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We consider the problem of restoring astronomical images acquired with charge coupled device cameras. The astronomical object
is first blurred by the point spread function of the instrument-atmosphere set. The resulting convolved image is corrupted by a
Poissonian noise due to low light intensity, then, a Gaussian white noise is added during the electronic read-out operation. We
show first that the split gradient method (SGM) previously proposed can be used to obtain maximum likelihood (ML) iterative
algorithms adapted in such noise combinations. However, whenML algorithms are used for image restoration, whatever the noise
process is, instabilities due to noise amplification appear when the iteration number increases. To avoid this drawback and to
obtain physically meaningful solutions, we introduce various classical penalization-regularization terms to impose a smoothness
property on the solution. We show that the SGM can be extended to such penalized ML objective functions, allowing us to obtain
new algorithms leading to maximum a posteriori stable solutions. The proposed algorithms are checked on typical astronomical
images and the choice of the penalty function is discussed following the kind of object.

Keywords and phrases: restoration, astronomic images, Poisson transformation, MAP estimation, regularization, iterative algo-
rithms.

1. INTRODUCTION
The image restoration problem and particularly image de-
convolution, is an inverse problem, ill posed in the sense
of Hadamard, whose solution is unstable when the data is
corrupted by noise. For astronomical data, two noise pro-
cesses are generally considered separately. The first one is
an additive Gaussian noise appearing in high intensity mea-
surements; in this case, the maximum likelihood estimator
(MLE) under positivity constraint is obtained, for example,
using the ISRA multiplicative iterative algorithm [1]. The
second one, dedicated to low intensity data, is a Poisson
noise process; in this case the MLE is obtained from the ex-
pectation maximization (EM) Richardson-Lucy iterative al-
gorithm [2]. In a more realistic but less used model, both
noise processes must be taken into account simultaneously.
We will describe this model previously analyzed by Snyder et
al. [3, 4, 5, 6] and by Llacer and Nuñez [7, 8, 9]. We will show
that the corresponding MLE iterative algorithm can be eas-
ily obtained using the split gradient method (SGM) we have
previously proposed for Poisson or Gaussian noise [10, 11].
However, in all the ML methods, whatever the noise process

considered, only the adequacy of the solution to the data is
taken into account; so, when iterative algorithms are used,
instabilities appear due to the noise amplification when the
iteration number increases. In this context, to obtain physi-
cally satisfactory solutions, the iterative process must be in-
terrupted before instabilities appears. Another way to avoid
this drawback is to perform an explicit regularization of the
problem, that is, to introduce an a priori knowledge to im-
pose, for example, a smoothness property on the solution,
then, a maximum a posteriori (MAP) solution is searched
for.

In previous papers of Snyder the regularization is per-
formed by means of sieves functions. In the papers of Llacer
and Nuñez, the proposed penalized iterative algorithm does
not ensure neither the convergence nor the positivity. We will
show that the SGM can be used to obtain regularized itera-
tive algorithms for a Poisson plus Gaussian noise model. In
so doing, we exhibit regularized iterative multiplicative algo-
rithms with constraints typical of astronomical imagery and
we show their effectiveness for some classical penalty func-
tions.
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1.1. Optical astronomy imagery: Poisson datawith
additive Gaussian noise

The light emanating from the object of interest propagates
through a turbulent atmosphere and is focused onto the
charge coupled device (CCD) by an imperfect optical system
that limits the resolution and introduces aberrations.

The overall effect of the atmosphere and optical system
can be mathematically described by a convolution operation
between the object x and the point spread function (PSF) w
of the whole system. The response of the CCD detector be-
ing nonuniform, a function T proportional to the quantum
detector efficiency, called flat field, must be introduced in the
model [5, 6], giving a first deterministic transformation f of
the object:

f (r, s) = T(r, s)
[
w(r, s)⊗ x(r, s)

]
, (1)

where r and s are spatial coordinates and ⊗ denotes the two-
dimensional convolution.

Moreover, in astronomical imaging, x is generally the
sum of the sky background m and of the astronomical ob-
ject field u, then

x(r, s) = u(r, s) +m(r, s). (2)

Consequently, a natural constraint appears for the object:
x ≥ m. In each pixel of the sensor, the interaction between
the incident photons and the photosensitive material of the
CCD creates photoelectrons in proportion to the number of
photons plus extraneous electrons due to heat and bias ef-
fects. This photoconversion process is classically character-
ized by a Poisson transformation of mean f + d, where d is
the mean of the Poisson process for the extraneous electrons.

Finally, the detector is read by an electronic process which
adds a white Gaussian read-out noise b ∼ N (g, σ2), indepen-
dent of the Poisson process. We get then the observed image
y(r, s) of mean f (r, s) + d(r, s) + g.

1.2. Imagingmodel and problem statement

In the following, we use capital letters for N × N arrays and
bold letters for N × 1 vectors, subscript i denotes the pixel i
of the image lexicographically ordered.

From the description in Section 1.1, a realization of the
value of the image in the pixel i can be modeled as

yi = ni + bi, (3)

where ni is a realization of a Poisson process of mean

ti(Wx)i + di = (Hx)i + di = zi, (4)

where hi, j = tiwi, j are the elements of H satisfying

∑
j

wj,i = 1,
∑
j

h j,i = ai �= 1 ∀i. (5)

In matrix notation,

y = n + b, (6)

where n is a Poisson process of mean

Hx + d = z, (7)

H = TW , T = diag(t1t2 · · · tN ), andW is the classical block
Toeplitz matrix for the convolution matrix form. Note that if
there is no flat field, T = I , H =W .

In the deconvolution problem for astronomical imaging,
the object is generally composed of bright objects on a sky
background, assumed constant. This particularity of the as-
trophysical object must be taken into account to avoid the
“ringing” phenomena appearing in the vicinity of abrupt in-
tensity variations. Moreover, in the convolution operation
with normalized kernels, the total intensity of the object is
maintained.

The problem is then to restore the object x from the data
y with the constraint x > m, see (2), and the total intensity
conservation.

W is generally obtained via separated calibration mea-
surements as well as the flat field table T , d can be mea-
sured, and the parameters of the Gaussian noise are generally
known characteristics of the CCD [5, 6].

1.3. Image restorationmethod

The restoration method generally proposed for the previ-
ous model [5, 6, 7, 8, 9] is founded on the MLE and the
corresponding iterative algorithms are developed from the
EM method [12, 13]. As the deconvolution problem is an
ill-posed problem, instability in the solution appears as the
number of iterations increases. The problem is then to stop
them to get a physically satisfactory solution and for that, to
determine the optimal iteration number [14, 15].

Another way to avoid instabilities is to regularize ex-
plicitly the problem. Numerous relevant methods have been
used in the literature (see [16] and references therein). The
method of sieves, for example, was proposed by Grenan-
der [17] and applied to image restoration by Snyder et al.
[3, 5, 18]. However, as mentioned in [19], penalized MLE
outperforms sieves. Therefore, we focus on the basic princi-
ples of the regularization by a penalty function. In this case
a penalty term is added to the likelihood term with the aim
of introducing to the solution prior information, generally
a smoothness property, (see, e.g., Bertero [20, 21, 22], De-
moment [23], Titterington [24]). The relative weight of the
penalty versus the likelihood allows us to “pull” the solu-
tion either towards the ML or towards the prior, changing
the MLE in the MAP estimation.

This approach has been followed by Llacer and Nuñez
[7, 8, 9], for the model (6) and (7) using as penalty function
the Shannon cross entropy between the solution and a con-
stant prior for the object. However, as mentioned in [25], the
proposed algorithm has a significant computational burden,
the convergence is not guaranteed and the positivity of the
solution is not always ensured.

In the present work, we first show that the MLE algo-
rithm can be obtained using the SGM previously proposed
[25], then the SGM is extended to the regularized approach,
in a rigorous way, using various convex penalty functions.
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The paper is organized as follows. In Section 2 the MAP
estimation problem is given for themodel Poisson plus Gaus-
sian noise. The general algorithmic method is described for
various penalty functions in Section 3. In Section 4 simula-
tions on astronomical images are presented and discussed.
Finally, Section 5 proposes a discussion on the generalization
of the proposed method to others applications.

2. POISSON NOISE PROCESSWITH
ADDITIVE GAUSSIAN NOISE

2.1. Likelihood function

Following the model (3) and (4), we denote by zi the mean
of the Poisson process in the pixel i. The number ni of pho-
toelectrons generated by this process has the classical proba-
bility law

P
(
ni|zi

) = znii
ni!

exp
(− zi

)
. (8)

During the read-out step, the integer ni is corrupted by a
Gaussian additive noise of mean g and variance σ2 giving a
process yi with a Gaussian probability law

P
(
yi|ni

) = 1
σ
√
2π

exp


−

(
yi − ni − g

)2
2σ2


 . (9)

Then

P
(
yi|zi

) =∑
ni

P
(
yi|ni

)
P
(
ni|zi

)

=
∞∑

ni=0

1
σ
√
2π

exp


−
(
yi − ni − g

)2
2σ2


 znii
ni!

exp
(− zi

)
.

(10)

With assumption of independence between pixels, the likeli-
hood function for the image y is

L(y) = P(y|z)

=
∏
i

∑
ni

1
σ
√
2π

exp


−

(
yi − ni − g

)2
2σ2


 zni
ni!

exp
(− zi

)
.

(11)

Taking the negative log and dropping the terms independent
of x, we obtain the objective function

J1(x) =
∑
i


zi − log


∑

ni

znii
ni!

exp


−

(
yi − ni − g

)2
2σ2






 .

(12)
Then the MLE is obtained by minimizing J1(x) versus x with
the lower bound and the intensity conservation constraints,
as explained in Section 1.3. The gradient of J1, for the pixel i,
is

(∇J1(x))i =∑
j

(
hji − hji

r j
z j

)
, (13)

with

r j =
pj

q j
,

pj =
∑
ni

exp


−

(
yj − ni − g

)2
2σ2


 ni
ni!

znij ,

qj =
∑
ni

exp


−

(
yj − ni − g

)2
2σ2


 1
ni!

znij ,

(14)

or, in matrix notation, for the whole vector x,

∇J1(x) = HT diag
(

1
(Hx + d)

)
(Hx + d− r). (15)

As indicated in Section 1, to avoid instability of the MLE es-
timator, we propose to regularize the problem, that is, to add
to the objective function J1(x) a penalty term J2(x).

2.2. Regularization

We will consider here two kinds of regularization functions:
quadratic ones and entropic ones.

2.2.1. Quadratic regularization

We consider a regularization in the sense of Tikhonov [26]:

J2(x) = 1
2
‖x− x̄‖2. (16)

It is a quadratic distance between x and an a priori solution
x̄, called the “default image” [15, 27]. If there is no a priori
information, the default solution can be chosen as a constant
value p for a basic smoothness constraint; the choice of the
value of p is not critical, it is frequently chosen equal to zero,
however we choose to take p = ∑

i xi/N , such that the total
intensity conservation constraint is fulfilled also for the prior,
see Section 3.1. In this case, the gradient of J2(x) is

∇J2(x) = x − p. (17)

Another common choice for J2 is the Laplacian operator

J2(x) = 1
2
‖Cx‖2, (18)

which can be expressed in the form (16)

J2(x) = 1
2
‖x − Ax‖2, (19)

where A is deduced from the mask
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andAx is the matrix form notation for the convolution oper-
ation between x and this mask. The corresponding gradient



Restoration of Astrophysical Images 2503

is then

∇J2(x) =
(
I + ATA− AT − A

)
x. (21)

In this case, the solution is implicitly biased towards a
smoothed version of the solution. We note that A can be gen-
eralized to any form of lowpass filter.

2.2.2. Entropic distances

We use for entropic regularization the Csiszär directed diver-
gence [28], a generalized form of the kullback-leibler (KL)
distance between the solution and an a priori or default so-
lution x̄:

J2(x) = KL(x, x̄) =
∑
i

xi log

(
xi
x̄i

+ x̄i − xi

)
. (22)

In the same way as for the quadratic distance, x̄ can be a con-
stant p, with p > 0, or a smoothed version of the solution.We
will consider here only the case of a constant prior, in order
to compare the results with those of [9]. The corresponding
gradient is

∇J2(x) = log(x)− log(p). (23)

Note that we can also consider the distance between x̄ and x:
KL(x̄, x), which gives more or less the same practical results
[29].

3. GENERAL ALGORITHMICMETHOD

3.1. SGMmethod

The regularized problem is to solve a problem of minimiza-
tion under constraints, that is,

(i) minimize with respect to x:

J(x, γ) = J1(x) + γJ2(x); (24)

(ii) with the constraints
(1) lower bound, xi −m ≥ 0 for all i;
(2) energy conservation,

∑
i xi =

∑
i(yi − di − g)/ti.

J(x) consists of two terms, J1(x) that expresses the consis-
tency with the data and J2(x), the term of regularization; γ is
the regularization parameter, which tunes the relative weight
between the two terms. We note that the considered func-
tions J1(x) and J2(x) are convex.

We propose to devise algorithms deduced from the
Kuhn-Tucker (KT) conditions in the general modified gra-
dient form [10, 11, 30]:

xk+1i = Ck
(
xki + αki fi

(
xk, γ

)(
xki −m

)(− (∇J(xk, γ))i)
)
.

(25)

The initial estimate x0 is chosen as a constant value, such
that all the constraints are fulfilled, Ck is a normalization
factor for the total intensity conservation, subscript i is for

the pixel i, αki > 0 is the relaxation factor, k is the iteration
index, f (x) is a function having positive values when x sat-
isfies the constraints. To obtain “product form” algorithms,
the split-gradient method (SGM) is used. It can be summa-
rized as follows: the convex function J(xk, γ) admits a finite
unconstrained global minimum given by∇J(xk, γ) = 0, then
we can write

−∇J(xk, γ) = U
(
xk, γ

)−V
(
xk, γ

)
, (26)

whereU(xk, γ) and V(xk, γ) are two positive functions for all
xk ≥ m. From (24), the total gradient can be decomposed as

−∇J(xk, γ) = −∇J1(xk)− γ∇J2
(
xk
)
. (27)

Splitting −∇J1(xk) and −∇J2(xk) as in (26), we have

−∇J(xk, γ) = U1
(
xk
)−V1

(
xk
)
+ γ
(
U2
(
xk
)−V2

(
xk
))
,

U
(
xk, γ

) = U1
(
xk
)
+ γU2

(
xk
)
,

V
(
xk, γ

) = V1
(
xk
)
+ γV2

(
xk
)
.

(28)

Taking

fi
(
xk, γ

) = 1
Vi
(
xk, γ

) > 0, (29)

(25) becomes

xk+1i = Ck

(
xki + αki

(
xki −m

)
Vi
(
xk, γ

) (Ui
(
xk, γ

)−Vi
(
xk, γ

)))
. (30)

The maximum stepsize that ensures xk+1i − m ≥ 0, for all i,
for all k is given by

αkm = min
i∈C

(
1

1−Ui
(
xk, γ

)
/Vi
(
xk, γ

)
)
, (31)

where C is the set of index i such that (∇J(xk, γ))i > 0 and
xki > m; clearly αkm > 1, then for αk = 1, the constraint is
always fulfilled. The optimal step size αkc independent of i en-
suring convergence must be computed in the range ]0,αkm]
(or ]0,αkm[ if a strict inequality constraint is required) by a
line search procedure (see, e.g., [31, 32, 33, 34]) with the de-
scent direction

ρk = diag

((
xki −m

)
Vi
(
xk, γ

)
)(

U
(
xk, γ

)−V
(
xk, γ

))
. (32)

This direction is no more the negative gradient but it re-
mains a descent direction for J(x). With a unit step size, the
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Table 1: Functions U and V following the kind of regularization.

Function Likelihood Quadratic, x̄ = p Quadratic, x̄ = Ax Entropic, x̄ = p

U U1 = HT diag

(
1

(Hx + d)i

)
r U2 = γp U2 = γ

(
AT + A

)
x U2 = −γ log

(
x∑
i xi

)

V V1 = a, see (5) V2 = γx V2 = γ
(
I + ATA

)
x V2 = −γ log

(
p∑
i pi

)
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Figure 1: (a) HST picture, (b) PSF, (c) star, (d) point sources.

algorithm (30) takes an interesting simple form:

xk+1i = Ck

(
m +

(
xki −m

)Ui
(
xk, γ

)
Vi
(
xk, γ

)
)
. (33)

The normalization, that is, the computation of Ck, is per-
formed following [10]. The convergence of (33) is not the-
oretically ensured but has always been observed in prac-
tice. To ensure the theoretical convergence of (30) without
a dramatic increase of the computational cost, economic line
search using the Armijo rule [31] or the Goldstein rule [35]
can be used to compute αkc , as mentioned in [32].

3.2. Application to the Poisson Gaussianmodel

Table 1 gives the expressions of the functionsU and V for the
likelihood (12) and for several penalty functions, (16), (19),
and (22). Algorithms can be obtained in a closed form by
replacing these expressions in (30) or (33) using the decom-
position (28).

4. NUMERICAL ILLUSTRATIONS

4.1. Object

The proposed algorithm has been illustrated on a pic-
ture taken from the hubble space telescope (HST) site,
http://hubblesite.org/gallery/. It is a sun-like star nearing the
end of its life, Figure 1a. Two 128 × 128 subpictures have
been extracted from the HST image, one centered on the
main structure, Figure 1c, the other containing bright point
sources, Figure 1d, where the same constant background has
been added to both pictures. These two parts have been se-
lected in order to study the effectiveness of various penalty
functions depending on the kind of pictures: more or less
diffuse.

4.2. PSF

The data has been blurred with the normalized space-
invariant PSF, Figure 1b. It is a realistic representation of
the PSF of a ground-based telescope including the effects of

http://hubblesite.org/gallery/
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Figure 2: Normalized star: (a) 20 000photons and (b) 10 000photons. Normalized point sources: (c) 20 000photons and (d) 10 000photons.

Table 2: Image characteristics.

Set A B

Photons 20 000 10 000

Gaussian noise
g 0.01 0.1

σ2 0.1 1

the atmospheric turbulence. The telescope aperture P(r) is
simply given by an array of points “1” inside a circle and
“0” outside, the wavefront error δ(r) is an array of ran-
dom numbers smoothed by a lowpass filter. The quantity
P(r) exp(2iπδ(r)/λ) represents the telescope aperture with
the phase error; for the simulation, the peak-to-peak phase
variation is small (less than π) and may correspond to typi-
cal telescope aberrations, see [10] for more details. The main
interest of such a PSF simulation is that the optical trans-
fer function is a lowpass filter, limited in spatial frequencies
to the extent of the aperture autocorrelation function; the
blurred image is then strictly band limited corresponding to
a realistic situation.

4.3. Noise

A Poisson transform is applied on the blurred image and fi-
nally a Gaussian noise is added. Two sets of noise parameters
have been chosen, the first one with 20000photons in the im-

age, m = 0.01, σ2 = 0.1 (set A) corresponding to a fairly
noisy image, shown in Figures 6a and 10a; the other one with
10 000photons, m = 0.1, σ2 = 1 (set B) represented in Fig-
ures 8a and 12a corresponding to a highly noisy image, see
Table 2 for a summary of the characteristics.

Figure 2 shows the objects normalized to the intensity of
the noisy images, allowing a quantitative comparison of the
results (normalized to the same quantity) with the objects.

4.4. Implementation

The HST images have been reconstructed using the algo-
rithm (30), the behavior of the algorithm for the two pic-
tures is studied as a function of the regularization function
and of the “level” of noise in the raw images. The summation
over the number of photons ni in the expressions of pj and
qj (14) has been reduced to max(ni) + g + 3σ corresponding
to significant values for the exponential term.

To stop the iterative procedure before noise amplification
and/or to check the quality of the restoration process, we use
a criterion based on the Euclidean distance ε(k, γ) between
the true object x∗ and the reconstructed one, computed as a
function of k and γ:

ε(k, γ) =
∥∥xkγ − x∗

∥∥2∥∥x∗∥∥2 . (34)
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Figure 3: Reconstruction error for the quadratic penalty with vari-
able prior; extended object, set A.
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Figure 4: Reconstruction error for the quadratic penalty with con-
stant prior; extended object, set A.

Such a comparison cannot be made for a real case since the
true object is not known. However, it allows a good charac-
terization of the behavior and performance of the algorithm
for simulated data, and it is useful to choose the regulariza-
tion parameter.

Indeed, the search for the correct regularization param-
eter remains an open problem. Some methods such as “L
curves” or “generalized cross validation” have been proposed,
typically for pure Gaussian noise [36, 37, 38]. In fact, in the
regularization scheme, three elements must be chosen: the

γ = 0
γ = 0.02
γ = 0.03

γ = 0.04
γ = 0.05

10 20 30 40 50 60 70 80 90 100

k

0.5

1

1.5

ε(
k,
γ)

Figure 5: Reconstruction error for the entropic penalty with con-
stant prior; bright points object, set B.

penalty function, the prior, and the regularization parame-
ter. The choice of these points depends on the properties of
the image, on the amount of noise, and on the expected ob-
jective. The regularization factor is heuristically chosen here
by selecting the one corresponding to an asymptotic mini-
mum value of ε(k, γ), see Figures 3, 4, and 5 for the behavior
of ε(k, γ). The best reconstructed images are given following
the regularization function in Figures 6, 7, 8 and 9 for the ex-
tended object and in Figures 10, 11, 12 and 13 for the bright
point sources.

Note that statistical analysis including a lot of noise real-
izations should be carried out to get significant quantitative
results, implying explosive computational cost; consequently
only qualitative remarks and comparative conclusions in re-
gard to the penalty functions are given.

4.5. Results for extended objects

4.5.1. Set A

Results obtained for the extended object are shown in Fig-
ures 6 and 7 for the set A and must be quantitatively com-
pared to Figure 2a. The restoration is first performed using
the nonpenalized algorithm (J(x) = J1(x)), in this case due
to the semiconvergence of the algorithm, iterations must be
stopped before the noise increases. The result corresponding
to the minimum of ε(k, 0) is given in Figure 6b.

A constant prior is then used in conjunction with a
quadratic penalty function (16) or an entropic penalty func-
tion (22); the corresponding behaviors of the restoration er-
ror for several values of γ are given in Figures 4 and 5. The
minimum reconstruction error is always reached for γ = 0;
for γ increasing the curve tends to be monotonic and the cor-
responding error increases. The best reconstructed objects
are shown in Figures 6c and 6d, respectively, for the quadratic
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Figure 6: (a) Raw picture, 20000photons, m = 0.01, σ2 = 0.1. (b) γ = 0, k = 5, Emin = 0.2956. (c) Quadratic penalty with constant prior,
γ = 0.03, k = 5, Emin = 0.3099. (d) Entropic penalty with constant prior, γ = 0.03, k = 6, Emin = 0.2965.
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Figure 7: (a) Quadratic penalty with variable prior, γ = 3, k = 100, Emin = 0.3315. (b) γ = 0, k = 100, E = 1.4318. (c) Quadratic penalty
with constant prior, γ = 0.03, k = 100, E = 0.404. (d) Entropic penalty with constant prior, γ = 0.03, k = 100, E = 0.5286.
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Figure 8: (a) Raw picture, 10 000photons, m = 0.1, σ2 = 1. (b) γ = 0, k = 6, Emin = 0.3490. (c) Quadratic penalty with constant prior,
γ = 0.04, k = 7, Emin = 0.3608. (d) Entropic penalty with constant prior, γ = 0.04, k = 8, Emin = 0.3544.
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Figure 9: (a) Quadratic penalty with variable prior, γ = 5, k = 100, E = 0.3857. (b) γ = 0, k = 100, E = 1.5989. (c) Quadratic penalty with
constant prior, γ = 0.04, k = 100, E = 0.4977. (d) Entropic penalty with constant prior, γ = 0.04, k = 100, E = 0.5006.
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Figure 10: (a) Raw picture, 20 000photons, m = 0.01, σ2 = 0.1. (b) γ = 0, k = 9, Emin = 0.4147. (c) Quadratic penalty with constant prior,
γ = 0.005, k = 8, Emin = 0.4469. (d) Entropic penalty with constant prior, γ = 0.03, k = 13, Emin = 0.4277.
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Figure 11: (a) Quadratic penalty with variable prior, γ = 0.8, k = 100, Emin = 0.5435. (b) γ = 0, k = 100, E = 1.209. (c) Quadratic penalty
with constant prior, γ = 0.005, k = 100, E = 0.6622. (d) Entropic penalty with constant prior, γ = 0.03, k = 100, E = 0.5449.
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Figure 12: (a) Raw picture, 10 000photons, m = 0.1, σ2 = 1. (b) γ = 0, k = 9, Emin = 0.47847. (c) Quadratic penalty with constant prior,
γ = 0.03, k = 8, Emin = 0.5495. (d) Entropic regularization, γ = 0.05, k = 9, Emin = 0.5043.
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Figure 13: (a) Quadratic penalty with variable prior, γ = 4, k = 100, Emin = 0.6131. (b) γ = 0, k = 100, E = 1.1896. (c) Quadratic penalty
with constant prior, γ = 0.03, k = 100, E = 0.6432. (d) Entropic regularization, γ = 0.05, k = 100, Emin = 0.5256.
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penalty and the entropic one. Results are very similar as con-
firmed by values of the reconstruction error.

Figures 7b, 7c, and 7d give the asymptotic reconstructed
images (k = 100) for respectively γ = 0, a quadratic regu-
larization, and an entropic regularization. Figure 7b exhibits
the typical behavior of the MLE when the iteration number
increases due to the noise amplification, see the color table
in Figure 7. The effect of the regularization clearly appears
in Figures 7c and 7d and especially in the case of a quadratic
penalty, for asymptotic iteration number. The result obtained
from the entropic penalty is unsatisfactory and is not im-
proved by an increase of the regularization factor. It has been
observed in [10] that the speckled effect obtained is typical
of the constant prior. In order to confirm this observation,
the result obtained with a quadratic penalty using the Lapla-
cian operator (18) and (19) is shown in Figure 7a. The cor-
responding reconstruction error is given in Figure 3; for γ
greater than 3, ε(k, γ) decreases monotonically and the value
reached by the error at high iteration number (k = 100) is
very close to the minimum error obtained for γ = 0 and
k = 5. The reconstructed image is clearly better than those
obtained with the constant prior.

4.5.2. Set B

The raw data with the set of parameters B is clearly much
noisier, Figure 8a. Results obtained must be compared to
Figure 2b. They are very similar to those obtained with the
less noisy image, the number of iterations and the regular-
ization parameter corresponding to the best reconstructed
image are slightly larger, Figures 8b, 8c, and 8d. The error
ε(k, γ) presents the same behavior with higher values. The
Laplacian operator gives better results than the other penalty
functions for 10 000photons as well, Figure 9a. Asymptotic
results are given in Figure 9.

4.6. Results for bright points object

4.6.1. Set A

The same algorithms have been applied on the bright points
source for the set A, Figure 10a. The results of the reconstruc-
tion must be compared to Figure 2c.

Note that the photons are more concentrated into small
circular parts. The first result is for the nonpenalized algo-
rithm and the best result is shown in Figure 10b. Best re-
sults in the sense of the minimization of ε(k, γ) are given
in Figures 10c and 10d, respectively, for the quadratic and
the entropic regularizations with a constant prior. Regular-
ization parameters and the optimal iteration number are sig-
nificantly different but the reconstruction error is approxi-
matively the same, this is a first difference in regard to the
extended image.

For a large iteration number, results are given in Figures
11b, 11c, and 11d. As expected, looking at the error curves,
we see that the nonpenalized algorithm gives a bad recon-
struction and corresponds to a large error while results for
the penalized algorithms are correct with a stabilization of
the reconstruction error.

The Laplacian regularization gives a poorer result with a
spreading effect on the point sources.

4.6.2. Set B
Data with the noise of the set B is in Figure 12a. The con-
trast between the background and the point sources is re-
duced. The nonpenalized algorithm gives the best restora-
tion, shown in Figure 12b. The best results in the sense of
the minimization of ε(k, γ) are given in Figures 12c and 12d,
respectively, for the quadratic and the entropic penalties with
constant prior. All the results are to compare to the objects of
Figure 2d. The regularization parameter is more difficult to
find with respect to the extended image and changes from
one function to another.

For a large iteration number, results are given in Figures
13b, 13c, and 13d. As expected, looking at the error curves,
we see that the nonpenalized algorithm leads to a bad recon-
struction and corresponds to a large error while results for
the penalized algorithms are correct with a stabilization of
the reconstruction error.

As for the set A, the Laplacian regularization gives a
less satisfactory result since the regularization has spread the
point sources.

In conclusion, for point-like objects, the results obtained
with penalized algorithms are good for the Tikhonov regu-
larization whatever the prior image: constant or a lowpass
version of the solution. Entropy penalty function leads to an
excessive resolution, even if the reconstruction error is low.

5. DISCUSSION

The method proposed here can be applied to all the inverse
problems described by a first-kind Fredholm integral. Two
points must be outlined. First is the exact kind of noise:
Gaussian, Poisson, or, as considered here, Poisson plus Gaus-
sian. The second point deals with the properties of the kernel
of the integral equation, space invariant or not, separable or
not.

Concerning the first point, the case of pure Gaussian
noise corresponds to high intensity imagery as in the infrared
case, while the pure Poisson noise corresponds to low light
level with perfect detectors. These two cases have been ana-
lyzed in previous papers [10, 11]. The case of Poisson data
with additive Gaussian noise, considered here, corresponds
to the more realistic situation of low light level imagery with
imperfect CCD detectors.

Concerning the second point, the matrix notation used
in this paper is general and can be applied whatever the prop-
erties of the kernel are. But in the case of imagery, the ma-
trix form implies that the object and the image are lexico-
graphically ordered vectors, then for n × n objects and im-
ages, the corresponding matrix W will be n2 × n2, (recall
that Hx = T(Wx)). If the kernel w does not exhibit any
specific property, the computations must be performed in
matrix form with a heavy computational cost. Fortunately,
for space-invariant kernels (convolution), the matrix W has
a Toeplitz or block-Toeplitz structure, simplifying computa-
tions. Indeed, the matrix expression Wx corresponds to the
convolution operation w(r, s)⊗x(r, s) which is performed by
means of fast Fourier transform. The operation (T) implies
only point-to-point products. Then the proposed algorithm
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is of general use whatever the exact properties of the kernel
w(r, s).

6. CONCLUSION

In this paper, we consider mainly the problem of restor-
ing astronomical images acquired with CCD cameras. The
nonuniform sensitivity of the detector elements (flat field) is
taken into account and the various noise effects such as the
statistical Poisson effect during the image formation process
and the additive Gaussian read-out noise are taken into ac-
count. We first show that applying the split gradient method
(SGM), maximum likelihood algorithms can be obtained in
a rigorous way; the relaxed convergent form of such algo-
rithm is exhibited and it has been demonstrated that the
EM algorithms are nonrelaxed versions of the proposed algo-
rithm. The proposed method can be systematically applied
in a rigorous way (ensuring convergence and positivity of
the solution) to MAP estimation for various convex penalty
functions. In this paper three penalty functions have been
developed: the quadratic one with either constant or smooth
prior and the entropic with constant prior. Previous attempts
of regularization for this model using sieves has been pro-
posed by Snyder et al. [3, 4, 6], however the penalty method
proposed outperforms “sieves” [19]. Another approach, pro-
posed by Llacer and Nuñez [7, 8], uses the penalized ML ap-
proach with an entropy penalty function but here the con-
vergence and the positivity constraint are not always ensured
[25], contrary to our method. The proposed algorithm has
been checked on typical astrophysical images with antagonis-
tic characteristics: diffuse or bright points objects. We have
shown that a Laplacian operator gives satisfactory results for
extended objects and an over-smoothed solution for bright
points objects. The reverse seems to occur when the prior is
a constant.
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