
EURASIP Journal on Applied Signal Processing 2005:17, 2788–2803
c© 2005 Hindawi Publishing Corporation

Embedded Real-Time Architecture for
Level-Set-Based Active Contours

Eva Dejnožková
Centre of Mathematical Morphology, School of Mines of Paris, 35 Rue Saint Honoré, 77305 Fontainebleau Cedex, France
Email: dejnozke@cmm.ensmp.fr

Petr Dokládal
Centre of Mathematical Morphology, School of Mines of Paris, 35 Rue Saint Honoré, 77305 Fontainebleau Cedex, France
Email: dokladal@cmm.ensmp.fr

Received 14 June 2004; Revised 5 April 2005; Recommended for Publication by Luciano da F. Costa

Methods described by partial differential equations have gained a considerable interest because of undoubtful advantages such
as an easy mathematical description of the underlying physics phenomena, subpixel precision, isotropy, or direct extension to
higher dimensions. Though their implementation within the level set framework offers other interesting advantages, their vast
industrial deployment on embedded systems is slowed down by their considerable computational effort. This paper exploits the
high parallelization potential of the operators from the level set framework and proposes a scalable, asynchronous, multiprocessor
platform suitable for system-on-chip solutions. We concentrate on obtaining real-time execution capabilities. The performance is
evaluated on a continuous watershed and an object-tracking application based on a simple gradient-based attraction force driving
the active countour. The proposed architecture can be realized on commercially available FPGAs. It is built around general-
purpose processor cores, and can run code developed with usual tools.

Keywords and phrases: level set, partial differential equations, object tracking, real-time execution, embedded platforms.

1. INTRODUCTION

The level set was proposed in 1988 in [1] as a simple method
to modelize or analyze the motion of a travelling interface.
It offers a convenient and stable framework to implement
a large variety of methods where images are seen as sets of
curves. Since then, its applications have been extended to
other image processing fields such as the restoration (filtering
or contrast enhancement), segmentation (active contours,
watershed) to the form analysis (shortest path, shape-from-
shading). See [2] or textbooks [3, 4] for applications and a
general overview.

From the implementational point of view, the methods
can be divided into two groups: (i) filtering-like methods op-
erating on a set of constant-level curves describing the en-
tire image and (ii) methods that act on a single (or several)
contour(s), representing one (or several) object(s) present in
the image. Below, we reference these algorithms according to
their computation scope, the filtering-like methods as global-
scope-type and the active contours methods as narrowband
type.

1.1. Scope and objectives

The objective of this paper is to open the world of hand-held,
mobile devices such as PDAs, still picture or movie cameras

or mobile phones to powerful image processing methods
from the level set framework. The novelty of this paper re-
sides in the presentation of a reusable architecture capable to
run optimally various algorithm types from the level set fam-
ily. This architecture corresponds well to the system-on-chip
concept, and verifies the needs of hand-held devices concern-
ing their energy and implementational limitations. We par-
ticularly concentrate, among other aspects, on the execution
on multiprocessor, parallel, scalable architectures which is an
important aspect permitting to reduce the energic consump-
tion.

The rest of this paper is organized as follow. After re-
viewing the state of the art of existing implementations
and accelleration attempts, analyzing the family of the level-
set-based algorithms (Section 2), we present the architec-
ture (in Section 3) that best verifies the algorithmic needs
and remains efficient with respect to the HW implementa-
tion issues listed above. Its efficiency is demonstrated on a
contour-tracking algorithm proposed in Section 4.2. The text
concludes by presenting some benchmark results and general
conclusions.

1.2. State of the art and technological difficulties
The implicit representation of the travelling interface by us-
ing the level set increases the computational effort by one

mailto:dejnozke@cmm.ensmp.fr
mailto:dokladal@cmm.ensmp.fr

Embedded Architecture for Level-Set-Based Active Contours 2789

order of magnitude. A faster implementation obtained by
narrowbanding the computations around the travelling in-
terface (originally called the tube method) was proposed by
Adalsteinsson et al. [5] and Malladi et al. [6]. Despite the
narrowbanding which reduces considerably the number of
points to process, the level set methods remain computation-
ally expensive, because of (i) using nonlinear functions, and
(ii) a high number of iterations. The computational com-
plexity has unpleasant consequences on both the execution
time and the power consumption. If the execution time can
be reduced by parallel execution (provided that the algorithm
is parallelizable), the overall energy budget (following from
the number of necessary operations multiplied by the energy
to perform one basic operation) remains constant.

The numerous attempts to speed up the implementation
of PDE-basedmethodsmade in the past were done in various
axes.

(i) Algorithmic: as, for example, the implementation al-
ternative to the level set, using spline-based modeling
of the contours. Precioso and Barlaud [7] have ob-
tained a fast execution on Pentium-based machines
with spline-based active contours. A special care must
be done to handle the topology changes. Cserey et al.
study in [8] the implementation of linear and nonlin-
ear diffusions on neural networks. In general, the algo-
rithmic modifications are often applicable to only one
type of algorithms.

(ii) Mathematical: proposing a faster convergence either in
another space, or using another integration scheme.
Weickert et al. propose in [9] the semi-implicit inte-
gration scheme, and the AOS scheme with arbitrarily
large integration step for filters which can be written
in a specific form as in [10]. The semi-implicit scheme
increases the integration speed without affecting the
numerical stability; it deteriorates only the numerical
accuracy. Later, Goldenberg et al. [11] and Smereka
[12] use a semi-implicit scheme for the active con-
tours. However, the mathematical modifications are
often applicable to only a restricted family of algo-
rithms.

(iii) Hardware-based implementations are of three types.
(a) Supercomputers: Holmgren and Wallin [13] use

a self-optimizing nonuniform memory access
(NUMA) supercomputer implementing a high-
accuracy solver for several integration kernels.
Sethian [14] has studied study flame propagation
models on a CM-2machine with 65K processors.
The author reports a true massively parallel cal-
culation with one processor per grid node.

(b) Graphic hardware: Rumpf and Strzodka bene-
fit from a high memory bandwidth and imple-
ment a nonlinear diffusion [15], and a level set
segmentation [16] on a graphic card. Cates et
al. [17] implement an active-contours-based seg-
mentation tool on a graphic hardware to increase
the interactivity when a number of parameters
must be tuned to obtain a correct segmentation

results. Sigg et al. implement a signed-distance
function transform on a graphic hardware [18].

(c) Specific HW accelerators: Hwang et al. [19] pro-
pose an orthogonal architecture designed for nu-
merical solution of PDEs, not inevitably related
to the image processing. It is built around n pro-
cessing units and n2 memory blocks. Each pro-
cessor is connected to the memories by buses
dedicated to only one processor, equipped with a
memory access controller. The drawback of this
design is that the number of interconnexions and
buses increases with the square of the number of
processors.
Gijbels et al. [20] propose a VLSI architecture
for nonlinear diffusion conceived for image im-
provement on image sequences. The authors use
an SIMD1 architecture with distributed memory
for parallel nonlinear diffusion (i.e., the global-
scope-type) used in some vision application. The
estimated performances are some 100 iterations
on a 256×256 image every 0.25 seconds, whereas
the processing units themselves are clocked at
20MHz.

This paper focuses on the HW-based implementation
issues of the level set techniques on embedded, one-chip
devices that will be easily (i) scalable, to adapt their com-
putational power to the requirements of the chosen appli-
cation, (ii) programmable with conventional programming
tools, (iii) by far less energy consuming than Pentium-based
desktop machines with comparable computational power,
and (iv) as small sized as possible. The surface occupation
is important because it has a direct impact on the price of
both the chip itself and the embedding system (such as per-
sonal vehicles, hand-held devices, etc.). These contraints ex-
clude both the graphic hardware and supercomputer imple-
mentations, since they do not match the objectives of one-
chip devices, as well as the SIMD architecture, presented in
[20], which cannot be used either because of its considerable
number of used processing units (one unit per image col-
umn).

Generally speaking, it is essentially due to the algorith-
mic complexity that no embedded platforms have so far been
proposed for the narrowband-type algorithms. The issues to
handle include the following.

(i) Nonlinear computations employed in the integration
step, numerous iterations necessary to obtain the con-
vergence, and often required floating-point accuracy
impose using fast ALUs. Their considerable surface oc-
cupation and energy consumption exclude their repli-
cation in a great number on one chip.

(ii) The distance function computation represents another
difficulty of parallelization of the narrowband applica-
tions. Dejnožková andDokládal [21] present a detailed
analysis of existing algorithms (namely fast march-

1Single instruction multiple data.

2790 EURASIP Journal on Applied Signal Processing

Level set methods

Global-scope approach

Image morphing

• Filters: δu
δt
= div

(
g(|∇u|)∇u)

•Morphological operators:
δu

δt
= ±|∇u|

• Contour smoothing:
δu

δt
= κ|∇u|

Narrowband approach

Image segmentaion

Distance function

• Implicit contour description
|∇u| = 1

•Weighted distance:
continues watershed,
shape-from-shading

|∇u| = �

Deformable models

•With regularizers

•Without regularizers

• Combined (with PCA)
δu

δt
= �curvature + �gradient + �region

Figure 1: PDE-based algorithms overview.

ing). It shows that they are sequential and ordered (ex-
plained below). The authors propose to remove the
bottleneck with the introduction of massive marching
[21]. It is a fully parallel algorithm, making use of a
nonequidistant propagation front.

Since we aim the entire algorithm family, whose common
denominator is the level set implementation, the architecture
has to be maximally flexible and scalable, and maximally us-
ing the occupied silicon surface. The recently emerging dy-
namic reconfiguration represents an alternative solution to
the tradeoff between the functional flexibility of complex sys-
tems and the occupied surface and energy consumption, see
for example [22, 23]. In some cases, the advantages of the dy-
namic reconfiguration may however be outmatched by the
drawbacks that constitute a lenghty and difficult design, the
need for special design tools [24], and external circuits con-
trolling the chip reconfiguration.

Our study demonstrates that for the level set domain, the
satisfying tradeoff between the flexibility and size can also be
obtained by the programmability, offered by on-chip embed-
ded processor cores and some DSP functions.

The following section presents the analysis of the ar-
chitectural choices, including the computational resources,
memory consistency model, and communication manage-
ment. The resulting system has been synthesized for com-
mercially available FPGAs.2 Their performance becomes al-
most comparable to the ASICs.3 Though the ASICs still out-
perform the FPGAs in the energy consumption (a key feature
in mobile devices), the FPGAs remain a useful prototyping
platform, and a possible intermediate development step to-
wards an ASIC.

2. ALGORITHMANALYSIS

This section discusses hardware implementation issues of
several algorithm types from the level set context. All the

2Field-programmable gate array.
3Application-specific integrated circuit.

types consist of two basic steps: an initialization step that dif-
fers according to the method used, and the evolution step,
which makes the contour(s) travel in space and/or time ac-
cording to the given partial differential equation (PDE). Usu-
ally it makes use of some local integration kernel, and is re-
peated until stability. In general, only the use of a local infor-
mation is easily parallelizable. If the image is considered as a
continuous signal, then the PDEs can be seen as an iteration
of a local filter operating on the neighborhood [4].

Typically, the evolution proceeds by deforming one or
several curves (propagation front) or surface with a given
PDE. The PDEs methods can be classified into the following
categories (cf. Figure 1).

(1) Surface propagation includes diffusion filters [25], [26],
or [27] for a more comprehensive survey, geometric
smoothing [10, 28, 29], denoising, and morphological
operators [30], [31], [32] or [33] characterized by the
evolution equation ∂u/∂t = F (u)|∇u|, where u repre-
sents the evolving image. The input image represents
the initial conditions u0. All points in the image are
processed in every iteration. The temporal evolution
is based on the local neighborhood and generates the
evolution of the level sets in the space [4]. The evolu-
tion stops as soon the convergence or the given itera-
tion number is reached.

(2) Wave propagation includes algorithms of weighted dis-
tance, continuous watershed [34], Voronoi tesselations
[35], or shape-from-shading [36] that are controlled by
the Eikonal equation |∇u| = F . This steady-state so-
lution is propagated from the given sources (that may
be obtained from the initial image by other means) on
the entire image according to the defined speedF . The
algorithm operates locally, only on the narrowband of
the evolving front. The solution is propagated in waves
equidistant to the sources by using ordered data struc-
tures. This technique is being referred to as marching
methods, proposed by Sethian [37], as a special case of
the Dijkstra shortest-path algorithm.

(3) Deformable models. An important breakthrough in
the deformable models represents the introduction of

Embedded Architecture for Level-Set-Based Active Contours 2791

End
+

Convergence −

Curve evolution

Initialization

Start

(a)

End
+

Convergence −

Curve evolution

− Reconstruct
NB?

+Construction
of narrowband

Initialization

Start

(b)

Figure 2: Different stages of the level set family algorithms. (a)
Global-scope-type algorithms. (b) Narrowband-type algorithms.

active contours (or snakes) proposed by Kass et al.
[38] in 1987, and deformable surfaces by Terzopou-
los et al. [39] one year later. Another early example
of deformable models represents the ballons by Co-
hen [40]. Implicit representation of the interface as a
constant level set of another function was studied si-
multaneously and independently in 1993 by Caselles
et al. [41] and Malladi et al. [42], and later by Malladi
et al. [43, 44, 45]. The geodesic active contours were
proposed meanwhile in [46, 47]. Another model was
proposed later in [48].
We distinguish the types with regularizers (controlled
by statistical information of regions), without regular-
izers [27], or combined with other techniques (e.g.,
principal component analysis [49]). The evolution
equation writes in the form ∂u/∂t = Fcurvature(u) +
Fgrad(u) + Fregion(u). The algorithms proceed by de-
forming a given initial contour (given by u0 = 0).
The deformation is controlled by internal and external
forces obtained at each iteration from (i) the contour
itself and (ii) the geometrical (curvature, gradient) or
statistical characteristics (mean value of the region in-
tensity) found in the image [4].

(4) Optical flow is controlled by the equations ∂u/∂t =
f (∇u, I1) + g((∂I2/∂x),h), ∂v/∂t = f (∇v, I1) +
g((∂I2/∂y),h). The motion vector is obtained by solv-
ing some system of the above-given equations at each
point in the image (I1, I2 are the successive sequence
images, h is the searched motion vector field) [50].
Since the nature of the optical flow algorithms dif-
fers from the temporal curve evolution principle of the
three first groups, the proposed architecture does not
address this type of algorithms. On the other hand,
the optical flow often serves as a support for the three
other types.

All the computation steps of the first three categories
can be unified in two following iteration types, see Figure 2.

(1) Global-scope iteration type includes the surface evolution.
It operates sequentially on the entire image. (2) Narrowband
iteration type includes the wave propagation and deformable
models (curve evolution).

Indeed, applying narrowbanding to the curve evolution
algorithms changes the computational aspects. The points to
recalculate in every iteration are now taken from some subset
of the image. This set is commonly called narrowband, and
contains points situated closely (up to some chosen distance)
to the current position of the travelling interface. Two types
of operations are commonly applied on the narrowband: (i)
the curve motion scheme itself, and (ii) the (re-)construction
of the narrowband. The (re-)construction differs substan-
tially from the other algorithm types. Indeed, all HW im-
plementations of the active contours, cited in Section 1, use
fast marching; a progressive, equidistant construction of the
distance function. Fast marching itself belongs to the wave
propagation algorithm group. It requires ordered data struc-
tures based on the priority of points [3]. From the algorith-
mical point of view, the ordering introduces a great data de-
pendency, reducing the parallelization potential. From the
HW implementation point of view, algorithmic ordering of
the points to process introduces random accessing to the
memory.

Parallelize the wave propagation is a tough issue, call-
ing attention of many researches for a long time, compare
a survey by Roerdink and Meijster in [51]. The recent intro-
duction of massive marching opens the possibility to paral-
lelize also the computation of the distance function (cf. [52]
or [21]). Massive marching is similar to the fast march-
ing method (cf. [53] or [54]) and uses the same entropy-
satisfying upwind scheme. It differs from fast marching by
the fact that it eliminates its sorted propagation of the solu-
tion and makes the implementation fully parallelizable, with
a small grain and low data dependency.

For completeness, we mention another parallelization
strategy, called group marching, developed by Kim in [55].
Group marching identifies on the front groups of points that
are processed parallely in the same time. It requires nonethe-
less to maintain a global variable making a truly parallel im-
plementation difficult.

The next section analyzes the execution of the different
algorithm steps by considering the use of massive march-
ing for the narrowband construction. Note that the curve
evolution (both algorithm types) as well as the narrowband
construction (narrowband type) are time-critical. Many it-
erations may be needed to obtain the convergence and the
narrowband has to be reconstructed repetitively during the
evolution to preserve the required properties of the implicit
curve description.

2.1. Data-flow analysis of different algorithm steps

In the following, we assume that, except the methods where
regularizers4 are used, the new values that the points re-

4Statistical information, like colour for example, represents global vari-
ables.

2792 EURASIP Journal on Applied Signal Processing

Data
memory PU1 PU2 PU3 · · · PUn

Active points
memory

(a)

D
at
a
m
em

or
y

R
E
A
D

D
at
a
m
em

or
y

W
R
IT
E

A
ct
iv
e
po

in
ts

m
em

or
y
R
E
A
D

A
ct
iv
e
po

in
ts

m
em

or
y
W
R
IT
E

Memory access type

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
u
m
be
r
of

m
em

or
y
ac
ce
ss
es

(b)

Figure 3: Curve evolution implemented by using several processing units operating in parallel: (a) data-flow chart, and (b) corresponding
memory accesses.

ceive are results of operations only on local neighbor-
hood.

Limiting the calculations to a narrowband around the
travelling contour corresponds formally to operating on
sparse matrices. Practically, in order to obtain the correct
evolution, all active points need to be recalculated in one iter-
ation, before the next iteration starts. Therefore, unless one
uses one processing unit per point, the values un+1 need to
be stored separately from un, until all the points are updated.
If this condition is verified, then the processing order is not
important, and both the iteration types can be unified under
the following form. The setA, respectively, represents either
the entire image or the narrowband set:

for all pi ∈A do (in parallel)
{ Retrieve Neighborhood un(N(pi)) and un(pi);

Calculate Value un+1(pi);
Update Value un+1(pi);
Activate New Points (insertion inA); }

Since our constraints exclude the massive parallelism (for
production cost’s reasons), we adopt a semiparallel approach
instead. The data-flow chart corresponding to a semiparallel
execution of this code on several processing units is given by
Figure 3a. The data u are stored in the data memory block
(two pages for un and un+1). The active points memory block
stores the setA, that is, the coordinates of the points to pro-
cess (not used for the global scope-type algorithms). The ac-
tive points are read and processed by several independently
operating processing units. Both the memory blocks are or-
ganized in two pages, for the present one and the next itera-
tion.

The width of the paths corresponds to the volumes of
transferred data. The most intensive data traffic is on the

shared blocks. The READ data memory flow is five times
larger than the WRITE data memory flow because the com-
plete four-neighborhood is read to update the central value
(cf. Figure 3b). Similarly, since one processed point may ac-
tivate several of its neighbors, the meanWRITE active points
memory flow is slightly higher than READ active points
memory.

The narrowbanding of active contours techniques im-
pose random memory access to the data memory block.
These aspects will be taken into account in Section 3.

2.2. Timing analysis

To optimize the data flow, limit simultaneous accesses to the
shared blocks, and obtain a balanced activity of all the used
blocks, it is necessary to consider also the timing of the algo-
rithm execution.

The global-scope type operates on the entire image, that
is, each point in the image is active and the setA = supp(I),
I = image. The narrowband type operates on A = {p |
|dist(p)| < NBwidth/2}, where NBwidth is the width of the
narrowband around the contour. For massive marching, the
definition ofA slightly differs (see [21]).

This code has two major features.

(1) The retrieval of the point’s and its neighbors’ values
un(pi) and un(N4(pi)) requires five memory readings
and is usually faster than the following calculation of
un+1(pi), which usually involves nonlinear functions.
During the calculation of un+1(pi), the memory block
is idle.

(2) The execution of same parts of the code can have dif-
ferent length due to IF-conditions and various input
values.

Embedded Architecture for Level-Set-Based Active Contours 2793

...

A
sy
n
ch
ro
n
ou

s
ex
ec
u
ti
on

Sy
n
ch
ro
n
ou

s
st
ar
t

PU3

PU1

PUn

PU3

PU2

PU2

PUn

PUn

PU3

PU1

PU3

PU1

PUn

PU3

PU2

PU1

PU3

PU1

PUn

PU3

PU2

PU2

PUn

PUn

PU3

PU1

PU3

PU1

PUn

PU3

PU2

PU1

Shared
memory 1

Shared
memory 2PUn· · ·PU3PU2PU1 The complete processing of one point

consists of the following steps:

Retrieve point Pi to process

Retrieve neighbourhood N(Pi)

Recalculate the value of pi
(variable length)

Activate other points
(variable length)

Update the value of pi

Wait for a shared block
to become free

Figure 4: Asynchronous execution of the code on four processing units (PU1 to PU4) and accesses (in grey) to a shared block.

Whenever the memory is idle, it can (and should) be used
to retrieve other data to process. The fact that the algorithms
operate locally (using only the information from the neigh-
borhood) characterizes this algorithm family by a fine granu-
larity. On the other hand, the nonlinear functions categorize
these algorithms rather into the medium granularity group
because, in most cases, a fully functional ALU is necessary
to implement the computation. These considerations impose
the choice of an MIMD architecture. The processors operate
in the SPMD5 mode, corresponding best to the data flow di-
agram given by Figure 3.

After a synchronous start of all the processing units, the
variable length of some portions of the code gives birth to
an asynchronous execution, (cf. Figure 4). The asynchronous
execution is advantageous for parallelizable algorithms with
numerous IF-conditions, because it randomizes the access to
the shared blocks. Simultaneous accesses become rare and
their HWmanagement is easier. After the analysis of various
algorithms, it becomes clear that the choice of asynchronous
execution of the code on several PUs is a natural choice for
the level family.

Note, that despite the asynchronous execution, the PDE-
based algorithms have one or more synchronization points:

5Single program multiple data—the processors execute asynchronously
the same program.

the end of one iteration. This is indicated by either (i) empti-
ness of one of the active points memory pages (narrowband-
type algorithms), or (ii) end of the raster scan of the image
(global scope-type algorithms). The end of the algorithm is
indicated by either (i) emptiness of both active points mem-
ory pages (for the narrowband-type algorithms), or (ii) the
number of necessary iterations (both algorithm types), or
(iii) the convergence (both algorithm types).

3. ARCHITECTURE

The image processing domain is known for various algo-
rithm granularity and data dependency. Indeed, the data de-
pendency and granularity are two factors that have major in-
fluence on the choice of parallel implementations. Histor-
ically, the fundamental model of parallel architectures has
been introduced by Flynn [56]. The further effort has been
concentrated, besides the computation resources, on the effi-
ciency of the communication configurations (see Cypher and
Sanz [57]).

The massive parallelism is efficient for regular algorithms
with fine granularity (cf. Gibbons and Rytter [58], Broggi et
al. [59] or artificial retine by Manzanera [60]). On the other
hand, if it used for randommemory access implementations,
the chip activity versus occupied surface will become poor.
The same arguments are valid in the case of SIMD-type ar-
chitectures (see Cypher and Sanz [57] or e.g., survey in [61]).

2794 EURASIP Journal on Applied Signal Processing

CUn State vect

Ctrl vect

PUn Data 32

Addr. 16 + 3

...

CU3 State vect

Ctrl vect

PU3 Data 32

Addr. 16 + 3

CU2 State vect

Ctrl vect

PU2 Data 32

Addr. 16 + 3

CU1 State vect

Ctrl vect

PU1 Data 32

Addr. 16 + 3

Sw
it
ch
in
g
m
at
ri
x

A
dd

r.
3

D
at
a
1

Arbitrage

Semaphores
(8× 1 bit)

Data 16

Data 16

Data 32

Addr. 16

Data 32

Addr. 16

Data 32

Addr. 16

Data 32

Addr. 16

LIFO (1)
(32 k× 16 bit)

LIFO (0)
(32 k× 16 bit)

A
ct
iv
e
po

in
ts

m
em

or
y

LABELS
(65 k× 16 bit)

FLAGS
(65 k× 1 bit)

PAGE (1)
(65 k× 32 bit)

PAGE (0)
(65 k× 32 bit)

D
at
a
m
em

or
y

Shared memory blocks

Figure 5: Global overview of the architecture.

Hence, the image analysis community started to consider,
as a possible execution platform for mean and high granular-
ity algorithms, in the late 1980s, programmable, multipro-
cessor, one-chip architectures. See for example [62], [63] or
the survey of multiprocessor architectures with shared and
distributed memory [64]. For another example and addi-
tional references, see a motion estimation on a set of video
signal processors by De Greef et al. [65], or watershed seg-
mentation in Moga et al. [66], Noguet [67], or Bieniek
[68].

The data flow of the active contours, analyzed in the pre-
vious section, makes them correspond better to “weaker”
parallelism models where the design effort concentrates on
the task and data dependency decomposition, task schedul-
ing, and efficient management of accessing to shared re-
sources. The architecture template, presented in this section
by Figure 5, is derived from the data-flow analysis given by
Figure 3. In the following, we detail the description of the in-
dividual blocks.

Processing and control units

The computation of the propagation speed F , which is gen-
erally a nonlinear function, is a challenge for an efficient
implementation. It seems necessary to use a fully functional
arithmetic logic unit (ALU).

The processing units were realized in VHDL and Han-
delC as a model of a RISC processor. They are equipped

with a set of registers. The used data word width is 32 bits
to store a fixed-point data (24 + 8 the integer and fractional
part).

Every processing unit is controlled by a control unit
(CU). The execution of the algorithm was simulated by cod-
ing the algorithm in HandelC. The advantage of this ap-
proach is that the functional model can be replaced by an-
other processor model or by an embedded core available on
some FPGAs.

Switchingmatrix

The medium granularity combined with intensive random
accesses to the data memory shows that no optimum fixed
interconnection network can be found for the level set algo-
rithm family. Rather than using a fixed network, one can use
a switching matrix which, coupled with semaphores and ar-
bitrage, permits to any processing unit access to any shared
block, provided that it is not currently being used by another
processing unit. Several PUs can access simultaneously to dif-
ferent shared blocks.

The address buses are 16 + 3 bits (16 bits for the data
addressing and 3 bits to address eight semaphores for the fol-
lowing eight shared blocks), four data memory blocks (data
PAGE(0), PAGE(1), FLAGS, and LABELS). The active points
memory is divided into two blocks, each equipped with a
bidirectional reading/writing channel since each of the stacks
is in one iteration either read or written but not both.

Embedded Architecture for Level-Set-Based Active Contours 2795

Memory
access

Semaphores
ctrl

Program
memory

Instruction
decode

Control unit

Ctrl vect

State vect
Addr.

In 1

Registers
Processing unit

r0 r1 r2 · · · rn Out

ALU
In 1

In 2

±
><

∗/
&|

Out

Address

Data

Semaphores

Figure 6: Internal architecture of the processing and control units.

Figure 7: The “peppers” image: (a) gradient and manually placed
markers; (b) continuous watershed obtained with massive march-
ing on four processing units.

Semaphores and arbitrage

Every operation asking to access to a shared block uses the
semaphores (block semaphores ctrl at Figure 6). The code
that performs the semaphore-controlled access must respect
the following:

loop :
test semaphore x // test and lock immediately if free
if x isnot free jump loop // repeat otherwise
read/write // access to the memory
release semaphore x // release the semaphore

Whenever a semaphore is tested, it is (by the same instruc-
tion) immediately locked, provided that it was free. If not,
the test is repeated as long as the semaphore can be allo-
cated to the asking processor. After the reading/writing, the
semaphore is released. The semaphores are invisible to the
user provided that the compiler generates the corresponding
code.

Whenever a simultaneous access to a shared block oc-
curs, an arbitrage is used to prevent conflicts. The arbi-
trage is a standard block that makes part of most modern
multi-processor platforms. The ideal arbitrage, usually done
on the first-come-first-served basis, and often realized as a fi-
nite state machine, is quite costly in terms of the silicium
surface. We can benefit from the randomness of the asyn-
chronous execution, limiting the likelihood of simultaneous
accesses, and saving the space by using a simple arbitrage as-
signing the processors an uneven priority. Obviously, this is
only possible up to a certain number of processors however.

In this paper, we have evaluated the feasibility by measuring
the activity up to four processors (see Figure 8 showing the
activity distribution).

Datamemory

A low data dependency that characterizes the level set fam-
ily algorithms permits to use a simple global shared mem-
ory management, being referred to in the literature as weak
consistency model, introduced in [69]. The weak consistency
is characterized by three conditions (cf. [70]). (i) Before a
READ or WRITE access for any processor is allowed, all syn-
chronizations must be achieved. (ii) Before a synchroniza-
tion access is allowed, all previous READ or WRITE accesses
must be achieved. (iii) Synchronization accesses are sequen-
tially consistent with respect to each other. Note that no
condition concerns the order in which the accesses are per-
formed. See [70] for details and comparison with other con-
sistency models.

The synchronization points are imposed by the iterative
nature of the algorithms. All active points must be processed
(in arbitrary order) in one iteration, before the following it-
eration can start. This is ensured on this architecture by the
fact that the data to process are read from one memory page,
and the results are written to the other. As soon as all the
points in one iteration are processed (all READ and WRITE
accesses are achieved), the roles of the pages PAGEs(i), i =
0,1, switch. Switching the roles of the memory pages repre-
sents the synchronization.

This architecture is conceived as scalable. According to
the computational power required by a given application,
one can use more or fewer processing units. It follows from
Figure 3 that the highest data traffic concentrates on the
shared memory blocks. Thanks to the nature of the code, the
reading and writing directions on both data and active points
memory blocks are separated into two one-directional chan-
nels. The results of the previous iteration (values un−1) are
read from one page and the new values (un) are written to
the other. This corresponds perfectly to the weak consistency
model.

Active points memory

The READ and WRITE accesses to perform on the image
data are controlled by data stored in the active points mem-
ory. It is organized in two pages. One page contains points

2796 EURASIP Journal on Applied Signal Processing

Measured

Theoretical

1 2 3 4

Number of processing units used

0

5

10

15

20

25

30

35

40

45

50

M
ill
io
n
s
of

cl
oc
k
cy
cl
es

1
2

3
4

Processing unit number

0

100

200

300

400

500

600

700

4

3

2
1

Nu
mb

er
of
pro

ces
sin
g u

nit
s u
sed

Figure 8: (a) The execution time of the algorithm in function of the number of parallely working processing units. (b) The activity load
distributed over several processing units, number of points processed by every processing unit (X thousands).

to process in the current iteration. This page is progressively
emptied as the data are processed. The second page contains
points to process in the next iteration. It is progressively fed
with data. The emptiness of one page represents the synchro-
nization point. The roles of the pages (for both data and ac-
tive points memory) switch. The emptiness of both active
points pages represents the end of the algorithm.

The reading/writing direction to the data and active
points memory blocks is controlled by using a boolean vari-
able switchwhich commutes at the end of every iteration. For
the sake of universality, it is left to the programmer’s respon-
sibility to control the reading.

Thanks to the fact that the processing order is indifferent,
this memory can be implemented by using two LIFOs. Com-
pared to a FIFO, using LIFO eliminates the transport delay.

For most applications, the reading should always be
done on data page(switch) and LIFO(switch) and writing on
page(switch) and LIFO(switch). The binary switch value can
be derived from the zero bit of the iteration number n.

Flags

The labels and flags are similar to the data memory with a
smaller word size. The labels and flags are available to the
programmer for an additional algorithm control and region
propagation.

4. PERFORMANCE EVALUATION

The performance of this architecture has been tested by run-
ning two different types of PDE-based algorithms: a contin-
uous watershed and an object-tracking application.

The objective of the watershed computation is to justify
the choice to use an MIMD architecture by testing whether
the overall computational effort is uniformly distributed over

all the processors used. The objective of the tracking applica-
tion (cf. Section 4.2), is to evaluate the overall bandwidth of
the architecture, and the capability to run a computationally
expensive application in real time.

4.1. Evaluation test 1: A continuous watershed
implementation

Recall that, in terms of PDEs, watersheds can be obtained
by calculating a weighted distance function to a given
set of sources, corresponding to the markers [34], while
propagating simultaneously the labels

‖∇u(x, y)‖ = 1
‖∇I‖ . (1)

Recall that the set of sources must be identical with the set
of local minima in the image, as shown in [71]. The distance
function was computed in a semiparallel way, on four paral-
lely operating processing units, from amanually placed set of
markers, see Figure 7.

Figure 8b shows the execution time (in terms of total
clock cycles against the number N of processing units oper-
ating in parallel). The obtained number of clock cycles cor-
responds to the theoretical number of clock cycles calculated
as clkN = clk1/N . The measured execution time (expressed
in terms of clock cycles) slightly exceeds the theoretical value
because of the access to the shared blocks (memory, LIFO),
controlled by a semaphore. Figure ?? gives the computational
load distributed over the processing units in function of the
number of processing units used. The computational load is
expressed in terms of number of points processed by every
processing unit. If only one unit is used, the total computa-
tional load is covered by this unit. If more processing units
operate in parallel, the load is uniformly distributed.

Embedded Architecture for Level-Set-Based Active Contours 2797

Table 1: The obtained bandwidth for watershed computation versus other platforms.

Platform Frequency Bandwidth (103points/s)
Proposed MIMD architecture
Four RISC processors

120MHz
FPGA

2610

PC with P4
Win 2000

1.6GHz 827

IPAQ with Xscale
WinCE

400MHz 120

IPAQ with Strong ARM
WinCE

200MHz 50

Table 1 compares the bandwidth of weighted distance
computation with simultaneous propagation of source la-
bels, obtained by using massive marching implemented on
various platforms. The bandwidth is computed as the num-
ber of points in the image divided by the execution time.
The execution time of the proposed MIMD architecture was
obtained by counting the clock cycles during simulation
(HandelC code). The execution time obtained on a PC/P4,
IPAQ/Xscale and StrongARM corresponds to the processor
time spent in the process (programmed in C).

Note that the bandwidth of every given architecture is
somewhat lesser than the theoretical bandwidth because
some points are activated several times. The computation
complexity of massive marching is roughlyO(N), withN be-
ing the number of points in the image. It exceeds N by the
number of reactivated points because of using a nonequidis-
tant propagation front.

4.2. Evaluation test 2: Object-tracking application

To test the performance of this architecture, we use a
model-free, gradient-based object-tracking algorithm pro-
posed in [72].

4.2.1. A gradient-based attraction field

Consider an image I and some gradient of I, g = ∇I. Let

gK = g ∗ K , (2)

where K is some triangular window Z2 → R+, such that

K(x, y) =


1− α

(
x2 + y2

)1/2
if
(
x2 + y2

)1/2
<
1
α
,

0 otherwise.
(3)

Note that in the signal processing domain, convoluting with
such a window is a frequency filter. However, filtering is not
the objective here.

∇gK represents a gradient-dependent integrator with in-
teresting properties. Generally, the evolution of a curve C
writes

∂C

∂t
= F �n, (4)

where�nis the normal vector toC, andF represents the motion

speed. For the contour-based tracking, we propose

F = ∇gK . (5)

It can be shown (by approximating g in (2) by a Dirac im-
pulse δ, and computingF in (5) in a discrete form) that∇gK
is a bidirectional integrator pointing towards the crest of the
gradient g from both sides.

The advantage of using a bidirectional integrator is
twofold: (i) it allows the contour to converge towards the gra-
dient maximum from both sides, and (ii) it eliminates the
necessity to use a constant one-directional attraction force
there, where the data is zero. This fact eliminates the problem
of local breaches in the gradient, often introducing leakage
in object reconstruction. Attempts to alleviate this problem
were made in [73] introducing a viscous watershed capable
to slow down the propagation in such narrow openings. Al-
though the leakage could probably be alleviated by using cur-
vature, the leakage problem does not occur when using∇gK ,
since on zero gradient the contour does not move.

Let φ represent some feature of the object to track. Sup-
posing that this feature is unstable in time, or perturbed by
external phenomena, one may need to employ an additional
cue to enhance the stability. Natural gesture speed is one of
the possible cues to track individuals. This fact is also used in
defining the capture range of the contours. Suppose that the
maximum interframe displacement of the object is bounded
by D. This information should be taken into account by let-
ting supp{(x, y) | K(x, y) > 0} be a circle of radius D, gener-
ating a nonzero attraction field in a narrow zone around the
contour. Hence, a convenient value of α in (3) is a = 1/D.

Indeed, as the attraction force stops on the zero cross-
ing of the gradient, its principle is similar to the Haralick
[74] edge detector, which detects edges on zero crossing of
the second derivative of I in the gradient direction. Kimmel
and Bruckstein in [75] reformulate the Haralick edge detec-
tor in terms of the level set framework and shows how it can
be combined with additive constraints to segment images. As
stated before, our objective is the contour-based object track-
ing. Whereas various motion predictors can be used to pre-
dict the displacement direction according to the past, arbi-
trary deformations of the object give birth to a displacement
field with locally varying direction. Any contour-based track-
ing must therefore be able to handle both partially forward
and backward displacements of the contour. A good overview
of other existing attraction vector fields can be found in [76].

2798 EURASIP Journal on Applied Signal Processing

Figure 9: (a) The initial (dashed) and final (solid line) position of
the contour, and (b) zoom on the attraction force field F.

4.2.2. Application

By integrating (4), the current contour Cn of the object is ob-
tained by using the attraction field gnK generated by the cur-
rent frame In, and the contour Cn−1 in the previous frame
(cf. Figure 9):

Cn = lim
T→∞

∫ T

0
∇gnK (C)�n dt + Cn−1, (6)

with C(t = 0) = Cn−1, (7)

where gnK = g ∗ K ,

g(p) = ∇LabI(p)
1 + dΩ|φ(I(p))

. (8)

The ∇Lab denotes the gradient on the Lab colour space. The
particularity of the Lab space is that it is perceptually uni-
form, and ∇Lab is locally Euclidean. The dΩ|φ denotes the
distance to a given feature. We use a feature based on the
skin chroma. We take Ω′ ≡ HLS, and φ = {x ∈ HLS|xH ∈
[−20o, 50o]}. This feature is only related to hue, thus the dis-
tance dHLS|φ is the angular distance dα to the skin chroma
φ. The size of the triangular window K is ten pixels, that is,
α = 0.1, calculated from a natural gesture speed as seen by
our camera.

Initialization

The description of the initialization of the tracking is outside
the scope of this paper. It can be successfully done by com-
bining several features, see for example [77], using the face
colour and shape or [78] combining the colour and motion
(in a car application, no perturbing motion is present in the
background before the car runs).

4.2.3. Implementation

In the following, we outline the details concerning the im-
plementation of the object tracking on the proposed archi-
tecture.

This architecture has been simulated using the Han-
delC programming language. The control units have been
replaced by a pipelined model controlling each processing
unit, equipped with a fully functional ALU realizing the ba-
sic arithmetic/logic operations in fixed-point precision, and

Table 2: Frame parameters.

Frame size (X × Y) 324 × 428
Number of points in the frame 138 672
Frames per second 15
Data flow (points per second) 2 080 080

equipped with a set of registers. The algorithms have been
hardcoded in the control units in HandelC instructions. Note
that every HandelC instruction is executed in one clock cycle.

Application parameters

The video stream contains 15 frames per second, each 324 ×
428 pixels, giving total data flow 2.08 · 106 pixels per second
(cf. Table 2).

The narrowband width has been set to 20 points (ten to
each side of the contour) and the mean length of the con-
tour of the face (cf. Figure 10) to track is approximately 600
points, giving in average 12 000 active points to update per
iteration, see Table 3.

The above given face tracking application requires 25 it-
erations in every frame for the contour to adapt itself to the
new position of the face. (We consider that natural gesture
speed, camera resolution, and distance to the face limit the
interframe displacement of the drivers face to approximately
10 pixels.) Every five iterations, the narrowband needs to be
reinitialized (cf. Table 4).

Instruction count for various algorithm steps
The construction of the attraction force field requires one
convolution (cf. (2)). An N × N fast 2D convolution can be
efficiently implemented by a serie of 2N 1D FFT applied to
the columns and rows,N2 multiplications, and a series of 2N
1D IFFT. Efficient algorithms exist to perform FFT/IFFT in
place, see for example [79], and modern DSPs are equipped
with efficient, highly optimized blocks calculating fast the
FFT, for example [80].

We suppose that the convolution is computed on a com-
panion chip. In the following, we focus on the implemen-
tation of the level-set-based part of the application, that is,
the (i) initialization and construction of the narrowband, (ii)
contour evolution.

The gradient can be calculated with two additions and
two divisions (if central differences are used). The attrac-
tion force ∇gK calculated on the entire frame requires 277,
344 additions and as many multiplications (cf. Table 5). The
construction of the narrowband, by using massive march-
ing, requires two steps: (i) the interpolation to initialize the
contour can be done with 4 additions per point and (ii)
the propagation of the distance function requires 5 additions
and 6 multiplications per point. Performed twice (Jacobi and
Gauss-Seidel steps) on 12 000 points (narrowband size from
Table 3) gives 216 000 additions and 144 000 multiplication
required to construct the narrowband. The narrowband is
reconstructed five times per frame, giving the level set inher-
ent computational effort of 1 080 000 additions and 720 000
multiplications per image frame.

Embedded Architecture for Level-Set-Based Active Contours 2799

Figure 10: Contour tracking applied to driver’s face extraction, using the weighted gradient (skin chroma being the feature of interest).
Randomly chosen images from a video sequence.

Table 3: Narrowband parameters.

Narrow bandwidth (points) 20
Approximate mean contour length (points) 600
Number of points in the narrowband 12 000

Table 4: Object-tracking application parameters.

Number of iterations before reinitialization 5
Reinitializations per frame 5
Number of iterations per frame 25

The actual curve evolution involves several steps: (i) the
evolution speed F requires 3 addition and 4 multiplications
(including the gradient of the distance function U), (ii) the
integration is done in one additions and one multiplication,
giving in total 4 additions and 5 multiplications per point.
Multiplied by 12 000 points in the narrowband (48 000 ad-
ditions and 60 000 multiplications) and by 25 iterations per
frame gives 1.2 · 106 additions and 1.5 · 106 multiplications
per frame. The total application effort is 2.56 · 106 additions
and 2.50·106 multiplications per frame, representing in total
75.8 MFLOPS to run in real time.

Table 6 presents the lower limits of the bandwidth ob-
tained for different steps of the object-tracking application.
The computation of the gradients ∇gK and ∇u requires the
same elementary operations (differences and extrema com-
putation on the neighborhood), and presents obviously the
same bandwidth 19.3 · 106. The limiting factor in this case
is the neighborhood extraction from the input image. We
have obtained the same bandwidth estimation for the inte-
gration step. The integration does not read the neighborhood
(already stored in the registers) but only writes the integra-
tion result. Its performance can sometimes be limited by the
bandwidth of the foregoing step.

The bandwidth 2.61 · 106 points/s, obtained for the nar-
rowband construction, includes the detection of the initial
contour position by interpolation and the propagation of the
distance function.

We evaluate the performance of the architecture by com-
puting the processing time of the each algorithm stage as a
function of the number of processed points and these mea-
sured worst-case bandwidths. The processing time of all the

steps is obtained by multiplying the worst-case bandwidth,
the number of iterations, and the number of the points to
process.

The sum of the processing times of individual steps gives
the frame-to-frame processing time 6.18 · 10−2 seconds, cor-
responding to 16.3 processed frames per second.

The performance, outlined in Table 7, compares the ex-
ecution time of one iteration of the above-detailed object-
tracking application on this architecture compared to simi-
lar results obtained on other platforms reported in the liter-
ature.

The nVIDIA GeForce2 graphic card, see [16], operates
in integer accuracy, and is therefore less useful for algorithms
requiring multiple iterations. The application running on PC
P4, see [81], was implemented by using the additive operator
splitting (AOS) scheme, permitting greater integration step,
and requiring thus fewer iterations.

4.3. Power assessment

As the silicium surface on FPGAs continues to grow (to be-
come comparable to ASICs), the computational power is no
longer a limiting factor for the design. Instead, the preoccu-
pations concern more and more the energy dissipation and
the system autonomy.

The energy budget of some algorithm can be character-
ized by the energy necessary to execute the elementary oper-
ation multiplied by the number this operation is executed.
Suppose that this algorithm is to be executed in a limited
time. A parallel execution (provided that the algorithm is
parallelizable) will allow to reduce the clock frequency (com-
pared to the clock frequency of the sequential implementa-
tion) and reduce the energy budget of the elementary opera-
tion.

Though it is important to take into account the energy
considerations as soon as possible during the design, at this
development stage, it is still difficult to estimate precisely
the power consumption. The execution of the algorithms
was simulated by using a general-purpose RISC processor
model. The power consumption was then estimated by using
the consumption reported by various soft-core processors
manufacturers: for Microblazer (Xilinx), see [82]; for ARM
9 family see [83]; and compared with typical-to-maximum
thermal dissipation reported for Pentium 4 at 1.6GHz (see
[84]), compare Table 8.

2800 EURASIP Journal on Applied Signal Processing

Table 5: Instruction count for various steps.

Instruction count for various steps Additions Multiplications
Preprocessing
∇gK (operations per point) 2 2
Total per frame (additions, multiplication) 277 344 277 344
Construction of the narrowband
Interpolation (additions, multiplications per point) 4 0
Propagation (additions, multiplications per point) 5 6
Total per initialization (additions, multiplication) 216 000 144 000
Total level-set-inherent computational effort 1 080 000 720 000
Curve evolution
Evolution speed F = ∇gK · ∇U 3 4
Integration (additions, multiplications per point) U = U − (F dt) 1 1
Curve evolution per point (additions, multiplications) 4 5
Curve evolution per iteration (additions, multiplication) 48 000 60 000
Total curve evolution per frame 1 200 000 1 500 000
Total application per frame (curve evolution + level set inherent) 2 557 344 2 497 344
Overall real-time computational effort (FLOPS) 75.8 · 106

Table 6: The Execution Time of the Object Tracking Application.

Algorithm step Estimated bandwidth (point/s) Number of iterations Number of points Processing time (s)
Initialization
Gradient∇gK 19.3 · 106 1 138 672 7.19 · 10−3
Narrowband construction 2.61 · 106 5 12 000 2.30 · 10−2
Evolution
Gradient∇u 19.3 · 106 25 12 000 1.56 · 10−2
Integration un+1 19.3 · 106 25 12 000 1.56 · 10−2
Total execution time (per frame) 6.13 · 10−2
Application frame processing rate (frame/s) 16.3

Table 7: The execution time of one iteration, compared to similar algorithms on other platforms.

Platform Frequency Execution time for one iteration (ms)
Proposed MIMD architecture
Four RISC processors 120MHz/FPGA 1.25

Graphic hardware nVIDIA GeForce2 250MHz 4
PC with P4/Win 2000 1.6GHz 19.1

Table 8: Comparison of power consumption.

Processor Power consumption (W)
Microblazer / Xilinx 0.11
ARM9 / ARM 0.14
Pentium4 (1.6GHz)/ Intel 60–75

5. CONCLUSIONS

In this paper, we present an embedded architecture for real-
time image processing using level-set-based active contours.
The contribution of this paper is twofold. In its first part, the
text proposes a unifying insight into the level set framework
from the system design point of view, to propose a unique
iteration type with two different types of memory access:

randommemory access and sequential memory access. Then
it analyzes the data flow to define, in the second part of
the text, a scalable architecture fitting the real-time needs
and taking into account the limited energy autonomy of em-
bedded platforms and the silicium surface on commercially
available FPGAs.

The performance of the proposed architecture has been
studied on two benchmarks.

The first one, computation of a weighted distance trans-
form with simultaneous propagation of region labels, is to
verify the uniformity of the data flow and the distribution of
the computational burden over all the processing units. This
benchmark compares the real execution time against the the-
oretical execution time (obtained as the time needed by one
processing unit divided by the number of processing units

Embedded Architecture for Level-Set-Based Active Contours 2801

operating in parallel). The results show a linear increase of
performance and a balanced activity at least up to four inde-
pendently operating processing units.

The second benchmark implements an active-contour-
based object-tracking algorithm. The purpose of this test is
to evaluate the capability of this platform to run in real-
time applications with intensive random memory accesses.
Section 4.2.3 lists the details concerning the computational
complexity of the application in terms of number of elemen-
tary operations. The simulation results show that the above-
presented contour tracking application can be run on this
architecture in real time, provided that the processors are
clocked at 120MHz, and one instruction executes in one
clock cycle. Hence, the architecture specifications made in
the first part of the text are confirmed.

The scalability of this architecture consists in replicat-
ing the processing units. Physically, their number is lim-
ited by the silicium available on the chip; and logically,
by the data-flow balance on all the blocks of the archi-
tecture. A time-costly computation will allow a linear in-
crease of the performance up to a higher number of pro-
cessing units, before the busses and the memory blocks sat-
urate. From Figure 3, it follows that the highest data flow
concentrates on the READ data memory. Although it has
not been used in this paper, two possible improvements
will make the data flow on the individual memory blocks
more uniform: (i) the entire four-neighborhood can be re-
trieved in one clock cycle by using another memory orga-
nization, as proposed by Noguet in [67], or (ii) the READ
data memory flow can be divided by two by using a dual-
port memory for the data memory pages. However, both
options will lead to some increase of complexity of the
switch.

REFERENCES

[1] S. Osher and J. A. Sethian, “Fronts propagating with
curvature-dependent speed: algorithms based on Hamilton-
Jacobi formulations,” Journal of Computational Physics,
vol. 79, no. 1, pp. 12–49, 1988.

[2] S. Osher and R. P. Fedkiw, “Level set methods: an overview
and some recent results,” Journal of Computational Physics,
vol. 169, no. 2, pp. 463–502, 2001.

[3] J. A. Sethian, Level Set Methods: Evolving Interfaces in Geom-
etry, Fluid Mechanics, Computer Vision and Materials Science,
Cambridge University Press, Cambridge, UK, 1996.

[4] G. Sapiro, Geometric Partial Differential Equations and Image
Analysis, Cambridge University Press, New York, NY, USA,
2001.

[5] D. Adalsteinsson and J. A. Sethian, “A fast level set method
for propagating interfaces,” Journal of Computational Physics,
vol. 118, no. 2, pp. 269–277, 1995.

[6] R. Malladi, J. A. Sethian, and B. C. Vemuri, “A fast level set
based algorithm for topology-independent shape modeling,”
Journal of Mathematical Imaging and Vision, vol. 6, no. 2-3,
pp. 269–289, 1996.

[7] F. Precioso and M. Barlaud, “B-spline active contour with
handling of topology changes for fast video segmentation,”
EURASIP Journal on Applied Signal Processing, vol. 2002,
no. 6, pp. 555–560, 2002, Special Issue on Image Analysis for
Multimedia Interactive.

[8] G. Cserey, C. Rekeczky, and P. Földesy, “PDE-based histogram
modification with embeddedmorphological processing of the
level-sets,” Journal of Circuits, Systems and Computers, vol. 12,
no. 4, pp. 519–538, 2003.

[9] J. Weickert, B. M. T. H. Romeny, and M. A. Viergever, “Effi-
cient and reliable schemes for nonlinear diffusion filtering,”
IEEE Trans. Image Processing, vol. 7, no. 3, pp. 398–410, 1998.

[10] F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, “Image selec-
tive smoothing and edge detection by nonlinear diffusion,”
SIAM Journal on Numerical Analysis, vol. 29, no. 1, pp. 182–
193, 1992.

[11] R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky,
“Fast geodesic active contours,” IEEE Trans. Image Processing,
vol. 10, no. 10, pp. 1467–1475, 2001.

[12] P. Smereka, “Semi-implicit level set methods for curvature
and surface diffusion motion,” Journal of Scientific Comput-
ing, vol. 19, no. 1-3, pp. 439–456, 2003.

[13] S. Holmgren and D. Wallin, Performance of High-Accuracy
PDE Solvers on a Self-Optimizing NUMA Architecture,
vol. 2150 of Lecture Notes in Computer Science, Springer,
Berlin, Germany, 2001.

[14] J. A. Sethian, “Parallel level set methods for propagating inter-
faces on the connection machine,” Department of Mathemat-
ics, University of California at Berkeley, Berkeley, Calif, USA,
1989.

[15] M. Rumpf and R. Strzodka, “Nonlinear diffusion in graphics
hardware,” in Proc. EG/IEEE TCVG Symposium on Visualiza-
tion (VisSym ’01), pp. 75–84, Ascona, Switzerland, May 2001.

[16] M. Rumpf and R. Strzodka, “Level set segmentation in graph-
ics hardware,” in Proc. International Conference on Image Pro-
cessing (ICIP ’01), vol. 3, pp. 1103–1106, Thessaloniki, Greece,
October 2001.

[17] J. E. Cates, A. E. Lefohn, and R. T. Whitaker, “GIST: an inter-
active, GPU-based level set segmentation tool for 3D medical
images,” Medical Image Analysis, vol. 8, no. 3, pp. 217–231,
2004.

[18] C. Sigg, R. Peikert, and M. Gross, “Signed distance transform
using graphics hardware,” in Proc. 14th IEEE Visualization
Conference (VIS ’03), pp. 83–90, Seattle, Wash, USA, October
2003.

[19] K. Hwang, P. S. Tseng, and D. Kim, “An orthogonal multipro-
cessor for parallel scientific computations,” IEEE Trans. Com-
put., vol. 38, no. 1, pp. 47–61, 1989.

[20] T. Gijbels, P. Six, L. Van Gool, F. Catthoor, H. De Man, and A.
Oosterlinck, “A VLSI-architecture for parallel non-linear dif-
fusion with applications in vision,” in Proc. IEEE Workshop on
VLSI Signal Processing VII, pp. 398–407, La Jolla, Calif, USA,
October 1994.

[21] E. Dejnožková and P. Dokládal, “A parallel architecture for
curve-evolution PDEs,” Image Analysis and Stereology, vol. 22,
pp. 121–132, 2003.

[22] R. Wittig and P. Chow, “OneChip: an FPGA processor with
reconfigurable logic,” in Proc. IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM ’96), K. L. Pocek and J.
Arnold, Eds., pp. 126–135, IEEE Computer Society, Napa Val-
ley, Calif, USA, April 1996.

[23] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHI-
MAERA: a high-performance architecture with a tightly-
coupled reconfigurable functional unit,” in Proc. 27th Inter-
national Symposium on Computer Architecture, pp. 225–235,
British Columbia, Canada, 2000.

[24] Y. Li, T. Callahan, E. Dernell, R. Harr, U. Kurkure, and J.
Stockwood, “Hardware-software co-design of embedded re-
configurable architectures,” in Proc. 37th Design Automation
Conference (DAC ’00), pp. 507–512, Los Angeles, Calif, USA,
June 2000.

2802 EURASIP Journal on Applied Signal Processing

[25] P. Perona and J. Malik, “Scale-space and edge detection us-
ing anisotropic diffusion,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 12, no. 7, pp. 629–639, 1990.

[26] L. Alvarez, P.-L. Lions, and J.-M. Morel, “Image selective
smoothing and edge detection by nonlinear diffusion. II,”
SIAM Journal on Numerical Analysis, vol. 29, no. 3, pp. 845–
866, 1992.

[27] S. Schüpp, Prétraitement et segmentation d’images par mise
en oeuvre de techniques basées sur les équations aux dérivées
partielles : application en imagerie microscopique biomedi-
cale, Ph.D. thesis, Université de Caen Basse-Normandie, Caen
Cedex, France, December 2000.

[28] B. Kimia and K. Siddiqi, “Geometric heat equation and non-
linear diffusion of shapes and images,” Computer Vision and
Image Understanding, vol. 64, no. 3, pp. 305–322, 1996.

[29] T. Lindeberg, Scale-Space Theory in Computer Vision, Kluwer
Academic, Dordrecht, The Netherlands, 1994.

[30] L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel, “Axioms
and fundamental equations of image processing,” Archive for
Rational Mechanics and Analysis, vol. 123, pp. 199–257, 1993.

[31] R. Brockett and P. Maragos, “Evolution equations for
continuous-scale morphology,” in Proc. IEEE Int. Conf. Acous-
tics, Speech, Signal Processing (ICASSP ’92), vol. 3, pp. 125–
128, San Francisco, Calif, USA, March 1992.

[32] R. van den Boomgaard, Mathematical morphology: extensions
towards computer vision, Ph.D. thesis, University of Amster-
dam, Amsterdam, The Netherlands, March 1992.

[33] F. Meyer and P. Maragos, “Nonlinear scale-space representa-
tion with morphological levelings,” Journal of Visual Commu-
nication and Image Representation, vol. 11, no. 2, pp. 245–265,
2000.

[34] L. Najman andM. Schmitt, “Watershed of a continuous func-
tion,” Signal Processing, vol. 38, no. 1, pp. 99–112, 1994.

[35] A. Montanvert and J. M. Chassery, Géométrie discrète en anal-
yse d’images, Hermès, Paris, France, 1991.

[36] R. Kimmel,Curve evolution on surfaces, Ph.D. thesis, Technion
- Israel Institute of Technology, Haifa, Israel, May 1995.

[37] J. A. Sethian, “A marching level set method for monotonically
advancing fronts,” Proceedings of the National Academy of Sci-
ences, vol. 93, no. 4, pp. 1591–1595, 1996.

[38] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active con-
tour models,” International Journal of Computer Vision, vol. 1,
no. 4, pp. 321–331, 1987.

[39] D. Terzopoulos, A. Witkin, and M. Kass, “Constraints on
deformable models: recovering 3D shape and nonrigid mo-
tions,” Artificial Intelligence, vol. 36, no. 1, pp. 91–123, 1988.

[40] L. Cohen, “On active contour models and balloons,” Com-
puter Vision, Graphics, and Image Processing, vol. 53, no. 2, pp.
211–218, 1991.

[41] V. Caselles, F. Catté, T. Coll, and F. Dibos, “A geometric model
for active contours in image processing,” Numerische Mathe-
matik, vol. 66, no. 1, pp. 1–31, 1993.

[42] R. Malladi, J. A. Sethian, and B. C. Vemuri, “Topology inde-
pendent shape modeling scheme,” in Geometric Methods in
Computer Vision II, vol. 2031 of Proceedings of SPIE, pp. 246–
258, San Diego, Calif, USA, July 1993.

[43] R. Malladi, J. A. Sethian, and B. C. Vemuri, “Evolutionary
fronts for topology-independent shape modeling and recov-
ery,” in Proc. 3rd European Conference on Computer Vision
(ECCV ’94), vol. 800 of Lecture Notes in Computer Science, pp.
3–13, Stockholm, Sweden, May 1994.

[44] R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling
with front propagation: a level set approach,” IEEE Trans. Pat-
tern Anal. Machine Intell., vol. 17, no. 2, pp. 158–175, 1995.

[45] R. Malladi, R. Kimmel, D. Adalsteinsson, G. Sapiro, V.
Caselles, and J. A. Sethian, “A geometric approach to

segmentation and analysis of 3d medical images,” in Proc.
Mathematical Methods in Biomedical Image Analysis Workshop
(MMBIA ’96), San Francisco, Calif, USA, June 1996.

[46] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active con-
tours,” in Proc. 5th IEEE International Conference on Computer
Vision (ICCV ’95), pp. 694–699, Cambridge, Mass, USA, June
1995.

[47] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A.
Yezzi, “Gradient flows and geometric active contours mod-
els,” in Proc. 5th International Conference on Computer Vision
(ICCV ’95), pp. 810–815, Cambridge, Mass, USA, June 1995.

[48] R. Malladi and J. A. Sethian, “Image processing: flows under
min/max curvature and mean curvature,” Graphical Models
and Image Processing, vol. 58, no. 2, pp. 127–141, 1996.

[49] S. Jehan-Besson, M. Gastaud, M. Barlaud, and G. Aubert,
“Region-based active contours using geometrical and statis-
tical features for image segmentation,” in Proc. IEEE Interna-
tional Conference in Image Processing (ICIP ’03), vol. 2, pp.
643–646, Barcelona, Spain, September 2003.

[50] L. Alvarez, J. Weickert, and J. Sánchez, “A scale-space ap-
proach to nonlocal optical flow calculations,” in Proc. 2nd In-
ternational Conference on Scale-Space Theories in Computer
Vision (Scale-Space ’99), pp. 235–246, Corfu, Greece, Septem-
ber 1999.

[51] J. B. T. M. Roerdink and A. Meijster, “The watershed trans-
form: definitions, algorithms and parallelization strategies,”
Fundamenta Informaticae, vol. 41, no. 1-2, pp. 187–228, 2000.

[52] E. Dejnožková, Architecture dédiée au traitement d’image basé
sur les équations aux dérives partielles, Ph.D. thesis, Ecole Na-
tionale Supérieure des Mines de Paris, Paris, France, March
2004.

[53] J. A. Sethian, “Fast marching methods,” SIAM Review, vol. 41,
no. 2, pp. 199–235, 1999.

[54] J. A. Sethian, “Level set methods and fast marching meth-
ods,” Tech. Rep., Department of Mathematics, University of
California, Berkeley, Calif, USA, 1999. http://math.berkeley.
edu/∼sethian/level set.html.

[55] S. Kim, “An O(N) level set method for eikonal equations,”
SIAM Journal on Scientific Computing, vol. 22, no. 6, pp. 2178–
2193, 2001.

[56] M. J. Flynn, “Very high-speed computing systems,” Proc. IEEE,
vol. 54, no. 12, pp. 1901–1909, 1966.

[57] R. Cypher and J. L. C. Sanz, “SIMD architecture and al-
gorithms for image processing and computer vision,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. 37, no. 12, pp.
2158–2174, 1989.

[58] A. Gibbons and W. Rytter, Efficient Parallel Algorithms, Cam-
bridge University Press, Cambridge, UK, 1988.

[59] A. Broggi, G. Conte, F. Gregoretti, C. Sansoè, and L. M.
Reyneri, “The Paprica massively parallel processor,” in Proc.
1st IEEE International Conference on Massively Parallel Com-
puting Systems (MPCS ’94), pp. 16–30, Ischia, Italy, May
1994.

[60] A. Manzanera, “Morphological segmentation on the
programmable retina: towards mixed synchronous/asyn-
chronous algorithms,” in Proc. 6th International Symposium
on Mathematical Morphology (ISMM ’02), H. Talbot and R.
Beare, Eds., pp. 389–399, Sydney, Australia, April 2002.

[61] T. Le, W. Snelgrove, and S. Panchanathan, “SIMD processor
arrays for image and video processing: a review,” inMultime-
dia Hardware Architectures, vol. 3311 of Proceedings of SPIE,
pp. 30–41, San Jose, Calif, USA, January 1998.

[62] M. Maruyama, H. Nakahira, T. Araki, et al., “A 200 MIPS im-
age signal multiprocessor on a single chip,” in Proc. 37th IEEE
International Solid-State Circuits Conference (ISSCC ’90), pp.
122–123, San Francisco, Calif, USA, February 1990.

http://math.berkeley.edu/~sethian/level_set.html
http://math.berkeley.edu/~sethian/level_set.html

Embedded Architecture for Level-Set-Based Active Contours 2803

[63] T. Minami, R. Kasai, H. Yamauchi, Y. Tashiro, J. Takahashi,
and S. Date, “A 300-MOPS video signal processor with a par-
allel architecture,” IEEE Journal of Solid-State Circuits, vol. 26,
no. 12, pp. 1868–1875, 1991.

[64] R. Duncan, “A survey of parallel computer architectures,”
IEEE Computer, vol. 23, no. 2, pp. 5–16, 1990.

[65] E. De Greef, F. Catthoor, and H. De Man, “Mapping real-
time motion estimation type algorithms to memory efficient,
programmable multi-processor architectures,” Microprocess-
ing and Microprogramming, vol. 41, no. 5-6, pp. 409–423,
1995.

[66] A. Moga, T. Viero, B. Dobrin, and M. Gabbouj, “Implemen-
tation of a distributed watershed algorithm,” inMathematical
Morphology and Its Applications to Image and Signal Process-
ing, pp. 281–288, Kluwer Academic, Dordrecht, The Nether-
lands, 1994.

[67] D. Noguet, Architectures parallèles pour la morphologie
mathématique géodésique, Ph.D. thesis, Institut National Poly-
technique De Grenoble, Techniques de l’Informatique et de
la Microélectronique pour l’Architecture des ordinateurs,
Grenoble, France, Janvier 2002.

[68] A. Bieniek, Divide-and-Conquer Parallelisation Methods for
Digital Image Processing Algorithms, vol. 10 of VDI Fortschritt-
Berichte, VDI Verlag, Düsseldorf, Germany, 2000.

[69] M. Dubois, C. Scheurich, and F. Briggs, “Memory access
buffering in multiprocessors,” in Proc. 13th Annual Interna-
tional Symposium on Computer Architecture (ISCA ’86), pp.
434–442, Tokyo, Japan, June 1986.

[70] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta,
and J. Hennessy, “Memory consistency and event ordering
in scalable shared-memory multiprocessors,” in Proc. 17th
Annual International Symposium on Computer Architecture
(ISCA ’90), pp. 15–26, Seattle, Wash, USA, May 1990.

[71] F. Meyer and P. Maragos, “Multiscale morphological segmen-
tations based on watershed, flooding, and eikonal PDE,” in
Proc. 2nd International Conference on Scale-Space Theories in
Computer Vision (Scale-Space ’99), M. Nielsen, P. Johansen,
O. F. Olsen, and J. Weickert, Eds., vol. 1682 of Lecture Notes
in Computer Science, pp. 351–362, Springer, Corfu, Greece,
September 1999.

[72] P. Dokládal, R. Enficiaud, and E. Dejnožková, “Contour-
based object tracking with gradient-based contour attraction
field,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Pro-
cessing (ICASSP ’04), vol. 3, pp. 17–20, Montreal, Quebec,
Canada, May 2004.

[73] F. Meyer and C. Vachier, “Image segmentation based on vis-
cous flooding simulation,” in Proc. 6th International Sympo-
sium onMathematical Morphology (ISMM ’02), vol. 2, pp. 69–
77, Sydney, Australia, April 2002.

[74] R. Haralick, “Digital step edges from zero crossing of second
directional derivatives,” IEEE Trans. Pattern Anal. Machine In-
tell., vol. 6, no. 1, pp. 58–68, 1984.

[75] R. Kimmel and A. Bruckstein, “On edge detection integra-
tion and geometric active contours,” in Proc. 6th International
Symposium on Mathematical Morphology (ISMM ’02), vol. 2,
Sydney, Australia, April 2002.

[76] C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector
flow,” IEEE Trans. Image Processing, vol. 7, no. 3, pp. 359–369,
1998.

[77] K. Sobottka and I. Pitas, “Extraction of facial regions and fea-
tures using color and shape information,” in Proc. 13th IEEE
International Conference on Pattern Recognition (ICPR ’96),
vol. 3, pp. 421–425, Vienna, Austria, August 1996.

[78] A. Nayak and S. Chaudhuri, “Self-induced color correction
for skin tracking under varying illumination,” in Proc. IEEE

International Confererence on Image Processing (ICIP ’03),
vol. 3, pp. 1009–1012, Barcelona, Spain, September 2003.

[79] V. Veselý, “Fast Algorithms of Fourier and Hartley Trans-
form and their Implementation in MATLAB,” http://citeseer.
ist.psu.edu/vesely98fast.html.

[80] H. Karner, M. Auer, and C. Ueberhuber, “Optimum complex-
ity FFT algorithms for RISC processors,” Tech. Rep. AURORA
TR1998-03, Institute for Applied and Numerical Mathemat-
ics, Technical University of Vienna, Vienna, Austria, 1998.

[81] S. Osher and N. Paragios, Eds.,Geometric Level Set Methods in
Imaging, Vision and Graphics, chapter 2, Springer, New York,
NY, USA, 2003.

[82] http://www.eece.unm.edu/xup/microblazeppc.htm.
[83] http://www.arm.com/miscPDFs/4491.pdf.
[84] http://support.intel.com/design/pentium4/datashts/

24919805.pdf.

Eva Dejnožková is a research engineer with
the Commissariat à l’Energie Atomique à
Saclay, France, which she joined in 2004.
She graduated with the highest degrees
from the West Bohemia University, Pilsen,
Czech Republic, in 1999, as an engineer
specialized in industrial electronics. After-
wards, she specialized in hardware architec-
ture for image processing, and obtained her
Ph.D. degree from the School of Mines of
Paris, France. She obtained a special distinction of the rector of the
West Bohemia University. Her research interests include image pro-
cessing and compression, and embedded andmobile computers ar-
chitecture for image processing and compression.

Petr Dokládal is a research engineer at the
Centre of Mathematical Morphology, the
School of Mines in Paris, France. He gradu-
ated from the Technical University in Brno,
Czech Republic, in 1994, as a telecommuni-
cation engineer and received his Ph.D. de-
gree from the University of Marne la Vallée,
France, in general computer sciences, spe-
cialized in image processing. His research
interests include medical imaging, image
segmentation, object tracking, and pattern recognition.

http://citeseer.ist.psu.edu/vesely98fast.html
http://citeseer.ist.psu.edu/vesely98fast.html
http://www.eece.unm.edu/xup/microblazeppc.htm
http://www.arm.com/miscPDFs/4491.pdf
http://support.intel.com/design/pentium4/datashts/24919805.pdf
http://support.intel.com/design/pentium4/datashts/24919805.pdf

	1. INTRODUCTION
	1.1. Scope and objectives
	1.2. State of the art and technological difficulties

	2. ALGORITHM ANALYSIS
	2.1. Data-flow analysis of different algorithm steps
	2.2. Timing analysis

	3. ARCHITECTURE
	4. PERFORMANCE EVALUATION
	4.1. Evaluation test 1: A continuous watershed implementation
	4.2. Evaluation test 2: Object-tracking application
	4.2.1. A gradient-based attraction field
	4.2.2. Application
	4.2.3. Implementation

	4.3. Power assessment

	5. CONCLUSIONS
	REFERENCES

