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Large archives and digital sky surveys with dimensions of 10! bytes currently exist, while in the near future they will reach sizes
of the order of 10"°. Numerical simulations are also producing comparable volumes of information. Data mining tools are needed
for information extraction from such large datasets. In this work, we propose a multidimensional indexing method, based on a
static R-tree data structure, to efficiently query and mine large astrophysical datasets. We follow a top-down construction method,
called VAMSplit, which recursively splits the dataset on a near median element along the dimension with maximum variance. The
obtained index partitions the dataset into nonoverlapping bounding boxes, with volumes proportional to the local data density.
Finally, we show an application of this method for the detection of point sources from a gamma-ray photon list.
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1. INTRODUCTION

At present, several projects for the multiwavelength obser-
vation of the universe are underway, for example, SDSS,
GALEX, POSS2, DENIS, and so forth [1]. In the next years,
new spatial missions will be launched (e.g., GLAST, Swift [2,
3]), surveying the wall sky at different wavelengths (gamma-
ray, X-ray, optical).

In the astroparticle and astrophysical fields, data are
mostly characterized by multidimensional arrays. For in-
stance, in X-ray and gamma-ray astronomy, the data gath-
ered by detectors are lists of detected photons whose prop-
erties include position (RA, DEC), arrival time, energy, error
measures both for the position and the energy estimates (de-
pendent on the instrument response), and quality measures
of the events. Source catalogs, produced by the analysis of
the raw data, are lists of point and extended sources charac-
terized by coordinates, magnitude, spectral indexes, flux, and
so forth.

Data mining applied to multidimensional data analyzes
the relationships between the attributes of a multidimen-
sional object stored into the database and the attributes of

the neighboring ones. Typical queries required by this kind
of analysis are the following: (i) point queries, to find all ob-
jects overlapping the query point; (ii) range queries, to find
all objects having at least one common point with a query
window; and (iii) nearest-neighbor queries, to find all ob-
jects that have a minimum distance from the query object.
Another important operation is the spatial join, which in
the astrophysical field is needed to search multiple source
catalogs and cross-identify sources from different wave-
bands.

These multidimensional (spatial) data tend to be large
(sky maps can reach sizes of terabytes) requiring the integra-
tion of the secondary storage, and there is no total ordering
on spatial objects preserving spatial proximity [4]. This char-
acteristic makes it difficult to use traditional indexing meth-
ods, like B+-trees or linear hashing.

2. AN OPTIMIZED R-TREE

The R-tree is a data structure meant to efficiently index mul-
tidimensional point data or objects with a spatial extent [5].
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The structure of an R-tree is the following:

(i) an internal node of the R-tree has a number of entries
of the form (cp, MBB), where cp is the address of a
child node and MBB is the n-dimensional minimum
bounding box of all entries in that child node;

(ii) a leaf node has a number of entries of the form (Oig4,
MBB), where Ojq refers to a record in the database de-
scribing a particular object and MBB is the minimum
bounding box of that object. For point data, the leaf
entries can also have the form (point, attributes), where
point is a coordinate in the n-dimensional space and
attributes are data associated to that point.

A bounding box R is defined by the two endpoints S and
T of its major diagonal in the n-dimensional data space:

R=(ST), (1)
where

T=(t1,ts... si<tVl<i<n.

(2)

S=(51,Sz,...,5n), :tn)>

The level (or depth) of a node x of the tree is the length
(the number of nodes) of the path from the root r to the node
x. The fanout of a node x is the maximum number of entries
a node can have. The internal fanout is the fanout of nonleaf
nodes (to be distinguished from the leaf fanout or capacity).
Analogous to the B+-tree, the R-tree is a balanced tree and
each node has a fanout dependent on the disk page size.

The dynamic R-tree (and its variant, the R*-tree [6]) de-
fines particular insertion, deletion, and update operations to
reduce the overlapping between sibling nodes and guarantee
a minimum filling rate.

Usually, the analysis of astrophysical data is performed
on a static dataset. In this case, using multiple insertions to
build the index on the entire dataset is very slow: the cost is
O(N logg N) 1/O operations, where N is the number of input
MBBs and B is the number of MBBs fitting into a disk block.

An optimized index, in terms of construction time, mem-
ory occupied, and query performances, can be built using a
priori information on the dataset by means of bulk loading
algorithms. Several bulk loading techniques have been pro-
posed in the literature [7]. With these algorithms, the index
can be built with O((N/B)log,,/p,(N/B)) number of 1/Os,
where M is the number of MBBs fitting into main memory.
The result is a near complete and balanced R-tree. The basic
idea used in these algorithms is the following: input MBBs or
point data are sorted or partially sorted according to a cri-
terion that preserves spatial proximity between adjacent ele-
ments in the ordering, then they are placed in the leaves in
that order. The rest of the tree is then built recursively in a
bottom-up manner.

We have followed a top-down construction method
called VAMSplit algorithm, described in [8], to build and op-
timized R-tree. This method preserves the spatial proximity
between sibling nodes, resulting in a partition of the dataset

with no overlapping between MBBs. Moreover, the volume
of the data space covered by each node (at a particular level)
is variable and dependent on data density. The main idea of
this method is to recursively split the dataset on a near me-
dian element along the dimension with maximum variance.
In particular, following the formalism given in [9], the index
construction algorithm comprises the following subtasks:

(i) determine the tree topology: height and fanout of the
internal nodes, and so forth;
(ii) compute the split strategy based on the tree topology;
(iii) use an external selection algorithm to bisect the data
on secondary storage;
(iv) construct the index directory.

2.1. Determination of the tree topology

The topology of a tree includes the height of the tree, the
fanout of the internal nodes in each tree level, the capacity
of the leaf nodes, and the number of the data objects (i.e.,
records) stored in each subtree. The topology of the tree only
depends on static information which is invariant during the
construction such as the number of objects, the number of
dimensions indexed, and the page capacity.

Let B be the maximum number of data objects in a data
page (i.e., a page storing a leaf node) and F the fanout of
a directory page (i.e., a page storing a nonleaf node). Then,
using the floor and ceiling operations, respectively, indicated
by | "] and [ ], we have that

B page size

| size of (data object) |’
Fo page size

| size of (node entry) |’

The maximum number of data objects in a tree with height
his

Cmax(h) =B- Fh- (4)

Therefore, knowing the number N of data objects to be in-
dexed, the height of the tree must be determined such that
Chnax 1s greater than N. More formally,

- [logp [%H - [mgF%]. (5)

This corresponds to the height of the root node. The fanout
of the root node is evaluated considering its subtrees as com-
plete trees with height i — 1 (the target index is a balanced
tree). Hence,

fanout (h,N) = [ N —‘ (6)

Cmax(h - 1)
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2.2. The split strategy

Given the topology of the target disk-based index tree, the
split strategy is represented by a linear-space tree. For the
VAMSplit algorithm, the split strategy is implicitly repre-
sented by a binary tree, where, at each level, the dimension
with maximum variance is chosen as the split dimension.

Then, a near median element is selected as the split value
and computed by

2 sca scap > 0,
med — gscap gscap 7)

AL N
cscap 2 cscap

where cscap stays for child subtree capacity and gscap stays
for grandchild subtree capacity and

if N <2 - cscap,

otherwise,

cscap = Cpax(h — 1),
gscap = Cyax(h — 2) = %. ®
Hence, when N > 2 - cscap, the split value is selected so that
the left subtrees of the target index are fully utilized. When
N < 2 - cscap, the split based on the cscap value would gen-
erate a strongly biased split; thus in this case the near median
element is evaluated by means of the granchild subtree ca-
pacity, but without introducing any extra page in the target
index.

For large datasets, not fitting into main memory, an ex-
ternal selection algorithm using the secondary storage for
partitioning the data around the median element is neces-
sary. Our implementation uses a sampling strategy given by
[10] to find a good pivot value and reduce the number of
I/O operations; a caching strategy explained in [9] has been
adopted to partition the data into the secondary storage.
When the number of records covered by a subtree fits into
main memory, its construction is continued in main mem-
ory, reducing further the number of I/O operations.

3. TESTS ON A PHOTON DATASET

To test the behavior of this method, we built the index on a
list of gamma-rays simulated for the GLAST project. In par-
ticular, the optimized R-tree was built on the RA and DEC
values while the other columns of each photon were consid-
ered as attribute data.

Figure 1 represents the structure of the R-tree built on the
first two days of simulated photons (for a total of 1847 588
photons). The background image represents the projection
on the RA-DEC plane of the photon counts. The root
node contains only two rectangles (child nodes) splitting the
dataset on the RA value of the median element. For the rect-
angle on the right, the image shows the partition generated
by the second level of the tree instead for the left rectangle
the partition at the third level is shown. As one can notice, in
regions where the flux is higher, the decomposition is finer.

FIGURE 1: Minimum bounding boxes at different levels of the R-tree.

Then, to test query performances, we built an optimized
R-tree on the photons generated by a fast simulation of an
entire year of observation for a total of 40.1 millions photons.
The size of each photon is of 165 bytes. Indexed attributes are
again RA and DEC.

The system in which we run the tests is a Pentium IV
2400 MHz with 512 MB (DDR 266 Mhz), an 80 GB 7200 rpm
Ultra ATA/100 hard disk. The operating system is a standard
Red Hat 9.0 and the page size is 4096 bytes.

The building of the R-tree index on the entire dataset re-
quired 4 hours and 35 minutes. The result of the construction
is a single index file with a size of 6.7 GB (it contains both the
directory nodes and the data itself).

We performed 25 circular queries on the optimized R-
tree, each one repeated 4 times. Each query is defined by
a coordinate in RA and DEC together with a radius (of 15
degrees). Circular queries, on the R-tree, require a particu-
lar handling. We performed two types of queries. In the first
type, the program converts a circular query into a rectangu-
lar query:

(RA, DEC, radius) — [(min RA, min DEC),

9)

(max RA, max DEC)],
where the rectangle sides are tangent to the circular region.
This way, the photons obtained by the rectangular query are
a superset of the one obtained by the circular query.

The second type of query adds a filtering step to the first
one, in which only photons inside the circular region are ac-
cepted. A Particular handling is required for circular queries
intersecting the poles, but none of the 25 queries required it.
The performances obtained are

(i) rectangular query average time: 10.06 seconds,
(ii) circular query average time: 10.47 seconds,
(iii) average number of elements retrieved by a rectangular
query: 1.210.800,
(iv) average number of elements retrieved by a circular
query: 973.239.

The hierarchical triangular mesh (HTM) [11] is another ac-
cess method to index data characterized by a spherical dis-
tribution, which is used in several astrophysical experiments,
like the Sloan Digital Sky Survey (SDSS) [12] and GLAST.
To compare its performances with our indexing method, we
used an HTM with 5 levels (the same configuration adopted
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FIGURE 2: Adjacency between bounding boxes in the count map example.

in the SDSS project) to partition the photon dataset. A level-5
HTM decomposes the sky into 8 192 spherical triangles, each
one associated to a different file on disk. The building of the
HTM index required 1 hour and 27 minutes. Then we per-
formed the same 25 circular queries used to test our R-tree
index. Given a circular query, the HTM library returns a list
of HTM IDs, each one identifying a spherical triangle inter-
secting the query region. The performances obtained are

(i) circular query average time: 140.72 seconds,
(ii) average number of level-5 triangles intersecting the
query: 104.

4. NEIGHBORHOOD AND “WEAK” ADJACENCY

The structure of the optimized R-tree can help exploring the
data and finding regions of interest. For this purpose, other
information can be added to each node: the total number of
data points covered by the node, their mean and variance,
and other statistical moments.

Data mining techniques include clustering, classification,
and density estimation tasks. The application of these tech-
niques to large datasets involves the execution of multiple
queries. Typical queries used for this tasks are nearest neigh-
bor or similarity queries and adjacency queries. In particu-
lar, for cluster analysis or density estimation, it can be useful
to define neighborhood or adjacency relations not only be-
tween data objects but also between the internal nodes of the
optimized R-tree storing sufficient statistics. We use the defi-
nition of minimum distance between a point P and a bound-
ing box R given by Roussopoulos et al. in [13]:

MINDIST(P,R) = > | ps — 7|, (10)
i=1
where
si it pi<s,
ri =11 lfpl > ti, (11)

pi otherwise,

which corresponds to the distance from the point to the near-
est edge of the bounding box. Given a bounding box, its
nearest neighbors are found by means of the mindist from
its barycenter. An optimal algorithm, visiting only the nodes
necessary for obtaining the nearest neighbors, is designed in

FIGURE 3: Local maxima obtained by bounding box sorting in the
galactic anticenter.

[14]. This algorithm is also incremental, that is, the number
of nearest neighbors to be retrieved is not known in advance.

Differently from space-partitioning data structures (like
the kd-tree or the HTM) the R-tree has no adjacency relation
between its nodes (i.e., usually edges are not shared between
their bounding boxes). The adjacency relation is generally
used in cluster analysis to find connected components. For
point data characterized by an isotropic noise or background
distribution, we define a weak adjacency between the R-tree
bounding boxes as follows.

Definition 1 (weak adjacency). Two bounding boxes U =
(5, T)and V = (§,T') are weakly adjacent if there exists
k € {1,...,n} such that

(1) ~(si=t;vity<s;)foralll <i<mn,i+k;

(i1) there does not exist Z = (S, T”") such that Z and U
satisfy (i) and Z and V satisfy (i) and (# < s < s,V
f <8¢ < sk).

In case of a regular grid in two dimensions, the above
definition is equivalent to the 4-connectivity. Given an R-
tree bounding box, the algorithm to find all its weakly ad-
jacent bounding boxes is based on the incremental nearest-
neighbor algorithm. Figure 2 shows an example of weakly ad-
jacent bounding boxes found with this method.

In the optimized R-tree, the ratio between the number of
elements # covered by a node and the volume V of its bound-
ing box approximates the data density in that region. We use
this information to find local maxima into the dataset. Given
a rectangular (n-dimensional) region Q and a level I of the
tree (chosen on the basis of the node resolution), the bound-
ing boxes at level [ overlapping Q are sorted in decreasing
order of the n/V value. In Figure 3, the partition of the sim-
ulated photons in the galactic anticenter is shown: the first
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90 bounding boxes in the ordering are filled, highlighting 4
densest areas which correspond to point sources in that re-
gion.

5. A STRATEGY FOR THE DETECTION
OF POINT SOURCES

One of the major tasks, in the analysis of the data gathered
by X-ray or gamma-ray detectors working in survey mode,
is to distinguish point sources from diffuse background or
extended sources. Point sources are mostly characterized by
a stronger flux, with respect to the surrounding, focused on
a small angular region. The area covered by a point source
depends also on the instrument point spread function.

An optimized R-tree index can be built on a dataset in-
cluding photons gathered in a certain range of time (we are
using, for the analysis, a minimum interval of 6 days). To find
static or strong variable sources (e.g., gamma-ray bursts),
only a bidimensional indexing on the RA and DEC values
is needed.

In the following, we propose a point source detection
algorithm based on kernel methods [15], and in particular
on the one-class SVM [16]. Standard kernel methods have
memory and computational requirements that make them
impractical for large datasets. In this work we show how to
speed-up the training process by reducing the number of
training data with the partitioning generated by our opti-
mized R-tree.

5.1. One-class SYM

The one-class SVM algorithm estimates the support of a
multidimensional distribution, that is, a binary function
such that most of the data will live in the region where the
function is nonzero. Given a dataset X = {xi,...,X¢}, its
strategy is to implicitly map the data into a high-dimensional
feature space F using a kernel function, that is, a function k
such that

k(xi,x;) = (¢(xi), ¢(x))), (12)

where ¢ is the mapping from X to the (inner product) feature
space F. Then, in F, it separates the data from the origin with
maximum margin solving the following problem:

gfg%nwnz —pt o Sh stwegs) zp- 6

(13)

where v € (0, 1] is a parameter of the problem. Constructing
the Lagrangian and setting the derivatives to zero, we obtain
the dual problem

main % Z Z aiojk(xi,Xj) st Z a; =1,
i i

where the «; are the Lagrange multipliers. This is a quadratic
programming problem, solved by standard optimization
techniques. After solving the dual problem, the support of
the distribution is given by

f(x) =sgn (Zaik(xi,x) - p). (15)

5.2. Scaling one-class method with
the optimized R-tree

To scale the one-class method to a large dataset, the idea is
to partition the data into pairwise disjoint convex subsets
and use, in the one-class training, only one representative
for each subset. An analogous method has been applied for
classification tasks with the support vector machines (SVMs)
[17]. Substituting the data in a subset X, with a representa-
tive is equivalent to adding the following constraint to the
dual problem:

®Qo,i = @ Vi= 1,...,30, (16)

=

where €y = |Xy|. Using the Gaussian kernel k = exp(—Allx —
z||?), it can be shown that the best representative we can
choose is the value, in the input space, satisfying

2

min
X

4%
$x) = 5 > 9(x0)
= (17)
2

)
. S exp (= Mix —xo,1%),
0

i=1

=min2 —
X

that is, x = (1/¢€)) Zfi 1 Xo,i- The partitioning we adopt is the
one generated by one level of the optimized R-tree. We re-
duce the elements covered by a node of the partition to their
mean value and train the one-class algorithm on such repre-
sentatives. With respect to the standard one-class method, an
approximate solution is found with a speedup that can be of
two orders of magnitudes (depending on the level of detail in
the partitioning).

5.3. Tests on the anticenter region

Instead of trying to detect directly the point sources, we use
the accelerated one-class method to estimate the support of
the background and the diffuse emission distribution. Being
able to estimate such distribution, point sources are detected
as outliers of the support found.

Our approach is to associate to each photon’s coordinates
the density of its surrounding area. We use the partition gen-
erated by indexing the data with the optimized R-tree to ac-
celerate the training phase and get an approximate solution.
Moreover, at a certain level of the R-tree, the decomposition
is finer in the areas with higher density. Hence, we use the ra-
tio between the volume of a bounding box and the number
of photons it covers to approximate the density associated to
each photon in that node.



An Indexing Method for Data Mining in Astrophysics

2519

(a)
200

180
160
140
120
100
80
60
40
20 1

Density

Outliers

()

(b)

(d)

FIGURE 4: Point sources detection applying one-class SVM to the partition generated by the optimized R-tree. (a) A counts map of the
anticenter region. (b) Outliers with respect to the diffuse emission. (c) Densities of the outliers in increasing order. (d) Result after filtering

out the outliers with low density.

Putting together position and local density information
generates some redundancy. In fact, in areas where the den-
sity is higher the mean distance between the photons is
smaller. A solution for removing redundancy in a dataset is to
perform the principal component analysis (PCA) [18], which
gives, in a dataset, the directions of maximum variance. Gen-
erally, only a subset of the eigenvectors are kept, that is, the
ones corresponding to the directions capturing most of the
variance. Hence, the data are first projected into the subspace
found:

% =Ulx, i=1,..,¢ (18)
where k is the number of eigenvectors used.

To test this method we have applied it again to the GLAST
photon dataset and in particular to the anticenter region (in-
cluding 25 890 photons). We have used the partition gener-
ated with the last level of the R-tree. The parameter values
adopted are v = 0.14 and A = 0.0003 (the width of the Gaus-
sian kernel). The training has required 0.44 second.

The outliers detected are shown on Figure 4b. Apart from
the four stronger sources, also areas with low density are
highlighted as outliers. This is due to the one-class method
itself: it finds the most dissimilar objects on the boundary of
the decision function. In this particular task, the most dis-
similar elements are the areas with a very high density with
respect to the surrounding and the areas with very low den-
sity. This can be seen also by plotting the histogram of the
density values (Figure 5.2) for the outliers. Hence, a sim-
pler task remains to filter out the areas with low density (see
Figure 5.2).

6. CONCLUSIONS

In this work, we have realized a multidimensional indexing
method to efficiently access and mine large multidimensional
astrophysical data. The index is based on a static version of
the R-tree data structure, the VAMSRtree. We have fixed the
original algorithm and adapted it to very large dataset, for
which the partial sort cannot be performed in main memory.
We have adopted an efficient incremental nearest-neighbor
algorithm and defined a weak adjacency relation between
the R-tree nodes. These algorithms, together with the op-
timized R-tree structure, allow to efficiently query the data
(with point and n-dimensional range queries) and perform
data mining tasks like clustering and density estimation. A
fast novelty detection algorithm, based on the one-class SVM
method, has been shown. We have used, as a running exam-
ple, photon data gathered from a simulation for the Gamma-
ray Large Area Space Telescope (GLAST).
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