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A new method for the multiband segmentation of a spectroscopic line data cube is presented. This method is intended to help
astronomers to handle complex spectroscopic line data cubes where the inspection of the channel and moment maps is difficult.
Due to the Hughes phenomenon, the number of input images for the segmentation process is limited. Therefore, the spectrum
of each pixel is fitted with a mixture of 6 Gaussians with fixed mean values and variances. The maps of the Gaussian weights are
the input for a Markovian segmentation algorithm. The final segmentation map contains classes of pixels with similar spectral
line profiles. The application of our method to the HI data cube of the Virgo spiral galaxy NGC 4254 shows that kinematically
interesting regions can be detected and masked by our method.
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component image, Bayesian segmentation, HI 21 cm line spiral galaxy NGC 4254.

1. INTRODUCTION

The natural output of line observations with radio interfer-
ometers like the VLA, Westerbork, ATCA, or Plateau de Bure
are 3D data cubes, with the astronomical coordinates as x-
and y-axes and the frequency or velocity channels as third
axis. Within these data cubes, each image pixel contains an
atomic or molecular line spectrum. Single-dish-line obser-
vations, of comparable sensitivity, of an equidistant grid of
sky positions can also be treated as 3D data cubes (e.g., the
Parkes survey). The complexity of the 3D structure contained
in these data cubes increases with the sensitivity of the obser-
vations. In the radio domain, telescope sensitivities are in-

creasing tremendously with the upgrade of existing instru-
ments and the building of new telescopes (EVLA, ALMA,
SKA). This will lead to an enormous increase of available 3D
data, which will be more and more complex.

Data cubes from radio line observations are well-suited
test cases for new image processing techniques, because these
data contain only one single line (e.g., a CO or HI line)
which is shifted according to the radial velocity of the ob-
served gas (Doppler effect). The standard method for the
study of data cubes is the inspection of the channel maps by
eye and the creation of moment maps after clipping the spec-
tra at a level of 30, where ¢ is the rms noise in one channel:
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FiGure 1: NGC 4254 [1]. (a) HI emission distribution (moment 0). The x-axis corresponds to right ascension, the y-axis to declination,
the intensity is given in mJy. (b) HI velocity field (moment 1), the velocities are given in channel maps.

the zero-order moment is the integrated intensity, the first-
order moment is the velocity field, and the second-order mo-
ment is the distribution of the velocity dispersion. As long as
the 3D intensity distribution is not too complex, these maps
give a fair impression of the 3D information contained in the
cube. However, when the 3D structure becomes complex, the
inspection of the velocity channels by eye becomes difficult
and important information is lost in the moment maps, be-
cause they are produced by integrating the spectra, and thus
do not reflect the individual line profiles. The method pro-
posed in this paper is an attempt to provide an additional 2D
segmentation map, which contains additional information
on line profiles. This method aims at helping the astronomer
in handling complex 3D data. With the results of our analy-
sis, it is possible to focus the inspection of the channel maps
on kinematically interesting regions.

For this purpose, we have chosen a target which is not too
complex; NGC 4254, a spiral galaxy located in the Virgo clus-
ter. The HI 21cm observations were made with the VLA [1].
The central velocity of the data cube is v = 2408 kms~! at
channel number 22 and the velocity resolution is 10 kms™!
per channel. For simplicity, we keep in this paper pixel num-
bers for the coordinate axis and channel numbers for the
velocity axis. The rms noise of one channel map is ¢ =
0.43 mJy.' The cube was clipped at an intensity level of 60 =
2.58 mJy. Figure 1 shows the maps of the first two moments
integrated over the whole data cube. The map of the HI emis-
sion distribution (moment 0, Figure 1a) shows an inclined
gas disk with a prominent one-armed spiral to the west. The
velocity field (moment 1, Figure 1b) is that of a rotating disk
with perturbations to the north-east and to the north. The
distribution of the velocity dispersion (moment 2), which is

'The jansky (abbreviated Jy) is a unit of radio flux density (the rate of
flow of radio waves); 1]y = 10726 watts/m?/Hz.

not shown, is almost uniform with a small maximum in the
galaxy center. The subsequent work was done on the same
data cube clipped at 30.

The segmentation process on such a data cube requires
a nontrivial modeling step based on Bayesian inference.
Due to the curse of dimensionality (Hughes phenomenon),
Bayesian segmentation can only be carried out on reduced
data (principal or independent component analysis [2], pro-
jection pursuit [3], etc.). We therefore fit all spectra with
a mixture of Gaussians (Section 2.1) and select the 6 most
representative mean values (channel number of the max-
imum) and variances (widths) (Section 2.3). In this way
the data cube, which had initially 42 channels, is reduced
to 6 effective bands. In a second step, the weights of the
Gaussians with fixed mean values and variances are deter-
mined by fitting again the observed spectra. The segmenta-
tion task, which is carried out on the weights, then consists
of clustering the pixels into different classes (or labels) ac-
cording to similar behaviors defined by a chosen criterion
(Section 3). In this way, we obtain a segmentation map con-
taining spatially homogeneous classes of pixels with a simi-
lar spectrum. We present the application of this method to
the data cube of NGC 4254 in Section 4 including a com-
parison with other algorithms used for 3D image processing
(Section 4.2). A summary and our conclusions are given in
Section 5.

This method is intended to be additional and comple-
mentary to the traditional methods for the study of 3D data
cubes, that is, the inspection of the channel maps by eye,
the creation of moment maps, and the creation of position-
velocity plots. Our method is intended to help astronomers
to handle complex spectroscopic line data. The obtained seg-
mentation map together with the moment maps can be used
for a first inspection of the cube. In addition, masks of the
different classes of the segmentation map can be produced to
isolate kinematically interesting regions.
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2. MULTIBAND ASTRONOMICAL IMAGE PROCESSING

When no prior knowledge is available for astronomical im-
ages, the problem of the physical meaning of the reduced
data remains difficult. Apart from inspection by eye, radio
astronomers usually use some parametrizations of the spec-
trum on each pixel to analyze huge data cubes [4], especially
the intensity map (moment 0), velocity field (moment 1),
and the distribution of the velocity dispersion (moment 2).
In this paper, a Gaussian mixture with P components mod-
els the spectrum on each pixel as an alternative to the classi-
cal parametrizations. Our proposed modeling leads to multi-
band image processing, since only a reduced parameter set
will be required to characterize the spectrum at each pixel
(3 X P parameters instead of N values, N standing for the
number of spectral bands; P < N).

2.1. Gaussian mixture model

We consider a multispectral image with N channels defined
on a regular lattice S of size H X W pixels. This image can
be viewed as D = H X W spectray;, s € S, each one of size
N. Each spectrum is modeled by a P-component Gaussian
mixture

ax(s)

P
As( ) =
e k§1 \2mai(s)

o (32 U~ k@)’). ()

R (k,s, j) =

(o) exp (- 1/262919) (- k9

where ax(s) is the weight, o,f(s) the variance, pk(s) the mean
associated with the kth Gaussian component of the sth spec-
trum, and j is the number of the frequency channel of the
data cube.

2.2. Model estimation of parameters

The observed spectra of each pixel are fitted by a mixture
of Gaussians using an expectation-maximization (EM) al-
gorithm, which is an iterative method for maximum like-
lihood estimation. It has different applications [5, 6], but
amongst all, the parameter estimation of the Gaussian den-
sity mixture model is probably one of the most widely en-
countered in the statistical pattern recognition community.
It consists to approximates the probability density function
(pdf) of an observed data set by a P-component Gaus-
sian density mixture model [5, 6, 7]. Usually, the EM al-
gorithm works on realizations of an unknown pdf. In our
case, we assume that a spectrum represents already the pdf.
Thus, we adapted the algorithm to fit directly the spectrum.
To satisty the assumptions required by the EM adaptation,
each spectrum y, must be normalized to look like a pdf,
that is, y:(j) = 0, for all j and ¥} y,(j) = 1. Within
the iterative process, the contribution of the kth compo-
nent of the Gaussian mixture R4/ (k, s, 7) is calculated as fol-
lows:

where q is the number of the iteration step. These contribu-
tions are then inserted into the parameter calculation of the
next iterative step:

Sy ()R (K, s, )
S ()

[q+1]
ak‘] (S) _

>

1] _ ZiL B DR s, )

H SV )R ks, ) G)
o S (G- w ) )R K5, )
0y (s) = .

S ys(HRE (K, s, f)

This approach assumes that the weights ay (s) are all positive.
After convergence, one obtains the parameters ax(s), ox(s),
and p(s) to estimate y,(j) of (1).

S (6l (92 (s) exp (( ~172627(5)) (j - Y (s))z) ’

(2)

2.3. Basis selection

The modeling using (1) requires 3 parameters for each Gaus-
sian component and leads to 3 X P parameters instead of
N channels for each pixel. The Markovian classifier allows
a maximum number of 9 input images due to the curse
of dimensionality (Hughes phenomenon). With P = 6,
we already obtain 18 reduced images (three parameters set
{ak(s), ok (s), uk(s) }k=1,.,6 for each s € S). We therefore se-
lect the most representative o (s) and i (s) among all Gaus-
sian mixtures described in Section 2.2, which are then as-
sumed to be constant. For this parameter selection, we used
a clustering algorithm (K-means; [8]) on the set of vectors
{(uk(s), 0 (s))} ses. In this way, only the weights of the Gaus-
sians have to be determined. Equation (1) becomes

A PG -1 )
V() = > = (R(j — Uk) >, (4)
P
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FiGure 2: Example of a dependency graph corresponding to a quadtree structure on a 16 X 16 lattice. Black circles represent labels and white
circles represent multicomponent observations {z; = (dk(s))k-1,..p}ses- Each node t has a unique parent ¢t~ and four “children” t*.

where yr and ox do not depend anymore on the loca-
tion s. This is equivalent to the projection of the spec-
tra on the subspace generated by the following basis:

{(1/\2m0}) exp(—=1/207) (j — k) *) Yk=1,...p-

We use the Levenberg-Marquardt algorithm [9] to deter-
mine efficiently the d(s) with the selected basis. Thus a mul-
ticomponent image z with P components of size H X W is
obtained to feed the Markovian classifier. The Markovian as-
sumption takes into account the neighborhoods when clas-
sifying each pixel, allowing us to regularize the solution, as
explained in Section 3.1. Each pixel s is represented by a P
vector z; = (ak(s))k=1,..p-

3. BAYESIAN CLASSIFIER FED BY REDUCED DATA

The segmentation task consists of clustering the pixels into
different classes (or labels) according to similar behaviors de-
fined by a chosen criterion. This leads to a segmentation map
where each pixel belongs to a given class. Many approaches
exist in the literature [10], based on neural networks, mor-
phological filtering, multiscale decomposition, and statisti-
cal analysis. Bayesian statistical theory is a powerful and con-
venient tool for many segmentation tasks [11]. It allows us
to statistically regularize the solution using all available ob-
servations. The hidden markov model (HMM) framework
within the Bayesian theory models the spatial dependencies
between neighboring pixels and imposes a spatial regular-
ity constraint on a segmentation map in a statistical way
[12, 13]. The goal is to obtain a final segmentation map con-
taining spatially homogeneous classes of pixels with a similar
spectrum.

From the observed image z to the segmented image x, the
algorithm can be decomposed into three main phases [14].
(1) Initialization step: the aim is to provide a first estimation
of the parameters (K-means algorithm). (2) Segmentation
step: the restoration is then achieved using the maximum a
posteriori mode (MPM) segmentation rule. (3) Parameter

estimation step: this phase is realized according to the iter-
ated conditional estimation algorithm [15].

Details of the Markovian classifier procedure is beyond
the scope of this paper, and we describe here only its main
features (the reader may find some detailed information
about the procedure in [14]).

3.1. Hierarchical Markovian model

Let z be the multicomponent image, where z, =
(dx(s))k=1,.p- For each observation z;, one associates a hid-
den state x; = w;, where w; belongs to the label set Q =
{wi}iz1,. k- The segmentation map x is obtained using a joint
probability P(x, z) and a chosen cost function. In hierarchical
Markovian modeling, one assumes an in-scale dependence
between hidden states (Figure 2) to model the spatial corre-
lation of the observations.

Let the quadtree G = (T, L) be a graph composed of a
set T of nodes and a set L of edges. A hidden state will be
associated with each node, as illustrated in Figure 2. Each
node ¢, apart from the root r, has a unique predecessor, its
“parent” t~ which leads ultimately to the root. Each node ¢,
apart from the terminal ones, the “leaves,” has four “chil-
dren” t*. The set of nodes T can be divided into “scales,”
T=TYUT'U---U TR according to the path length from
each node to the root. Thus, TR = {r}, T" involves 48" sites,
and TY is the finest scale formed by the leaves (T = S).

We consider a labeling process® x which assigns a class la-
bel x; to each node of G: x = {x"}®_, with x" = {x,,t € T"},
where x; takes its values in the set Q. The hidden process, that
is, the class label x, is supposed to be Markovian in scale. In
this way, each label set at level n only depends on the upper
levels: P(x" | x¥,k > n) = P(x" | x"*!). Moreover, the prob-
abilities of interscale transitions can be factorized in the fol-
lowing way [16, 17]: P(x" | x™*1) = [T,eqn P(x¢ | x¢-), where

2Note that, for clarity, x stands for the random process and its realization.
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Image cube EM algorithm on Gaussian mixture P x 3 parameters
WxHXN ? model with P components (Eqs 1-3) 7 for each spectrum

for each location s.

(a)

|

Choice of the P
most pertinent

Projection on the basis of all image
spectra (choice of the weights (Eq. 4))

Gaussians (K-means)

(b)

Levenberg-Marquardt algorithm Unique basis
Reduced images (c)
I
Weight images
W X HXP

Markovian classifier

(d)

|

Segmentation map

FIGURE 3: Data cube processing method summary. (a) Adapted EM algorithm to fit all spectra using (1). (b) Selection of the P most relevant
Gaussians obtained in (a) using a K-means algorithm. (c) Projection on the basis chosen in (b) using a Levenberg-Marquardt algorithm.
(d) The reduced images feed a Markovian classifier leading to the final segmentation map.

t~ designates the parent of site s, as illustrated in Figure 2.
The likelihood of the observations z being in a state x at the
bottom of the quadtree (T = S) is expressed as the following
product (assuming conditional independence): P(z | x) =
[Tses Pz | x;), where forall s € S, P(z, | x, = w;) £ P'(z,)
represents the likelihood of the data z;. A multidimensional
Gaussian pdf model is used to derive the latter expression.

Under these assumptions, the joint distribution P(x,z)
can be factorized as follows: P(x,z) = P(x,)[[z P(x: |
%) [eero P(zs | x5) [16].

3.2. Bayesian segmentation

The expression of P(x, z) allows us to calculate exactly and
efficiently P(x; = w;i|z) for all nodes t € T. The segmenta-
tion label map at the bottom of the quadtree is finally given
by X, = argmax,,eq P(x; = w;|z). This expression assumes
that the model parameters (parameters of the Gaussian pdfs
and interscale transition probabilities) are known. Such an
estimation is obtained in an unsupervised way using the it-
erative conditional estimation (ICE) algorithm [18]. In prac-
tice, one alternates model parameter estimation and segmen-
tation until convergence.

To summarize, one feeds a Markovian classifier with a
multicomponent image {z;, = (dk(s))k=1,.p}ses (Figure 3).
The output of this classifier is a segmentation map {X;}es
which contains spatially homogeneous classes of pixels with
similar spectrum behavior.

4. RESULTS ON THE NGC 4254 CUBE

In order to test our data processing method explained in
Sections 2, 3, and illustrated in Figure 3, we have applied it
to reduce the dimensionality of the NGC 4254 cube, which
is composed of N = 42 bands of size H = W = 512

pixels. As explained in Section 2.3, we fixed the number of
Gaussian components to P = 6. It turned out that in-
tensities in all velocities corresponding to channel num-
bers 10 to 35 are equally present in the data cube and that
the widths of the corresponding lines do not vary signifi-
cantly. Therefore the selected variances, which are fixed for
the further processing of the data cube, have similar val-
ues: o = 1.5,1.5,1.6,1.5,1.4,1.2 and the fixed mean val-
ues (velocity of the maximum) are almost equidistant: y =
12.3,16.0,20.3,25.0,29.2,33.0 (in channel number). In this
way, the initial 42 velocity channels are reduced to 6 effective
channels. The basis selection algorithm (Section 2.3) ensures
that we do not lose important information.

Figure 4 shows the multivariate image (6 images in in-
verse video of the weights of the 6 Gaussians with fixed vari-
ances and mean values) obtained with our reduction tech-
nique. Due to the fact that the mean values of the basis are
approximately equidistant, the multivariate images resemble
binned channel maps. These reduced images feed the Marko-
vian classifier, allowing us to isolate regions of similar spec-
tra.

The most adapted number of classes depends on the
complexity of the data cube. Selecting an overly small num-
ber of classes results in loss of information, selecting an
overly large number leads to classes without physical mean-
ing, which are sometimes made up of dispersed patches on
the image. It is beyond the scope of this paper to discuss
how to determine in general the most appropriate number of
classes. However, the expert may have an expectation for the
number of classes of interest. One then may explore differ-
ent classification solutions with a variable number of classes
around this expected value. In our case, we found that 7
classes are sufficient to describe the main features of the NGC
4254 data cube.
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FIGURE 4: Maps of the weights of the 6 Gaussians with fixed mean values and variances. In the case of NGC 4254, this corresponds to a
reduction of the original 42 channels to 6 effective channels. The x- and y-axes are the astronomical coordinates.

4.1. Physical interpretation of the
segmentation results

The final segmentation map of 7 classes, together with
the average observed and model spectra for each class, is
shown in Figure 5. In general, the observed spectra are well
fitted by a weighted combination of our Gaussian basis
functions. The fact that the average observed spectra for
all classes are single peaked shows that we actually obtain

classes of distinct spectral line profiles with our method.
The fine structure of the model line profiles is due to
the limited number of Gaussians of the basis. Since the
widths of the fine structure of the average model spectra
are always smaller than the widths of the average observed
spectrum, we consider the fits acceptable. In the end, the
important information is the average observed line pro-
file.
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FIGURE 5: Results of segmentation of the maps shown in Figure 4. (a) Segmentation map. The x- and y-axes are the astronomical coordinates.
(5b)—(5h) Average spectra for each class (solid: observed spectrum, dashed: model spectrum). The velocity channels are represented on the
x-axis, the intensity on the y-axis (in Jy). The peaks of the line profiles are indicated by an arrow.

The comparison between the segmentation map and the
velocity field (Figure 1b) shows that the segmentation is
mainly done according to velocity, that is, the position of the
peak in the 1D spectrum. This is due to the nature of the basis
(almost equidistant in velocity; see Section 4). Only the Peak
of the Averaged line profile of class 4 lies within the full-width
half-maximum (FWHM) of the averaged line profile of class
5. Here the segmentation is also based on the peak value of
the line profile which is much smaller for the line profiles
of class 4 than for those of class 5. Thus for a sufficiently
large number of classes (equal to or larger than the number of
Gaussians of the basis), the segmentation is also based on the
peak intensity of the line profiles. Two perturbations of the
velocity field in the northern part of the galaxy can be identi-

fied (Figure 5a): (i) a departure from the symmetric velocity
gradient near pixel (70,50), where the red/yellow region ex-
tends into the green region, and (ii) the blue region in the
north of the galaxy. Both regions are recognized as distinct
classes (1 and 4) in Figure 5.

We conclude that our data processing method is operat-
ing successfully. For this relatively simple data cube, the seg-
mentation map (Figure 5) does not contain additional infor-
mation to the velocity field (Figure 1b). However, our seg-
mentation map might be used to produce masks to isolate the
kinematically interesting regions in the north of the galaxy
(classes 1 and 4). Phookun et al. [1] derived a rotation curve
from the data cube, made position-velocity diagrams of the
northern region, and subtracted the emission provided from
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FIGURE 6: Principal component analysis (PCA) of NGC 4254. Only the images corresponding to the six largest eigenvalues are kept. (a) seg-
mentation map. The x- and y-axes are the astronomical coordinates. (6b)—(6h) Average spectra for each class (solid: observed spectrum,
dashed: model spectrum). The velocity channels are represented on the x-axis, the intensity on the y-axis (in Jy).

the rotating gas disk to isolate kinematically perturbed re-
gions. Our approach is not intended to replace or compete
with these sophisticated methods.

4.2. Comparison with different approaches

These results can be compared to different multiband image
processing methods. The oldest and most popular method is
principal component analysis (PCA) [8]. It calculates a lin-
ear mapping which maximizes the data scatter in the pro-
jection subspace. The transformation matrix can be easily
computed by taking the eigenvector decomposition based on
the data covariance matrix. In keeping only the eigenvectors
corresponding to the largest eigenvalues, we project the data
cube on this subspace in order to obtain a reduced repre-

sentation of the data. This technique is an unsupervised one.
Since in our case the channels are almost uncorrelated, the
PCA approximately ranks the channels according to their en-
ergy contained in the signal. Thus, the six largest eigenvalues
corresponding to the six channels of largest power feed the
Markovian classifier. The classes of the final segmentation
map (Figure 6) simply reflect the flux contained in only 6 of
the original 42 channels. Since line information is contained
in 25 of the 42 channels, this method loses the information
contained in 19 channels. In addition, the peaks of the line
profiles within one class can be different by more than the
width of the averaged line profiles. This leads to very broad
or even double-peaked averaged line profiles (classes 2, 4, 6
in Figure 6) without physical meaning.
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FIGURE 7: NGC 4254 data cube after addition of a region with an artificial line creating a double-line profile (center at (60, 35)). (a) HI
emission distribution (moment 0). The x-axis corresponds to right ascension, the y-axis to declination, the intensity is given in mJy. (b) HI

velocity field (moment 1), the velocities are given in channel maps.

Another technique based on independent component
analysis (ICA) [2] calculates a linear mapping such that the
components of the reduced vectors are as independent as
possible. ICA finds subspaces in which the new subimages
are independent instead of just uncorrelated as for the PCA.
There is a large set of algorithms performing ICA based on
tensorial techniques, mutual information minimization, and
non-Gaussianity maximization, which are well presented in
[2].

The advantage of our approach compared to PCA and
ICA is twofold: first, the spectral information is not mixed,
and second, the segmentation classes are physically meaning-
ful, that is, their pixels have similar spectra.

Recently, the separation of astrophysical source maps
from multichannel observations has become of great inter-
est [19, 20]. A summary of different techniques for source
separation can be found in [19]. Nevertheless, in our opin-
ion, these techniques suffer from the lack of physical meaning
of the resulting images since observations are not always the
result of mixed independent images.

4.3. Double-line profiles

We have seen that our segmentation method produces a dis-
crete velocity field and masks the regions of asymmetries
in the velocity field. The principal result is thus the mask-
ing of different regions of interest. All these regions can al-
ready be approximately separated by eye on the moment
maps (Figure 7). On the other hand, a feature that cannot
be detected easily by the moment maps is double-line pro-
files. This information is lost by the velocity averaging pro-
cess when the moment maps are produced. In order to inves-
tigate if our segmentation method is able to detect regions of
double-line profiles, we added an artificial line to the spec-
tra in a circular region north of the galaxy center (with its
center position (60, 35), a radius of 10 pixels, and a center
velocity at channel number 28). The intensity of the artifi-

cial line is maximum at the center and falls off radially (we
used a Gaussian profile with a width of 5 pixels). Figure 7
shows the moment maps of this new data cube. The addi-
tional lines produce a local maximum in the HI emission
map (Figure 7a) and a pronounced asymmetry in the veloc-
ity field (Figure 7b).

The basis for this modified data cube is o = 1.5, 1.5,
1.6, 1.6, 1.5, 1.2 and i = 12.3, 16.0, 20.2, 24.8, 29.0, 33.0. It
is almost identical to that of the original data cube. Figure 8
shows the multivariate image (6 images in inverse video of
the weights of the 6 Gaussians with fixed variances and mean
values) obtained with our reduction technique on the mod-
ified data cube. The final segmentation map of this modi-
fied data cube, together with the average observed and model
spectra, is presented in Figure 9. Again, in the inner part of
the galaxy, a discrete velocity field is produced. The north-
ern perturbed part of the velocity field is also recognized
(class 1). The region of double-line profiles appears as a new
separate class (class 5). The averaged observed and fitted
line profiles clearly show a double peak with a component
of class 1 (central channel number 17) and the new, artifi-
cially added component (central channel number 28). This
double-line profile is clearly distinct from the fine structure
of the modeled lines (see also Section 4.1), which is always
contained within the width of the observed line profile. Thus,
our method is able to detect regions of double-line profiles.
The 42-channel maps of the original cube can then be in-
spected in detail using the mask of the double-line region.

The double-line profile could have been detected by the
inspection of the channel maps by eye and/or by making
multiple position-velocity plots. However, without a prior
knowledge of the location of the double-line profile, this
can be quite long and painful, especially if the cube is more
complex than our test cube. Despite the loss of spectral res-
olution (the cube is reduced from 42 channels to 6 effec-
tive channels), our method is still able to detect and mask
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F1GURE 8: Maps of the weights of the 6 Gaussians with fixed mean values and variances. A region of artificial line profiles creating a region
of double-line profiles is added (center at (60, 35)), which is clearly visible in map (8a). The x- and y-axes are the astronomical coordinates.

multiple-line profiles. We think that this is very useful for
an astronomer who has to handle complex 3D data cubes.
The further investigation is simplified by the knowledge and
possible masking of regions of multiple line profiles, which
might be carried out with more sophisticated methods ap-
plied to the original data cube.

5. SUMMARY AND CONCLUSION

A new method for the segmentation of multiband images
of astronomical radio data cubes is presented. The observed
spectra are first fit by a weighted combination of Gaussian
components. The parameters of the Gaussians are the input
of a Markovian segmentation algorithm. Due to the curse of

dimensionality (Hughes phenomenon), the number of input
parameters is limited to 9. In our approach, we chose to fix
the number of Gaussians at 6 and to set their mean values and
variances to their 6 most representative values. The weights
of these 6 Gaussians with fixed mean value and variance are
determined by again fitting the observed spectra. In this way,
the original number of channels of the data cube is reduced
to 6 effective channels. A Markovian image segmentation is
then done on the 6 maps of the weights of the Gaussians. The
final result is a segmentation map where regions of similar
spectral line profiles are assembled into different classes. The
number of classes has to be determined by the user. The op-
timum number of classes depends on the complexity of the
data cube.



2556

EURASIP Journal on Applied Signal Processing

Class 7
20
Class 6
40
Class 5
60 0.02
Class 4
80 0.015
Class 3
100 0.01 l
Class 2
120 0.005 -
Class 1 L
140 0
20 40 60 80 100 120 0 10 20 30 40
(a) (b)
0.02 l 0.02
0.015 \ 0.015
0.01 0.01 ‘l’
/'\'\
0.005 0.005 AN
\}
0 - 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
(c) (d) (e)
0.02 0.02 0.02
0.015 0.015
0.01 l 0.01
0.005 l s 0.005
0 e % 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
(f) () (h)

FIGURE 9: Results of segmentation of the maps shown in Figure 8. (a) Segmentation map. The x- and y-axes are the astronomical coordinates.
(9b)—(9h) Average spectra for each class (solid: observed spectrum, dashed: model spectrum). The velocity channels are represented on the
x-axis, the intensity on the y-axis (in Jy). The peaks of the line profiles are indicated by an arrow.

This procedure is applied to the HI 21 cm line data cube
of the Virgo cluster spiral galaxy NGC 4254 [1]. Due to
the intensity structure in the data cube, that is, the na-
ture of the object, the 6 most representative mean values
are almost equidistant and the 6 most representative vari-
ances are almost constant. Thus, the multivariate image of
the weights of the 6 Gaussians corresponds to maps of 6
effective channels. For the segmentation, it turned out that
the main features of the data cube are visible in the final
segmentation map with 7 different classes. Since the final
segmentation map contains regions of similar spectral line
profiles, it resembles at first sight a binned velocity field.
However, different classes contain lines of different maxi-

mum intensity. Increasing the number of classes leads to new
classes of about the same central velocity with different max-
imum intensities. We optimized the number of classes by
comparing the segmentation map to the channel and mo-
ment maps. We plan to investigate if there is a way to de-
termine the optimum number of classes in a more objective
way.

In a second approach, we added a region of an artificial
line to the data cube, creating a region of a double-line pro-
file. This region is clearly detected by our segmentation algo-
rithm as a new class with a double-line. This makes us con-
fident that our method can give useful information which is
complementary to the traditional moment maps.
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The proposed method aims at helping astronomers to
handle complex data cubes where an inspection of the chan-
nel maps by eye is a difficult task. Once the region of interest
is identified by our method, a mask can be easily produced to
inspect only this region in the channel maps

The two free parameters of our method are the number
of Gaussians (with a maximum number of 9) and the num-
ber of classes. We plan to investigate the optimization of these
parameters in an objective way by applying our method to
different radio data cubes of various complexity.
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