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We propose a robust microphone array for speech enhancement and noise suppression. To overcome target signal cancellation
problem of conventional beamformes caused by array imperfections or reverberation effects, the proposed method adopts arbi-
trary transfer function relating each microphone and target speech signal as array channel model. This is achieved in two ways.
First, we propose a method to estimate the array steering vector (ASV) by means of exploiting the nonstationarity of speech signal
to combat stationary noise and interference. Next, with the estimated ASV, a robust matched-filter-(MF-) array-based generalized
sidelobe canceller (MF-GSC) is constructed to enhance the speech signal and suppress noise/interference. In addition, it also has
the capability to reduce the reverberation effects of the acoustic enclosure. Numerical results show that the proposed method
demonstrates high performance even in adverse environments.
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1. INTRODUCTION

Speech enhancement and noise suppression have received
increasing interest in speech-related applications in adverse
environments. Conventional single-channel speech enhance-
ment methods, such as spectral subtraction [1], do not
provide sufficient improvement to the speech signal, espe-
cially when noise is strong. In the past few decades, micro-
phone array has been proposed as a promising technique for
speech enhancement. It uses the signals captured by multi-
microphones, which are distributed at different positions, to
exploit the spatial-temporal information of the target signal,
interferences, and noise for the purpose of improving the
signal-to-noise ratio (SNR) by suppressing background noise
and interferences.

Beamforming is the key technique in microphone array
for speech enhancement and noise suppression. Many beam-
forming methods [2, 3, 4, 5, 6] have been proposed in litera-
ture. Among them, the most famous algorithm for wideband
beamforming is the constrained minimum power adaptive
beamformer proposed by Frost [2], also called Frost beam-
former. It is capable of satisfying certain desired frequency re-
sponse in the looking direction while minimizing the output

noise power through constrained minimization of the total
output power. Griffiths and Jim [3] reconstructed the Frost
beamformer into the generalized sidelobe canceller (GSC).
It transforms the constrained optimization problem in Frost
beamformer into an unconstrained one and, consequently,
improves the convergence performance. To improve the ro-
bustness of Frost beamformer or GSC, numerous methods
[5, 6, 7, 8, 9, 10, 11] have been proposed to combat array
imperfections, such as steering error, sensor location error,
array channel mismatch, and so forth.

The methods mentioned above assume that the target
signal propagates through known direct path and the geome-
try of the array is also known. However, in applications such
as speech acquisition in adverse acoustic environments, the
source signal propagates not merely along direct path. There
are also unknownmultipath and reverberation effects. More-
over, in some applications, the array geometry is unknown
or changing, such as the microphone array mounted on hu-
man body. In such cases, the target signal is often cancelled
to some extent in conventional adaptive beamforming ap-
proaches. This problem is especially serious for microphone
array in strong reverberant environments. The performance
significantly degrades due to the reverberation effects.
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Concerning the existence of array imperfections and re-
verberation effects, a new channel model was adopted in
adaptive array processing. The impulse response (IR) of the
channel relating target source and each array element is mod-
eled as an arbitrary linear filter, which conveys all the effects
of array imperfections as well as reverberation. Since these
IRs are unknown, the identification of IRs is necessary to
avoid target signal cancellation. A straightforward solution
is to use a training signal [12, 13]. However, it has limited
applications because the reestimation of these IRs is inconve-
nient when the environment changes or signal source moves.
Another potential solution is the blind channel identification
(BCI) technique ([14, 15] and references therein), which is
not so successful as in wireless communications because the
length of IR is large in acoustic applications.

In some cases, for example, speech enhancement [16],
the phase response of the target signal is not important.
Moreover, the human auditory system is capable of tolerat-
ing distortion to some extent in speech signal. With these re-
laxations, in frequency domain, the IR identification prob-
lem can be simplified as array steering vector (ASV) estima-
tion. The method in [12] was proposed to estimate ASV by
computing the principal component extracted from the co-
variance matrix of the received array snapshots, in the case
where the power of the target signal is far greater than the
power of noise and interferences [17]. However, these meth-
ods are sensitive to noise and interferences, so that the es-
timation requires high SNR. In [18], the nonstationarity of
the target signal is exploited to achieve accurate estimate of
system transfer function against stationary noise and inter-
ferences. This idea is used to estimate frequency response ra-
tio (RR) for wideband beamforming [19]. Unfortunately, the
RRmethod has a drawback that its estimation error increases
when the reference channel has low response or null at spe-
cific frequency bins.

In this paper, we propose an improved ASV estimation
method by exploiting multichannel signals and nonstation-
arity of speech based on the idea in [18, 19]. Compared
with [19], this paper differs in three aspects. Firstly, it is
proved that the nonstationarity of the reference signal weak-
ens if signal is corrupted by stationary noise. Since the er-
ror variance of estimated ASV depends on the nonstationar-
ity of the reference signal [18], the error variance increases
if the SNR of the reference signal decreases. Therefore, high
SNR of reference signal is appreciated. Secondly, in this pa-
per, a new reference signal, which exploits multichannel sig-
nals, is used. The multichannel signals are linearly weighted
and summed up to produce an output signal, which is used
as a reference signal in estimate of TF [18, 19]. A method
to estimate optimal weight is also proposed. The SNR of
the new reference signal is improved. Consequently, the ac-
curacy of the estimated ASV improves. Thirdly, a normal-
ized ASV vector is used to construct an extended GSC for
speech enhancement and noise suppression. Such extended
GSC can greatly improve the robustness of the beamformer
as well as the performance of signal enhancement. Moreover,
it also reduces the reverberation effects in the output sig-
nal.

This paper is organized as follows. The system model
is reviewed in Section 2. In Section 3, an improved method
for ASV estimation exploiting the nonstationarity of speech
signal is derived. An extended GSC is then proposed in
Section 4. It takes the advantage of the estimated ASV to
combat reverberation effects as well as array imperfections.
Some numerical results are shown in Section 5 to evaluate
the performance of the proposed method. In Section 6, a
brief conclusion is given.

2. SYSTEMMODEL

Notations used in this paper are defined before we formu-
late the problem and develop the algorithm. For example, a,
a, and A denote scalar, vector, and matrix, respectively. The
operators E{·}, (·)∗, (·)T , (·)H ,�, and ‖ · ‖ stand for math-
ematical expectation, complex conjugate, transpose, Hermi-
tian transpose, linear convolution, and Euclidean norm, re-
spectively.

The microphone array system with M sensors is stud-
ied in this paper. The target speech signal s(k) propagates
through the ith channel with an impulse response (IR) hi(k),
i = 1, 2, . . . ,M, and is corrupted by additive noise ni(k). The
noise ni(k) may include environment noise, sensor noise and
interferences if there are any. The sensor received signal xi(k)
of the ith channel is then expressed as

xi(k) = hi(k)� s(k) + ni(k), i = 1, 2, . . . ,M. (1)

Splitting the received signal xi(k) in (1) into frames with
suitable length N , and taking fast Fourier transform (FFT)
on the signal ofmth frame, it yields

x(m,ω) = s(m,ω)h(ω) + n(m,ω), (2)

where

x(m,ω) = [x1(m,ω)x2(m,ω) · · · xM(m,ω)
]T
,

n(m,ω) = [n1(m,ω)n2(m,ω) · · ·nM(m,ω)
]T
,

h(ω) = [h1(ω)h2(ω) · · ·hM(ω)]T ,
(3)

where ω = 0, 1, . . . ,N/2 denotes the frequency index. The
transformed signals xi(m,ω), ni(m,ω), s(m,ω) and transfer
function (TF) hi(ω) are the Fourier transform of xi(k), ni(k),
s(k), and hi(k), respectively. In this paper, we call the trans-
fer function vector h(ω) an extended array steering vector
(ASV).

Unlike the pure delay channel model used in conven-
tional array processing, the IRs {hi(n)} in (1) are arbitrary
linear filters which convey the effects of reverberation as
well as the array imperfections. Considering this extended
model in frequency domain, the robust beamforming can
be achieved by using the estimated ASV h(ω) instead of the
nominal one, which is constructed based on pure delay chan-
nel model and perfect array channel assumption, in adaptive
array processing.
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3. BLIND ARRAY STEERING VECTOR IDENTIFICATION

The following assumptions are made in this paper.

(AS1) h(ω) is fixed or slowly changing compared with the
variation of the target signal in time domain.

(AS2) The target speech signal is uncorrelated with the inter-
ference and background noise.

(AS3) The target speech signal is quasi-nonstationary. The
interference and background noise are stationary.

To estimate h(ω), an intermediate signal u(m,ω) is firstly
formed by combining the array received signals as

u(m,ω) = dH(ω)x(m,ω) = b(ω)s(m,ω) + n̄(m,ω), (4)

where

d(ω) = [d1(ω) · · ·dM(ω)]T ,
b(ω) = dH(ω)h(ω),

n̄(m,ω) = dH(ω)n(m,ω),

(5)

where d(ω) is the weight vector to form the intermediate sig-
nal u(m,ω); b(ω) is the overall response relating the source
signal and intermediate signal. With suitable weight d(ω),
the response b(ω) remains nonzero unless all the channel
responses {hi(ω)} at this frequency bin are zero. Moreover,
the SNR of u(m,ω) is improved if suitable weight d(ω) is se-
lected.

Substituting (4) into (2), we obtain

x(m,ω) = h̄(ω)u(m,ω) + ñ(m,ω), (6)

where

h̄(ω) = h(ω)
b(ω)

, ñ(m,ω) = n(m,ω)− h(ω)
b(ω)

n̄(m,ω). (7)

From (6), it can be found that the intermediate signal
u(m,ω) is related to each array received signal with the ASV
h(ω) up to a multiplicative scale 1/b(ω). In this paper, the
normalized ASV vector is later used in the beamformer. The
multiplicative scale 1/b(ω) is eliminated by the normaliza-
tion procedure if b(ω) is not zero. Therefore, in this paper,
the vector h̄(ω) is estimated instead of h(ω).

Taking the cross power spectrum density (PSD) between
x(m,ω) and u(m,ω), we have

Rxu(m,ω) = h̄(ω)σ2u(m,ω) + Rñu(m,ω), (8)

where

Rxu(m,ω) = E
{
x(m,ω)u∗(m,ω)

}
,

σ2u(m,ω) = E
{
u(m,ω)u∗(m,ω)

}
,

Rñu(m,ω) = E
{
ñ(m,ω)u∗(m,ω)

}
.

(9)

Based on assumption AS2, the cross-PSD between the
target signal and interference/noise is zero. Hence, Rñu(m,ω)

only contains the components of the PSD or cross-PSD be-
tween the interferences and background noise. Moreover, ac-
cording to assumption AS3, Rñu(m,ω) is almost independent
of frame index m due to the stationarity of interferences and
noise. In other words, we can assume that Rñu(m,ω) is time
invariant, that is, Rñu(m,ω) = Rñu(ω). Since the target signal
is nonstationary, the PSD σ2u(m,ω) and cross-PSD Rxu(m,ω)
are time variant, and their estimates σ̂2u(m,ω) and R̂xu(m,ω)
vary frame by frame. Substituting the estimates σ̂2u(m,ω) and
R̂xu(m,ω) in (8), we have

R̂xu(m,ω)

= h̄(ω)σ̂2u(m,ω) + Rñu(ω) + ε(m,ω), m = 1, . . . ,L,
(10)

where ε(m,ω) is a zero-mean estimation error vector. Con-
centrating the equations in (10), we obtain

b �


R̂xu(1,ω)

...
R̂xu(L,ω)



=



[
σ̂2u(1,ω)I 0

0 1

]
...[

σ̂2u(L,ω)I 0
0 1

]


[

h̄(ω)
Rñu(ω)

]
+


ε(1,ω)

...
ε(L,ω)



� Aθ + ξ,

(11)

where I is an identity matrix. The weighted least-square
(WLS) estimate of θ is given by

θ̂ = argmin
θ

(b− Aθ)HW(b− Aθ) = (AHWA
)−1

AHWb,

(12)

whereW is a positive Hermitian matrix.
Similar to the RR method in [19], the proposed method

is an extension of [18] to multichannel applications. How-
ever, it differs from the RR method in the reference sig-
nal. In the proposed method, the reference signal is a lin-
ear combination of the multichannel signals, while the RR
method is a special case of the proposed method when d(ω)
has one nonzero entry, for example, [0 · · · 0 1 0 · · · 0]T ,
which means it only uses the signal of one selected chan-
nel.

Following similar analysis in [18], it shows that the
proposed method produces unbiased estimate of θ. More-
over, the estimation error variance of each element of ASV
increases when the nonstationarity of the reference signal
reduces. In [18], the signal nonstationarity is indicated
by

k(ω) �
〈
σ2u(m,ω)

〉〈 1
σ2u(m,ω)

�
, (13)
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where the operator 〈·〉 is temporal average defined by [18]

〈
σ2u(m,ω)

〉
�

L∑
m=1

αmσ
2
u(m,ω), (14)

where αm is positive weight.
Large value of k(ω) is appreciated to produce estimate

with low error variance. For a given nonstationary signal cor-
rupted by stationary noise, here we show how k(ω) is affected
by SNR. According to AS2, the spectrum σ2u(m,ω) can be ex-
pressed as

σ2u(m,ω) = ∣∣b(ω)∣∣2σ2s (m,ω) + σ2n̄(ω), (15)

where σ2s (m,ω) and σ2n̄(ω) are the spectra of speech sig-
nal s(m,ω) and noise n̄(ω), respectively. We define the SNR
ρ(m,ω) ofmth interval as

ρ(m,ω) =
∣∣b(ω)∣∣2σ2s (m,ω)

σ2n̄(ω)
. (16)

The nonstationarity indicator k(ω) in (13) can be ex-
pressed in terms of SNR ρ(m,ω) as

k(ρ,ω) = 〈ρ(m,ω) + 1
〉〈 1

ρ(m,ω) + 1

�
. (17)

With the same nonstationary speech signal s(m,ω) and
different levels of noise, σ2n̄1 (ω) and σ2n̄2 (ω), where σ

2
n̄1 (ω) ≤

σ2n̄2 (ω), we have

ρ1(m,ω) =
∣∣b(ω)∣∣2σ2s (m,ω)

σ2n̄1 (ω)
≥ ρ2(m,ω)

=
∣∣b(ω)∣∣2σ2s (m,ω)

σ2n̄2 (ω)
.

(18)

Defining β = (σ2n̄1 (ω)/σ
2
n̄2 (ω)) ≤ 1, we have

ρ2(m,ω) = βρ1(m,ω). (19)

Comparing the values of k(ρ1,ω) and k(ρ2,ω), we have

k
(
ρ1,ω

)− k
(
ρ2,ω

)
= 〈ρ1(m,ω) + 1

〉〈 1
ρ1(m,ω) + 1

�
− 〈ρ2(m,ω) + 1

〉〈 1
ρ2(m,ω) + 1

�

=
L∑
i=1

L∑
j=1

αiαj
ρ1(i,ω) + 1
ρ1( j,ω) + 1

−
L∑
i=1

L∑
j=1

αiαj
ρ2(i,ω) + 1
ρ2( j,ω) + 1

=
L∑
i=2

i−1∑
j=1

αiαj

(
ρ1(i,ω) + 1
ρ1( j,ω) + 1

+
ρ1( j,ω) + 1
ρ1(i,ω) + 1

− ρ2(i,ω) + 1
ρ2( j,ω) + 1

− ρ2( j,ω) + 1
ρ2(i,ω) + 1

)

=
L∑
i=2

i−1∑
j=1

αiαj(1− β)

×
(
ρ1(i,ω)− ρ1( j,ω)

)2(
βρ1(i,ω) + βρ1( j,ω) + β + 1

)(
ρ1( j,ω) + 1

)(
βρ1( j,ω) + 1

)(
ρ1(i,ω)+1

)(
βρ1(i,ω)+1

)
≥ 0. (20)

Therefore, we have k(ρ1,ω) ≥ k(ρ2,ω) if ρ1(m,ω) ≥
ρ2(m,ω). It can be explained that, with the existence of
stronger stationary noise, the nonstationarity of the signal
u(m,ω) is weaker. If noise is dominant (ρ(m,ω)� 1), signal
u(m,ω) becomes almost stationary (k(ρ,ω) ≈ 1). It results in
estimate with infinite variance ([18, equation (28)]). In such
case, the proposedmethod cannot work. To decrease the esti-
mation error, high SNR of the reference signal is appreciated.

The RR method in [19] uses one selected channel as the
reference which is the filtered version of the speech signal by
the channel impulse response. In the frequency bin where
either the channel has low response or the target signal has
low power, the resulting low SNR causes significant estima-
tion error. With multichannel signals available, it is possible
to combine them to produce a reference signal with higher
SNR. Therefore, we optimize d(ω) to maximize the SNR of
the reference signal at frequency ω:

dopt(m,ω) = argmax
d(ω)

dH(ω)Cs(m,ω)d(ω)
dH(ω)Cn(ω)d(ω)

, (21)

where

Cs(m,ω) = E
{
s(m,ω)h(ω)s(m,ω)hH(ω)

}
= σ2s (m,ω)h(ω)hH(ω),

Cn(ω) = E{n(ω)nH(ω)}
(22)

are the covariance matrices of the distorted speech signal
s(m,ω)h(ω) and the noise n(ω). A speech signal is a qua-
sistationary signal in a short period of time. Its covariance
matrix can be estimated using temporal averaging [20]. The
noise covariancematrixCn(ω) is estimated during the speech
pause in the case where a robust speech detection algorithm
[21] is used. Because of the independence of speech and
noise, the covariance matrix of speech signal can be esti-
mated as

Cs(m,ω) = Cx(m,ω)− Cn(ω), (23)

where Cx(m,ω) = E{x(m,ω)x(m,ω)H}, which can be es-
timated when speech signal is active. With the estimated
matrices of Cn(ω) and Cs(m,ω), dopt(m,ω) is given as the
eigenvector of matrix C−1n (ω)Cs(m,ω) corresponding to the
largest eigenvalue [22]. The matrix C−1n (ω)Cs(m,ω) only dif-
fers in a varying scale σ2s (m,ω) at a different time. Since the
multiplicative nonzero scale does not change the eigenvectors
of a matrix, we can consider that the estimated dopt(m,ω) is
time invariant, that is, dopt(ω) = dopt(m,ω). In practice, the
estimate of dopt(ω) can be performed at long intervals if the
signal environment does not change. The obtained dopt(ω) is
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Figure 1: Schematic of MF-GSC in frequency domain.

then used to produce the reference signal u(m,ω) with higher
SNR for ASV identification.

The estimated vector h̄(ω) has a multiplicative scale
1/b(ω). This scale varies in different frequency bins, which
introduces additional magnitude response perturbation in
the output of beamformer if h̄(ω) is directly applied without
any modification. In this paper, we propose a simple skill to
normalize h̄(ω). The resulting normalized ASV cannot only
eliminate the effect of multiplicative scale 1/b(ω), but can
also reduce the reverberation effects of the acoustic enclo-
sure [23]. The new ASV h̃(ω) is obtained by normalizing the
vector h̄(ω) to its lth entry h̄l(ω) which has the largest norm,
|h̄l(ω)| = max{|h̄1(ω)|, |h̄2(ω)|, . . . , |h̄M(ω)|}:

h̃(ω) =
[
h̄1(ω)

h̄l(ω)
· · · h̄M(ω)

h̄l(ω)

]T

=
[
h̃1(ω) · · · h̃M(ω)

]T
,

(24)
where h̃l(ω) ≡ 1. The new vector h̃(ω) is unique. We still call
h̃(ω) an ASV. This normalization is carried out in each fre-
quency bin independently. Therefore, the index l is frequency
dependent.

4. MATCHED-FILTER-ARRAY-BASED GSC (MF-GSC)
IN FREQUENCY DOMAIN

When microphone array works in acoustic enclosure with
multipath and reverberant effects, the conventional beam-
former based on pure delay model becomes inefficient. One
severe problem is the target signal cancellation. In such case,
a new robust beamformer should be designed. In this sec-
tion, we propose an MF-array-based [13, 24, 25] GSC [3]
exploiting the estimated ASV. The resulting array not only
combats reverberant effects, but also suppresses the environ-
ment noise effectively.

The schematic of MF-GSC in frequency domain is shown
in Figure 1. The array observed signal is firstly transformed
into frequency domain. Next, signal at each frequency bin is
processed by MF-GSC. The output signal at each frequency

bin is finally transformed back to time domain to produce
the enhanced output signal using overlap-and-save method
[26].

Conventional GSC has three major parts, including fixed
beamformer g(ω), blocking filter B(ω), and multichannel
adaptive filter w(ω). To utilize the estimated ASV h̃(ω), the
conventional GSC [3] is modified. In the following context,
the modification and its effects on system performance are
presented in detail.

4.1. Fixed beamformer

The fixed beamformer is modified into a multiple-input MF
array with transfer function g(ω) = h(ω)/‖h(ω)‖2, which
coherently sums all the multipath signals to achieve maxi-
mum SNR and dereverberate the target signal [13, 24, 25].
Since the true h(ω) cannot be obtained, we use the estimated
ASV vector h̃(ω) instead. The output of the fixed beam-
former (matched-filter array) is

y(m,ω) = h̃H(ω)x(m,ω)∥∥h̃(ω)∥∥2 . (25)

The overall response of GSC to the target signal is theo-
retically determined by the response of the fixed beamformer.
From (25), the speech component ŝ(m,ω) in the output sig-
nal of fixed beamformer is

ŝ(m,ω) = hl(ω)s(m,ω), (26)

where hl(ω) is the element of h(ω) which has the largest
norm. The reverberation is caused by the ripples of room
response. As the location of the microphone in the room
changes, the position of the ripple also changes. Therefore, if
there are sufficient microphones and they have enough dis-
persiveness, the largest response at each frequency bin can be
used to reduce the ripple, that is, reverberation effects [23].

4.2. Blocking filter

The blocking filter1 is used to suppress the target signal but
passes the interference and noise as much as possible. In re-
verberant environment, since the signal components at dif-
ferent frequency bins have different response characteristics,
the conventional blocking filter [3] cannot block the target
signal efficiently. When the target signal leaks into the multi-
channel adaptive filter, it results in source signal cancellation.
Therefore, the conventional blocking filtermust also bemod-
ified to introduce temporal information in order to block all
the components of the target signal. In this paper, we pro-
pose a simple blocking matrix design method, which is easy
to implement and is able to suppress the target signal as well
as its multipath signals.

In noiseless case,

xi(m,ω)hj(ω)− xj(m,ω)hi(ω) = 0, i 
= j. (27)

1It is also called blocking matrix in conventional GSC. In the following
context, these two terms are exchangeable.
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(27) indicates that the target signal is blocked for any {hi(ω)}.
Since {hi(ω)} are unknown, we use {h̃i(ω)} instead because
{h̃i(ω)} are just the scaled version of {hi(ω)}. This does
not affect the blocking filter. A blocking filter B(ω) which is
slightly different from the one in [19] is constructed as

B(ω) =



h̃l(ω) 0 −h̃1(ω) 0 · · · 0
...

. . .
...

...
...

...

0 · · · −h̃l−1(ω) 0 · · · 0

0 · · · −h̃l+1(ω) h̃l(ω) · · · 0
...

...
...

...
. . .

...

0 · · · −h̃M(ω) 0 · · · h̃l(ω)


, (28)

where the signal of lth channel is used as a reference signal to
remove the target signal component in otherM−1 channels.
The output signal z(m,ω) of the blocking filter is given by

z(m,ω) = B(ω)x(m,ω). (29)

4.3. Multichannel adaptive filter

The output signal v(m,ω) of the multichannel adaptive filter
is given by

v(m,ω) = wH(ω)z(m,ω), (30)

where w(ω) represents the adaptive filter coefficients in fre-
quency domain. The output signal e(m,ω) of the MF-GSC is
given by

e(m,ω) = y(m,ω)− v(m,ω). (31)

The optimal adaptive weight w(ω) is obtained by solving the
following optimization problem:

min
w

E
{∥∥y(m,ω)−wHB(ω)x(m,ω)

∥∥2}. (32)

The optimal solution wopt(ω) of (32) is easily obtained
using well-known least-mean-square (LMS) method [27,
28]. In this paper, we use the leaky normalized least-mean-
square (NLMS) method [28] instead of its robustness to
small imperfection. The updating equation is expressed as

w(m + 1,ω) = βw(m,ω) + ρ f
e∗(m,ω)z(m,ω)
Px(m,ω) + δ

,

Px(m,ω) = αPx(m,ω) + (1− α)
∥∥x(m,ω)

∥∥2, (33)

where β(0 < β ≤ 1) is the leakage parameter, α(0 < α < 1) is
the forgetting factor, and ρ f (0 < ρ f < 2) is the step size. δ is a
small positive constant to avoid gradient amplification prob-
lem. When β = 1, (33) is similar to the NLMS algorithm.
Since the weightw(m,ω) should be updated only when there
is no target signal, in (33), the power of signal x(m,ω) is
used instead of the power of z(m,ω). With this modification,
the multichannel noise canceller can always be on due to the
fact that the adaptation term ρ f (e∗(m,ω)z(m,ω)/Px(m,ω))

is very small when target speech signal exists. Since the block-
ing filter and adaptive multichannel filter are not necessary
causal filters, in this paper, noncausal FIR structure con-
straint [19] was used in the simulation. The coefficient of
noncausal FIR filter has the form [h(−L), . . . ,h(R)], where
L and R are half the filter length.

5. NUMERICAL STUDY

In this section, we evaluate the performance of the proposed
method through simulation experiments on a microphone
array system for speech enhancement and noise suppression.
The microphone array consists of 5 elements, whose coordi-
nates in x-axis are 1.24m, 1.35m, 1.44m, 1.51m, and 1.56m,
respectively. Coordinates in y-axis and z-axis are both 2.0m
and 1.5m. It is placed in a small room with dimension
(x × y × z) = (2.8m × 3.2m × 2.2m), wall reflection co-
efficient 0.6, and floor/celling reflection coefficient 0.4. The
channel impulse response (IR) relating the speech source and
each microphone is calculated by an image method [29] with
a sampling rate 8 kHz. Simulation shows that the room is a
reverberant environment. The channel IR has a long tail but
decays quickly. A speech signal source is placed on the spot
(0.4m, 1.0m, 1.5m). Its interested frequency ranges from
150Hz to 3.7 kHz. A point noise source recorded from a real
conference room is placed on the spot (2.4m, 1.0m, 1.5m).

Since the target speech is nonstationary, herein, we use
average SNR σ(ω) defined as

σ(ω) = 10 log10

∑T
i=1
∣∣s′(i,ω)∣∣2∑T

i=1
∣∣n(i,ω)∣∣2 , (34)

where n(i,ω) and s′(i,ω) represent the noise and the dis-
torted target speech signal by the acoustic channel impulse
response at ωth frequency bin, respectively. T is the number
of signal samples used to estimate the average SNR.

The array received signals were segmented into blocks
of length 512. These data blocks were transformed into fre-
quency domain by FFT. The system identification proce-
dure utilized 13 segments. The length of each segment was
1024 samples. Speech detector [21] was used in the estima-
tion of the covariance matrices of noise and speech signal,
through which the optimal weight d(ω) was obtained. Rel-
ative estimation error Er is used as a performance evalu-
ation criterion for ASV estimation, where Er is defined as
Er(ω) = Ep(ω)/‖h(ω)‖2, and Ep(ω) is the error between the
true ASV and the projection misalignment vector [30] of the
estimated ASV h̄(ω). It is defined as

Ep(ω) � min
g

∥∥h(ω)− gh̄(ω)
∥∥2

=
∥∥∥∥∥h(ω)− h̄H(ω)h(ω)∥∥h̄(ω)∥∥2 h̄(ω)

∥∥∥∥∥
2

.
(35)

With such defined error Ep(ω), the effect of arbitrary
nonzero multiplicative scale in the estimated ASV is elimi-
nated.
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Figure 2: Comparison of the relative estimation error between the
RR method and the proposed method at 0 dB input SNR.

In Figure 2, an example of the relative ASV estimation er-
ror is shown to compare the performance of the RR method
with the proposed method. The experiment was carried out
at 0 dB input SNR. It shows that, at most of the frequency
bins, the proposed method has lower estimation error due to
its SNR improvement of the reference signal.

The following experiments show the SNR improvement
brought by the proposed MF-GSC compared with the GSC
based on ASV estimated by the RR method (named RR-
GSC). RR-GSC has similar implementation as the beam-
former in [19]. In Figure 3, the overall system output SNR
of MF-GSC and RR-GSC was compared. The SNR improve-
ment of MF-GSC is higher than RR-GSC at most of the fre-
quency bins, which can be explained by the improved accu-
racy of ASV estimation.

In Figure 4, we present the system performance under a
different room reverberation time T60. In these simulations,
the parameters of the beamformers were fixed except the re-
verberation time of the acoustic enclosure. It is clear that the
SNR improvement degrades for both methods if the acous-
tic enclosure has a longer reverberation time. However, for
practical reverberation time, both methods still produce out-
put signals with high SNR. On the other hand, with all the
reverberation time under consideration, the output SNR of
the proposed method is observed to be higher than that of
RR-GSC.

6. CONCLUSION

A robust microphone array for speech enhancement and
noise suppression is proposed in this paper. We present a
method to improve estimation accuracy of the array steering
vector (ASV) by utilizing the nonstationarity of speech sig-
nal and the stationarity of noise. The MF-GSC constructed
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Figure 3: Comparison of the overall system output SNR between
RR-GSC and MF-GSC at 0 dB input SNR.
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Figure 4: Comparison of the mean output SNR between RR-GSC
and MF-GSC versus different input SNRs and different reverbera-
tion times.

by means of the above estimated ASV has higher SNR im-
provement than the RR-GSCmethod. The proposed method
has the advantage that it can work in highly reverberant en-
vironments at low input SNR if the noise is stationary.
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