and 10 present the GWS from simulated signals
compared with those of the corresponding sampling signals.
The purpose of this comparison is to discriminate, from the
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FIGURE 3: Periodograms from the AC Herculis light curve (b) and
from the corresponding simulated signal (a), presented on a loga-
rithmic scale.

results of the GWS, if the presence of a peak of significant
amplitude can be explained or not by the irregularity of the
sampling. In these simple cases, we can verify that the irregu-
lar sampling of RV Tauri is responsible for the peaks above
roughly 500 days, detected in the GWS (Figure 10). Their
nonvalidity was already confirmed by their position outside
the cone of influence. However, the GWS from the sampling
signal does not explain the 230-day period (see Section 5).
Note also that for AC Herculis (Figure 9), the two structures
visible at 365 days and 183 days obviously correspond to the
annual cycle of the observations.

To complete our analysis, we examine the matching pur-
suit decomposition of the same simulations. The results pre-
sented here use the free graphical user interface developed at
our institute (http://webast.ast.obs-mip.fr/people/fbracher)
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FIGURE 4: Periodograms from the RV Tauri light curve (b) and from
the corresponding simulated signal (a), presented on a logarithmic
scale.

based on the LastWave software of Bacry available at http://
www.cmap.polytechnique.fr/~bacry/LastWave/.

The linearly interpolated simulated signals are decom-
posed into functions from the dictionary D with a Spline
0 window. The energy density of the 100 first atoms
(ky, (1), ky, (1), ..., Koy (1)) is shown on Figures 11 and 12. The
long atoms represent the most coherent structures of the sig-
nal. The peaks which do not correspond to Stellar oscillations
but are artifacts due to the sampling appear localized on a
short time or cover a large frequency range (vertical atoms).

In the decomposition of the signal built from the AC Her-
culis sampling (Figure 11), we can identify two long atoms
at exactly 0.03 day~! and 0.01 day~!, characteristic of the
two frequencies introduced into the simulations. These are
labeled 1 and 2 in the decomposition (cf. (6)).
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FIGURE 5: (a) Simulated signal built from the AC Herculis sampling (light curve). (b) Wavelet power spectrum. The continuous white line
indicates the cone of influence. (c) Global wavelet spectrum of the simulated signal with a Morlet wavelet. The 95% confidence level that
could be obtained for a white noise is shown by the dashed line.
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FIGURE 6: (a) Simulated signal built from the RV Tauri sampling (light curve). (b) Wavelet power spectrum. The continuous white line
indicates the cone of influence. (c) Global wavelet spectrum of the simulated signal with a Morlet wavelet. The 95% confidence level that
could be obtained for a white noise is shown by the dashed line.

The decomposition of the signal built from the RV~ are among the most energetic in the decomposition (num-
Tauri sampling (Figure 12) presents an atom at 0.03 day~! bers 2 and 3—number 1, the very first, being a low-
(with aliases corresponding to the annual cycle) in the  frequency atom of short lifetime centered on t = 4000 MJD),
second part of the data. Another atom appears at 0.01 the simulated frequencies are also perfectly highlighted
day~! with the same lifetime and aliases. As these atoms  here.
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4.2. Application to the observations above 30 mag?: the first frequency (in terms of largest power)
The analysis of the AC Herculis and the RV Tauri light  is centered at 0.0265 day~' (37.736 days), the following one
curves was conducted with the same methods. AC Her- at 0.0133 day~! (75.188 days), and the two others at 0.0398
culis periodogram (Figure 3b) presents four important peaks ~ day™! (25.126 days) and 0.0531 day~! (18.832 days). The first
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FiGure 10: Global wavelet spectrum of the simulated signal made
from the RV Tauri sampling (solid line) compared to the GWS from
the corresponding sampling signal (dashed line). The solid line with
diamonds represents the dashed line multiplied by a factor 10, for
clarity.

two frequencies present aliases corresponding to the annual
cycle of the observations. The known period of AC Herculis
(Ty = 75.01 days) is correctly identified, although it appears
less energetic than the one at Ty/2, and its harmonics at Tj/3
and Ty/4 are also well detected. Finding half the known pe-
riod, revealed by the wavelet analysis and the matching pur-
suit as well, will be discussed further (Section 4).

The RV Tauri periodogram (Figure 4b) reveals very noisy
behavior, but the results indicate a first peak at 0.025471
day™! (39.26 days), corresponding to roughly half of the
known period of this star, and a second one at 0.00082 day~!

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (d)

(b)

FiGure 11: Time-frequency decomposition (b) of the simulated sig-
nal (a) made from the AC Herculis sampling. Each grey level repre-
sents the energy density of each atom.

(1219.5 days) which is the known long period of RV Tauri.
Both peaks present aliases corresponding to the annual cycle
of the observations.

WWZ analysis for AC Herculis reveals a high-amplitude
peak at 38.24 days and a less energetic one at 71.43 days. For
RV Tauri, one can surprisingly identify the most prominent
peak at 1299 days and two others of same amplitude at 502.51
and 38.8 days (as expected). In both cases, the value of the
constant ¢ was chosen as for the simulated signals: ¢ = 0.04
for AC Herculis and ¢ = 0.0125 for RV Tauri. However, the
heuristic choice of ¢ makes it difficult to find evidence for ex-
act periods. For example, if one chooses a lower or a higher
value for ¢, periods and/or amplitudes appear to be slightly
different. It seems that this point is not discussed in the liter-
ature.

Figures 7 and 8 present the WPS and the GWS from AC
Herculis and RV Tauri, respectively, obtained with the same
wavelet (Morlet) as for the simulated signals.

In AC Herculis WPS (Figure 7b), one is able to determine
two periods: 37 days and 75 days. Both of them are present
throughout the observation. Once again, the 37-day period
appears just before (in terms of power) the 75-day period. In
the corresponding GWS, these two periods appear over the
95% confidence level and two other less energetic peaks also
appear above this level at 141 and 374 days. Note that the
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FIGURE 12: Time-frequency decomposition (b) of the simulated sig-
nal (a) made from the RV Tauri sampling. Each grey level represents
the energy density of each atom.

harmonics at Tp/3 and Ty/4 detected in the periodogram do
not appear in the WPS. The corresponding GWS is analyzed
in Figure 13, superposed on that of the “sampling” signal. In
fact, the nature of the sampling explains the last peak (374
days) and even the 141-day one, which are not real.

In the RV Tauri WPS (Figure 8b), only a single period at
39 days in the second part of the time interval can be identi-
fied. In the corresponding GWS (Figure 8¢), it is also observ-
able, together with some others above 500 days, but essen-
tially outside the cone of influence. The GWS from RV Tauri
is presented in Figure 14. The superposition on that of the
corresponding sampling signal explains the peaks above 500
days, due to the sampling, which confirms that they are not
real (as was already revealed by the cone of influence).

The matching pursuit analyses of AC Herculis and RV
Tauri are computed with a Spline 0 window and keep-
ing the first 100 atoms of the decomposition, as was done
for the simulated signals (Figures 15 and 16). Several long
lifetime atoms appear in the AC Herculis decomposition:
the two most energetic ones are located at the same fre-
quency: 0.0265 day~! (37.73 days) and the third oscillates at
0.0133 day~! (75.19 days). AC Herculis known period (75.01
days) is thus well determined, but as in the wavelet analy-
sis, half the known period appears first in terms of energy.
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2 4 8 16 32 64 128 256 512 1024
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FIGURE 13: Global wavelet spectrum of the AC Herculis signal (solid
line) compared to the GWS from the corresponding sampling signal
(dashed line).
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FIGURE 14: Global wavelet spectrum of the RV Tauri signal (solid
line) compared to the GWS from the corresponding sampling signal
(dashed line). The solid line with diamonds represents the dashed
line multiplied by a factor 20, for clarity.

The harmonics revealed in the periodogram are also present
with a high energy in the decomposition (atom 10, fre-
quency: 0.0398 day™! (25.12 days); atom 12, frequency:
0.0531 day~! (18.83 days)).

Among the frequencies that can be identified in the RV
Tauri diagram (Figure 16), the first long lifetime atom (order
4) is at 0.0255 day~! (39.29 days) and is centered around 12
000 days. It represents the most energetic structure of the sig-
nal and is half the known oscillating period of this star (78.73
days). Two atoms (orders 15 and 20) are centered at 0.0227
day~! (44.02 days) and 0.0282 day~! (35.46 days). They cor-
respond to aliases due to the annual cycle of observations.
The 0.012695 day™! frequency (78.77 days) is in a more dis-
tant position (order 28) from an energy point of view.
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Figure 17 represents the results of a matching pursuit de-
composition of S Persei detailed in another paper [23], show-
ing that this type of method can be applied to longer period
stars. In that particular case, no long lifetime frequency can
be identified by eye in the diagram, but the first atom of the
decomposition is at 0.00122 day~! (819 days) and centered
around 10 000 days. This atom is not as long as the strong
apparent periodicity in the last part of the data because the
energy of a longer lifetime atom (double lifetime) would be
smaller (it would take into account the noise on both sides of
this part of the light curve). While neither the periodogram
nor the wavelet analysis was able to find S Persei known pe-
riod (822 days), the matching pursuit analysis offers the pos-
sibility of clearly detecting it, since it appears as the first atom
of the decomposition.

5. DISCUSSION

Lomb’s periodogram provides well-resolved power density
spectra but it is oversensitive to irregular sampling; in some
of our cases (e.g., S Persei), the periodogram was too noisy to
be analyzed without a preliminary resampling. Moreover, al-
though there exists a large literature concerning the statistical
properties of the periodogram, its intrinsic nature does not
allow us to implement a reconstruction error analysis com-
parable to the error provided by matching pursuit analysis.

Magnitude
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20000
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FIGURE 16: Time-frequency decomposition (b) of the RV Tauri sig-
nal (a).

The application of WWZ to the real data leads to the
identification of known periods in the four stars. However, in
the case of RV Tauri, the prominent period is 1299 days and
not 38.8 days as expected. Different choices of ¢ parameter
did not allow us to improve the result. Concerning AC Her-
culis, S Persei and T Camelopardis, the most obvious features
are consistent oscillations, as they are indicated in the fourth
edition of the General Catalog of Variable Stars. We were not
able to compute associated errors since, as indicated by Fos-
ter [11], their determination is “extraordinary complex.”

The 95% confidence level associated with the WPS and
the cone of influence are efficient tools to check if the high-
lighted frequencies are meaningful. However, in the regions
of interpolated large gaps, neither the cone of influence nor
the 95% confidence level is unable to discriminate spurious
frequencies. But this method reveals problems for low fre-
quencies: in the GWS, high-amplitude peaks are not always
explained by those from the sampling signal. The poorest the
sampling quality, the more important the problems at low
frequencies. These problems are due to the linear interpola-
tion, but other interpolation methods (e.g., cubic spline) lead
to the same problem. This is what prevents us from carrying
out an associated error analysis.

As for the periodogram, the matching pursuit analysis
is oversensitive to the annual cycle of the observations, but
the atom hierarchy provides quantitative information on the
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Figure 17: Time-frequency decomposition (b) of the S Persei sig-
nal (a).

dominating frequencies of the signal. We can easily define
the associated error as the quadratic reconstruction error af-
ter decomposition on a large number of atoms (e.g., 400 in
our case). Table 1 presents this error for simulated signals
(third column) associated with the four variable stars pre-
sented in Section 1. The mean number of observations per
day is used to estimate the quality of the sampling (second
column in Table 1). One can note that the reconstruction er-
ror is not correlated with the sampling quality. This is ex-
plained by the large choice of atoms of different lifetimes
and frequencies offered by the dictionary, which can solve
the problem caused by a very incomplete sampling (see, e.g.,
the error reconstruction for T Camelopardis, compared to its
sampling). Table 1 also presents the four variable stars peri-
ods and the ones found by the periodogram (Pperio ), the GWS
(PGws), the matching pursuit decomposition (Pyp), and the
weighted wavelet Z-transform (Pwwz).

We have noted throughout the paper the fact that for AC
Herculis, we systematically found half the known period for
this star. For RV Tauri, half the known period was also found.
However, with the matching pursuit decomposition, we were
also able to identify the known period (78.73 days). These
two periods also found by Zsoldos [30] are characteristics of
the double-wave shape of RV Tauri-like stars.

The matching pursuit decomposition appears to be par-
ticularly suitable for a deeper analysis of AC Herculis. In-
deed, this star’s light curve is supposed to be chaotic [15].
The matching pursuit analysis is probably the first step to
use, towards a simple nonlinear dynamical analysis. Based on
certain physical properties of such variable stars, a relevant
atom selection allows us to reconstruct a signal characteristic
of their structural properties. Note that the WWZ, also high-
lighting two periods, would not allow us to select atoms in
the same simple manner. Our ongoing work should provide
support for the results of Kollath et al. [15]. In the partic-
ular case of AC Herculis, our work could also explain why
the found period (37.73 days) turns out to be half the pe-
riod indicated in the literature (75.01 days) and why these
periods are so close from an energetics point of view. In
fact, we are probably facing a period-doubling phenomenon:
if the star oscillates with a stable fundamental period, say
Ty = 37.73 days, when some parameters vary, a period-
doubling bifurcation may occur, leading to another stable pe-
riod of 2T = 75.01 days. Both periods can be observed, with
a variable amplitude which depends on the run.

6. CONCLUSION

We have used a wavelet analysis and a matching pursuit
decomposition to investigate the role of irregular sampling
with linear interpolation in the determination of the spec-
tral contents of variable star’s light curves and we have com-
pared them with results given by a Lomb’s periodogram
and by weighted wavelet Z-transform (which is a time-scale
method that can be compared in its principle to Lomb’s pe-
riodogram). The proposed algorithm is composed of two
steps: first, a preprocessing is done by interpolating the ir-
regularly sampled light curve; second, a time-scale or a time-
frequency analysis is applied on resampled data.

Of course, the ability to analyze the frequency content
of a data set, together with its time dependence, is by it-
self a powerful tool. To analyze unevenly spaced signals, sta-
tionary methods, although technically suited, fail to deter-
mine frequencies; nonstationary methods are better suited
even at the price of a preliminary resampling. This in-
cites a better use of time-scale or time-frequency meth-
ods. In this context, the results yielded by the matching
pursuit analysis are significantly better in terms of ability
not only to recover the right frequency (see Table 1), but
also to conduct an error analysis and remain independent
of the sampling quality. It is important to notice at this
stage that if one had only kept the well-sampled parts of
the signals, the results would of course have been immedi-
ate. Unfortunately, this procedure is impossible in the case
of systematic astronomical observations which produce a
large amount of data. This work is the first attempt to ap-
ply a matching pursuit algorithm to light curves of vari-
able stars. We attached attention to interpolation procedure
which at first sight could appear very simple. This is also
the first time in astronomy where a periodogram is com-
pared to global wavelet power spectra (i.e., 2D spectra), and
to WWZ technique. Lastly, this is the first step to a chaotic
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behavior analysis in the continuity of Kiss and Szatmary’s
work [14].

The known period of AC Herculis at 75.01 days was
found (in second position) at 75.19 days by the periodogram
and the matching pursuit analysis, at 75.00 days by the GWS
and at 71.43 by the WWZ. Harmonics at Ty/2, Ty/3, and
To/4 have been clearly identified by the periodogram and
the matching pursuit analysis. The two last (resp., three) har-
monics do not appear in the GWS (resp., WWZ). The pe-
riod of RV Tauri at 78.73 days was not found neither by the
periodogram nor by the global wavelet spectrum nor by the
weighted wavelet Z-transform. However, half of this period
could be found at 39.26 days by the periodogram, at 39.00
days by the GWS, and at 38.80 by the WWZ. The matching
pursuit decomposition reveals both periods: 39.29 days and
78.77 days. This last method also permits us to conduct an
error analysis.

The matching pursuit algorithm thus appears well suited
for spectral investigation of irregularly sampled variable stars
signals. This study, moreover, offers the new benefit of simply
requiring a linear interpolation of the data and allows us to
propose a simple guideline for processing such signals:

(1) resample the signal with a linear interpolation;

(2) choose a time step compatible with the searched fre-
quency range;

(3) save this new signal as a column ascii file (zero mean);

(4) download the matching-pursuit graphical user in-
terface guimauve at webast.ast.obs-mip.fr/people/fbra-
cher (Linux version preferred) and install it with the
rpm command;

(5) execute the command guimauve;

(6) open the signal file, set the right time step (menu Sig-
nal), decompose the signal (menu Matching), choose
the atom number to be investigated (100 by default)
and the window (Gaussian by default). Options are ac-
tivated by the mouse and the scroll bar;

(7) information on atoms are written at the bottom of the
window: ordered in hierarchy, lifetime of the oscilla-
tion (“octave” defines the length of the atom as 2°¢'2¢),
time and frequency. The energy is quantitatively acces-
sible thanks to the menu File and Save Decomposition.
A reconstruction is possible from an atom or parame-
ter selection.

Processing a simple linear interpolation before applying
a time-frequency analysis offers advantages over a Fourier
transform or a periodogram from nonresampled data. How-
ever, we plan to investigate, in a forthcoming work, a com-
parison of the matching pursuit results with linear interpola-
tion of the data versus the interpolation technique proposed
by Strohmer [25].
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