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An Auditory-Masking-Threshold-Based Noise
Suppression Algorithm GMMSE-AMT[ERB]
for Listeners with Sensorineural Hearing Loss
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This study describes a new noise suppression scheme for hearing aid applications based on the auditory masking threshold (AMT)
in conjunction with a modified generalized minimum mean square error estimator (GMMSE) for individual subjects with hearing
loss. The representation of cochlear frequency resolution is achieved in terms of auditory filter equivalent rectangular bandwidths
(ERBs). Estimation of AMT and spreading functions for masking are implemented in two ways: with normal auditory thresholds
and normal auditory filter bandwidths (GMMSE-AMT[ERB]-NH) and with elevated thresholds and broader auditory filters char-
acteristic of cochlear hearing loss (GMMSE-AMT[ERB]-HI). Evaluation is performed using speech corpora with objective quality
measures (segmental SNR, Itakura-Saito), along with formal listener evaluations of speech quality rating and intelligibility. While
no measurable changes in intelligibility occurred, evaluations showed quality improvement with both algorithm implementations.
However, the customized formulation based on individual hearing losses was similar in performance to the formulation based on
the normal auditory system.

Keywords and phrases: normal hearing, hearing impaired, auditory masking threshold, equivalent rectangular bandwidth, gen-
eralized minimum mean square estimation.

and (b) suprathreshold processing deficits characteristic of
sensorineural hearing loss. Hearing aids incorporate differ-

Individuals with sensorineural hearing loss have more dif-
ficulty understanding speech compared to those with nor-
mal hearing. This effect is compounded in diverse environ-
ments that may contain time varying cues/signals or multi-
ple competing speakers. This increased difficulty in under-
standing speech in noise is due to (a) reduced audibility of
speech sounds in listeners with elevated auditory thresholds,

ent strategies to compensate for reduced audibility and for
suprathreshold processing deficits. These strategies include
frequency-dependent amplification, compression, and direc-
tional microphones. Hearing aids based on digital signal pro-
cessing may also include algorithms for feedback cancellation
and active noise reduction. Spectral subtraction is one pos-
sible noise reduction algorithm for hearing aid applications
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because of its simplicity and low computational require-
ments. In general, noise reduction circuits employing spec-
tral subtraction use mathematical criteria based on the esti-
mated speech-to-noise ratio. One of the primary objectives
in speech enhancement is to achieve a balance between pure
noise suppression and the musical noise-like artifacts that
may be introduced by the processing techniques. Most noise
suppression methods are based on a signal-plus-noise model,
and mathematical criteria (such as signal-to-noise ratio) are
used to evaluate their performance. In an effort to achieve
a better balance between audible musical artifacts and noise
suppression, a number of previous studies in speech en-
hancement have considered incorporating aspects of the hu-
man auditory system including masking [1, 2, 3, 4, 5, 6].
In an earlier study, Tsoukalas et al. [1] used a spectral sub-
traction technique based on aspects of the auditory process.
Their method considers an enhancement approach that uses
the auditory masking threshold (AMT) [7] in conjunction
with a version of spectral subtraction. The AMT in their im-
plementation was calculated in four steps: (1) obtain ener-
gies in speech critical band (CB) frequency analysis, (2) con-
volve a spreading function [8] with the CB spectrum to ob-
tain a masking spread threshold, (3) compute an offset term
for masking spread thresholds that takes into account signal
tonality, and (4) normalize/compare and account for abso-
lute auditory thresholds. This speech enhancement method
is referred to as the TMK algorithm in the present study.

Based on the work in [1], Arehart et al. [9], imple-
mented a version of the TMK algorithm and evaluated
its effectiveness in improving speech-perception in noise
for both normal-hearing and hearing-impaired listeners.
This implementation is referred to as the auditory mask-
ing threshold-noise suppression (AMT-NS) scheme in the
present study. The AMT-NS algorithm yielded better qual-
ity ratings and better intelligibility scores in both normal-
hearing and hearing-impaired listeners in some but not all
of the test conditions. Their implementation of the TMK
scheme employed speech and noise sampled at 8 kHz, while
the original TMK [1] used 16 kHz samples of speech and
noise. Also, the level of intelligibility improvement reported
in [1] was significantly higher than those demonstrated in [9]
when using an 8 kHz sample rate version of the enhancement
method.

The TMK and the AMT-NS algorithms are based on
masking properties of the normal auditory system, with its
theoretical underpinnings based on MPEG-4 audio coding
[7]. Alternate processing strategies that specifically consider
hearing aid applications and the effects of sensorineural hear-
ing loss may optimize the AMT-NS approach to speech en-
hancement for hearing-impaired listeners. The present study
describes a new noise suppression scheme. Referred to here
as GMMSE-AMT[ERB], this new scheme includes two pri-
mary modification of previous formulations.

The first change is that the new algorithm includes a
modification of the suppression structure. Specifically, it
is implemented using the modified generalized minimum
mean square error (GMMSE) estimators which provide im-
provement over traditional spectral subtraction estimators

[10, 11]. The suppression structure has also been modified so
that tonality is not included. Preliminary evaluations in our
laboratory indicated that listeners preferred algorithm for-
mulations with tonality disabled. Furthermore, inclusion of
tonality would introduce additional complexity to the algo-
rithm formulation, which would impact the ability for real-
time implementation in digital hearing aid applications. Fi-
nally, the assumptions of the tonality offset, originally for-
mulated for use in MPEG-4 audio coding applications, are
primarily related to the harmonic structure of music or au-
dio. While there is some justification in using tonality offset
with voiced signals due to the harmonic structure present in
formant regions, some assumptions regarding tonality may
not be appropriate for hearing aid applications. Therefore,
we do not include a tonality offset in the formulation pre-
sented here.

The second primary modification is that the new algo-
rithm establishes a framework for customization of the AMT
estimation to individual subjects with hearing loss. To ac-
commodate this framework, the algorithm requires estima-
tion of normal frequency resolution as well as the degraded
frequency resolution characteristic of cochlear hearing loss.
Therefore, the frequency resolution of the cochlea is rep-
resented in the algorithm with an auditory filter bank us-
ing equivalent rectangular bandwidths (ERBs) [8]. While
related to the critical band scale, the ERB scale is used in
the algorithm formulation because present-day experimen-
tal studies estimating degraded frequency resolution in lis-
teners with sensorineural hearing loss have used the ERB
scale and not the critical band scale (e.g., [12, 13, 14]).
The estimation of the AMT and of the spreading functions
for masking are implemented in two ways: with normal
auditory thresholds and normal auditory filter bandwidths
(GMMSE-AMT|[ERB-NH]) and with the elevated thresholds
and broader auditory filters characteristic of cochlear hearing
loss (GMMSE-AMT[ERB-HI]).

Section 2 of this paper presents details of the algorithm
derivation including the modified structure and framework
for customization of the AMT based on individual listener
profiles. Section 3 presents evaluation of both GMMSE-
AMT[ERB-NH] and GMMSE-AMT [ERB-HI] implementa-
tions. GMMSE-AMT[ERB-NH] is evaluated over several
speech corpora, using detailed objective quality tests based
on segmental SNR and the Itakura-Saito objective quality
measures. Formal listener evaluations with normal and hear-
ing impaired subjects of speech quality rating and intelligi-
bility are also used to test performance for both the NH and
HI formulations.

2. GMMSE-AMTIERB] ALGORITHM FORMULATION

The flowchart of the proposed algorithm is presented in
Figure 1. The algorithm can be partitioned into three phases
that include: (1) enrollment (GMMSE spectral estimation),
(2) AMT threshold estimation, and (3) noise suppression.
For normal-hearing listeners, only the GMMSE-AMT[ERB-
NH] is implemented. For hearing-impaired listeners, both



2940

EURASIP Journal on Applied Signal Processing

For hearing-impaired:
digital filtering used to provide

Noisy speech

frequency-dependent
amplification prescribed by

]

NAL-R fitting procedure

1. Estimate the background noise
2. Apply a hamming window
3. Perform an ST-FFT on a frame of dat

2

1. Apply a speech pause detector
2. Track the relative magnitude of the speech and noise every 400 ms

!

Is the magnitude less

Enrollment (GMMS)

than the threshold ?

1. Calculate the a priori SNR
2. Calculate the a posteriori SNR
3. Calculate the nonlinear gain based on the value of «
4. Estimate the spectrum of the clean speech Ps(n)

Normal-hearing threshold

AMT

1. Calculate energy in each ERB from Ps (n)

3. Calculate deviation from center frequency for each band
4. Calculate excitation pattern using ROEX (p) model

5. Estimate masking threshold from excitation pattern

6. Compare with absolute threshold of hearing

2. Estimate upper and lower skirts of each auditory filter (p)

T~

Is noisy

No

No further

Noise suppression

masking
spectrum ~ threshold

enhancement —>

N‘earing-impaired threshold

. Measure audiogram to determine hearing thresholds

. Calculate filter broadening

. Estimate ERBs

. Estimate upper and lower skirts of each auditory filter (p)
. Calculate deviation from center frequency for each band

. Calculate excitation pattern using ROEX (p) model

. Estimate masking threshold from excitation pattern

. Compare with absolute threshold of hearing

/

DN N U R N~

Yes

1. Perform Wiener filtering operation
2. Estimate noise energy and gain in each ERB
3. Calculate enhanced speech

FiGure 1: Flowchart of the GMMSE-AMT[ERB] enhancement algorithm.

the GMMSE-AMT[ERB-NH] and GMMSE-AMT[ERB-HI]
versions are implemented and customized for individ-
ual hearing-impaired listeners by including frequency-
dependent amplification approximating the linear gain pre-
scribed by the NAL-R hearing aid fitting procedure [15].
GMMSE-AMT/[ERB-HI] is further customized for each in-
dividual hearing-impaired listener by considering individual
hearing losses in the AMT estimation (i.e., broader auditory
filters and elevated thresholds).

2.1. Enrollment: GMMSE spectral estimation

The first processing step is to obtain an estimate of the clean
speech power spectrum through a modified generalized min-
imum mean square estimation algorithm that is needed to
calculate the AMT. The original speech signal x(n) is as-
sumed to be degraded by an additive uncorrelated noise

source d(n), resulting in the noisy speech signal,

y(n) = x(n) +d(n). (1)
Under this assumed model, one can obtain a generalized
family of MMSE speech spectral estimators as [10, 11]

N 1/

X, = (BE{X3 1,1, ()
where X, is the power spectrum of the clean speech, and Y,
is the power spectrum of the noisy speech (both of which are
real quantities). This MMSE estimator attempts to strike a
balance between the a priori information and the noisy data
information (in this case the a posteriori SNR y — 1). One
of the main advantages of the MMSE amplitude estimator
is that it results in colorless residual noise in the enhanced
speech [16]. We note that substitution of &« = 0.5 into (1)
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gives the traditional Ephraim-Malah [17] amplitude estima-
tor, and a = 1 gives the MMSE power spectral estimator.
For MMSE, if the real and imaginary parts of the Fourier
coefficients of the clean speech and noise power spectra are
modeled as independent zero mean Gaussian random vari-
ables with variances 02(w,)/2 and oj(w, i)/2, respectively,
and « = 0.5, the MMSE estimate of X (w, ) is given by [17],}

PO v(w, 1)
X(w,i)= {F(l.S) (y(w, i)z)

0.5

®(-0.5:1:-v(w, i))] Y(w,i),
(3)

where I'[ -] is the Gamma function, and ®(a, b; z) is the con-
fluent hypergeometric series (see (4)) defined in [18], and is
dependent on the a priori SNR and a posteriori SNR,

O(a:b:2)
3 1+E£+a(a+l)é a@+)(a+2)2
S b1l b(b+1)2! b(b+1)(b+2) 3! ’
(4)
with
N 8w, :
v(w, i) = 1+f(w,i)y(w’l)’ (5)
where &(w, i) and y(w, i) are defined as
N N)) N |Y(w,i)|2
{(w,i) = 2(@,1)’ y(w,i) = @) (6)

where &(w,i) is the a priori SNR and yp(w,i) — 1 is the
a posteriori SNR as a function of frequency w and frame
index i. The definitions in (6) suggest a general represen-
tation of the terms &(w, i) and y(w, i), where {(w,1) is the
SNR using the clean speech X, and y(w, i) being the ratio
of the noisy speech spectrum of Y (w, i) to the background
noise spectrum assuming that the noise is statistically white.
While y(w,i) can be obtained from an accurate estimate
of the background noise, a decision-directed approach is
used to estimate &(w, 7). The estimate for &(w, i) is given by
(17]

|)?(w,i—1)|2
oi(w,i—1) "~

§(w,i) = (1= B)P[y(w,i—1) = 1]+ (7)

where f3 is chosen to be between 0 and 1, and P[x] = x for
x > 0,and P[x] = 0 for x < 0.

It can be shown that a small value of « (e.g., lim4_)
is suitable for noise suppression that improves the segmen-
tal SNR [11]. A larger value of a (e.g., lim,—1) reduces the
amount of musical processing artifacts and speech distortion
(note that this balance is illustrated in Enrollment phase in

INote that for (3), we use X(w, i) to represent the spectral estimate of
the clean speech which is X, in (2). This was done to be consistent with the
notation in [11, 17].

Figure 1). This suggests a benefit from a method that dynam-
ically changes the value of a, rather than restricting the pro-
cessing to a single value. Using a speech/pause detection al-
gorithm, one can dynamically change the value of . In the
noisy signal, if a pause is encountered, the value of « is dy-
namically adjusted (i.e., « — 0), and in regions where speech
is present, the value « is set to 1.

The voice activity detector (VAD) algorithm [19] used to
dynamically adjust « is described below. Let Pyi be the power
spectrum of the distortion/noise for the kth ERB frequency
subband, and Py be the estimated power spectrum of the
clean speech signal for the kth ERB frequency subband. The
values of Py and ﬁxk are obtained from the following rela-
tions:

I/ PN ~
Pak[n] = nPax[n =11+ — (Pa[n] = xPu[n —1]), ®
Paln] = uPac[n — 1]+ (1 — ) (| Xe[n] | ),

where y = 0.7,k = 0.998, and = 0.45. These values are used
for our implementation with an analysis (FFT) frame size
of 128 samples, with a skip rate of 64 samples (i.e., overlap
of 50% between adjacent analysis windows) using an 8 kHz
sample rate. These values were determined to be reasonable
for the noise types considered through a pilot experiment,
and kept fixed for all processing in the present study. The
speech pause detector algorithm is applied as follows:

NXk[I’l] - NXmink[n]
NXrelk[n] NXmaxk[n] _NXmink[n]’ (9)
where NX[n] = Pdk[n]/ﬁxk[n]. The term NX,ex[n] is the
relative ratio of the noise energy to the signal-plus-noise en-
ergy for each subband [19]. The values of NXmink[#] and
NXmaxk([n] represent the minimum and maximum ratios,
and are calculated looking back across the previous 400 mil-
liseconds portion of the speech signal. The value of the power
spectrum of the distortion in subband k, P, is modified
if NXi[n] is less than a predetermined threshold. We then
apply a nonlinear gain term, based on the value of a from
the GMMSE algorithm, the a priori SNR and the a posteriori
SNR, to the noisy power spectrum to obtain the estimate of
the clean power spectrum.

2.2. AMT threshold estimation

Having presented the GMMSE enhancement scheme and
voice activity detector, we now shift to the auditory mask-
ing threshold estimation scheme. It is important to note that
the use of an AMT is not by itself a speech enhancement pro-
cess, since it essentially allows the enhancement method to
balance noise suppression versus potential processing arti-
facts. The use of the AMT is of particular interest for hearing-
impaired individuals since, in theory, one would expect that
the AMT would be shifted for such individuals and allow for
a different level of either background noise or processing ar-
tifacts in the processed signal.

The steps for calculating the AMT (as shown in Figure 1)
in the present algorithm are as follows:



2942

EURASIP Journal on Applied Signal Processing

80

70

Excitation (dB)

O 1 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

—e— Moore-NH

—— Schroeder

—e— Moore-HI

Figure 2: Comparison of excitation patterns estimated for a
normal-hearing individual from the Schroeder model, and both
normal and hearing impaired individuals using the ROEX auditory
filter model (labeled as Moore-HI and Moore-NH from [8]).

(a) determine the auditory filter bandwidth in normal and
impaired ears,

(b) calculate the total energy in each auditory filter (ERB),

(c) compute the excitation pattern based on the auditory
filter characteristics,

(d) compare the excitation pattern with the absolute
threshold of hearing.

The auditory filters are represented using their equivalent
rectangular bandwidth [12]. For normal-hearing (NH) indi-
viduals, the hearing thresholds across all frequencies are as-
sumed to be 0dB HL. The hearing thresholds in quiet for
hearing-impaired (HI) individuals are obtained from audio-
metric testing. The ERB values for a normal-hearing indi-
vidual over the whole frequency range are described by the
following equation [12]:

ERB = 24.7(4.37F + 1), (10)

where ERB is in Hz, and F is the center frequency in kHz.
For the hearing-impaired individual, the ERB is equal to
24.7(4.37F + 1)*B, where B (B > 1) is the frequency broad-
ening term which is described below. The total threshold for
HI listeners is a combination of threshold loss due to outer
and inner hair cell damage.

The broadening of the auditory filters due to hearing loss
can be described by [13, 14]

B = (10)°~01757<HLohc722)-<[1—(fc—1)2]/3.09) (11)

up to a frequency of 1 kHz, and

B = (10)0.01757(HL9}K—22) (12)

for higher frequencies, where f; is the center frequency in
kHz, and HLop. is the amount of hearing loss due to outer
hair cell damage. Eighty percent of the total threshold loss is
assumed to be due to loss of outer hair cell function, with
the auditory filter bandwidth at 2000 Hz corresponding to
filters that are approximately 2.7 times the bandwidth of nor-
mal auditory filters (Moore and Glasberg [14]). The con-
stant 0.01757 is chosen so that B has a value of 3.8 when
HLon = 55dB, which the model assumes is the maximum
value of broadening due to outer hair cell loss below 2000 Hz.
For NH individuals, the value of B is set to 1. Thus, the to-
tal number of estimated ERB filters in the frequency parti-
tion will be smaller for impaired ears. Once the filter shapes
are defined, the signal power in each critical subband is cal-
culated as Xggp. The excitation pattern is derived from the
output of the auditory filters as a function of their center
frequency. Specifically, the excitation pattern is calculated by
summing up the power of each signal component with the
filter weighting function that is given by the ROEX(p) model,
which is described in [8], as

W(g) = (1+ pg) exp(—pg), (13)

where W is the filter shape. We note that the signal power
for calculating the excitation pattern must be recalculated to
match the audiometric testing results. The correction thresh-
olds for this recalculation are obtained from the TDH-39
headphones for both the normal and impaired ear.

The normalized distance of the signal component from
the center frequency f; of the filter involved is described as

(5

The parameter p in (13) describes both the bandwidth and
slope of the skirts of the auditory filter and can be used to de-
rived p; and p,, which, respectively, describe the sharpness of
the lower and upper sides of the ERB-based bandpass filters.
The lower frequency skirt p; of the auditory filter becomes
less sharp with increasing level. Here, p; varies with broad-
ening and level as

B-1
pi(x)=pysn - (0.35—0.35<?>) (;(;‘:L)) (Xers —51),
(15)

where p,s1) is the value of the skirt p for an equivalent noise
level of 51 dB/ERB, and p,(51,1x) is the value of p;(x) at 1 kHz
for a noise level of 51 dB/ERB. Xggp is the signal power in
each critical subband which can also be stated as the equiva-
lent input power in dB/ERB. The upper frequency skirt, p,,
of the auditory filter does not vary largely with level and can
be described as

4* f,

T 247(437F + 1) (16)

Du
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FIGURE 3: Time domain plots of (a) clean, (b) degraded with FLN
noise at 5dB SNR, and (c¢) GMMSE-AMT[ERB] enhanced speech
“In wage negotiations the industry bargains as a unit with the single
union,” and IS objective measure versus time for (d) degraded and
(e) enhanced speech signals. Average IS measures for degraded and
enhanced are 3.23 and 1.8.

Figure2 compares the excitation pattern based on
Schroeder’s spreading function and the masking in the
ROEX (rounded exponential) model [12]. The excitation
pattern does not vary with the level for the critical bands
(CB) in the Schroeder model [20]. The excitation pattern
for the impaired ear is consistent with broader filter shapes
characteristic of sensorineural hearing loss. The excitation
pattern is compared with the absolute threshold of hearing
and the AMT is set as the greater of the two.

2.3. Scaling issues

Auditory filter shape is dependent on stimulus level [12, 13].
Therefore it is necessary to scale the signal appropriately to
represent the actual playback level in dB SPL. This is achieved
in the following way.

(a) The output level of the speech waveform is set to
60 dB (SPL) for normal hearing subject and 90 dB (SPL) for
individuals with hearing loss.

(b) The maximum dB value of the signal is identified af-
ter performing a frame-based FFT analysis of the signal.

(c) A scaling factor is chosen to convert the power spec-
trum of the signal in dB to a dB (SPL) scale such that
the maximum dB (SPL) is limited to 60 dB (SPL) for nor-
mal hearing and 90 dB (SPL) for hearing-impaired individu-
als.

2.4. Audible noise suppression

In our formulation, we use a window frame of the noisy
speech Y,, (7, k) and clean speech X,, (i, k) frequency responses
in the following power spectral representations (in a manner
similar to [1]):

Xp(ik) = [ 1%, G0 P ], Yplid) = [[Ya(ido) ).
(17)
The noisy speech spectrum is compared with the AMT as cal-
culated in the previous section. The clean speech spectrum is
estimated using a nonlinear gain function that is derived us-
ing a nonlinear filtering operation for the ith frame and kth

subband as shown below [1]:

SN Y, (i, k) . . _
Xp(l, k) = [m] Yp(l,k), with subband b = k,
(18)
where the parameter a; (i) is given by
D%,
N p
ap(i) = Dpp + Tk’ (19)

where Dy, is the mean noise power spectrum of the noise
in ERB subband b, and T}, is the masking threshold in the
same subband. We can see from (19) that if the noise level
approaches the masked threshold T}, (i, k), then the value of
ap (i) approaches 2D, and therefore the suppression in (18)
is always greater than the traditional Wiener filter solution
(i.e., the Wiener filter solution would have a;(i) = D, so
ay(i) = 2D, will produce a greater suppression value as a
function of frequency). If the noise spectrum is below this
threshold, no further enhancement processing is performed
(as illustrated in Figure 1). The enhanced signal is renormal-
ized? and converted back to the time domain.

2The renormalization here is essentially converting from power to mag-
nitude spectrum, transforming the frequency domain signal back to the time
domain, tracking the maximum and minimum of the waveform to avoid
clipping, and finally scaling the input and output signal by a fixed ratio de-
termined by the ratio of their maxima.
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FiGgure 4: Plot of (i) AMT (solid line), (ii) noisy power spec-
trum (NPS: solid line with a dot), and (iii) clean power spec-
trum (PS: dashed line) of the voiced vowel /EY/ for the GMMSE-
AMT[ERB-NH] scheme implemented for an individual with nor-
mal thresholds.

3. EVALUATION

In this section, a detailed performance evaluation is pre-
sented for the formulated GMMSE-AMT [ERB] algorithm in
the form of objective speech quality results as well as results
from subjective speech quality and intelligibility tests. The
objective quality of the enhanced speech is assessed in terms
of segmental SNRs (SegSNR) as well as the Itakura-Saito
(IS) objective speech quality measure [21] for the GMMSE-
AMT[ERB-NH] implementation. These measures are ex-
plained below in detail. Finally, detailed subjective speech
quality tests using a quality rating scale and intelligibility
tests using the nonsense syllable test (NST) are presented
for individuals with and without hearing loss to assess the
performance of the GMMSE-AMT[ERB-NH] and GMMSE-
AMT[ERB-HI] algorithm implementations.

For our evaluation, we considered two types of noise
with different frequency and temporal structure: (i) station-
ary flat communications channel noise (FLN), and (ii) large
crowd noise from within an open room (LCR). These noise
sources have previously been used for speech enhancement
and robust speech recognition evaluations [22]. The FLN
noise represents a broadband noise source that is quite sta-
tionary. The LCR noise is slowly varying and primarily low
frequency, where high-frequency (4 kHz) content is approx-
imately 10 dB lower than that seen in the low-frequency re-
gion.

3.1. Temporal and spectral plots

Figure 3 shows time waveforms of (i) clean speech, (ii)
speech degraded with background FLN noise at 5dB SNR,

Power (dB)

—10 4
20 . . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)
— AMT
i
—— NPS

FiGure 5: Plots of (i) AMT (solid line), (ii) noisy power spectrum
(NPS: solid line with a dot), and (iii) clean power spectrum (PS:
dashed line) of the voiced vowel /EY/ for the GMMSE-AMT|ERB-
HI] scheme implemented for a typical hearing-impaired listener.

and (ili) speech enhanced using the present algorithm
(GMMSE-AMT[ERB-NH]) for a single sentence to illus-
trate detailed processing performance. The processed sen-
tence, “In wage negotiations the industry bargains as a unit
with the single union,” is taken from the TIMIT speech cor-
pus, and is approximately 5.5 seconds in duration and sam-
pled at an 8 kHz sample rate. Figure 3 also shows the IS ob-
jective speech quality measures for the same sentence, (iv)
degraded with the FLN 5dB noise, and (v) enhanced with
GMMSE-AMT [ERB-NH]. From this figure, one can observe
noticeable noise suppression performed by the GMMSE-
AMT[ERB-NH] scheme. The cumulative area under the IS
curves in the bottom two panels represents the total amount
of distortion as estimated with the IS measure. The enhanced
sentence IS plot (v) shows noticeably less distortion than
the degraded sentence across the phoneme sequence. This
single sentence result has therefore confirmed that the pro-
posed enhancement method provides noise suppression and
quality improvement, which is in proportion to the level
and type of distortion. We consider a more extensive set
of speech enhancement evaluations using objective speech
quality measures (overall and within each phoneme) and
subjective speech quality measures in the next section. Before
considering this, we will briefly consider an example compar-
ison of the AMT used in the GMMSE-AMT|[ERB] enhance-
ment scheme.

Figures 4 and 5 show the spectral plots of (1) the noisy
speech power spectrum, (2) the clean speech power spec-
trum, and (3) the audible masked threshold (AMT) for the
vowel /EY/ for the GMMSE-AMT[ERB-NH]| and GMMSE-
AMT[ERB-HI] implementations. Any portion of the power
spectrum of the noisy speech that falls below the AMT is



GMMSE-AMT [ERB] Enhancement with Auditory Masking Threshold

2945

assumed to be inaudible and therefore will not be suppressed.
Comparing the AMT for the voiced speech in the NH and
HI schemes, one can see that for the HI scheme (Figure 5)
there would be far less suppression than in the NH scheme
(Figure 4). Because of the pronounced effect of masking in
HI individuals, more signal components are masked. On av-
erage, noise suppression is performed approximately 80% of
the time for the NH scheme and about 40% of the time for HI
scheme if we consider each ERB-based filter band and time-
based analysis frame. Next, we consider objective measures
of processed speech quality over a larger speech corpus.

3.2. Objective quality measures

The performance of an enhancement algorithm can be as-
sessed in two ways: (a) employing objective speech quality
measures and/or (b) subjective listener tests, which have as
their goal to quantify the improvement/distortion that a hu-
man listener would perceive. Two of the most widely used
objective quality measures are the segmental SNR (SegSNR)
and the Itakura-Saito (IS) distance measure [21, 22]. In
normal-hearing listeners, the SegSNR and IS measures have
been benchmarked against subjective speech quality mea-
sures such as the diagnostic acceptability measure (DAM).
The correlation between DAM and IS is 0.59 and between
DAM and SegSNR is 0.77. These values are based on a vari-
ety of distortions including additive noise, communication
distortions, nonlinear distortions, and vocoder distortions
[21].

We note that the research performed on objective speech
quality measures have focused almost exclusively on mea-
sures for predicting speech quality for voice coding applica-
tions ([21], [23, Chapter 9]). However, these objective mea-
sures have been used extensively to assess the performance
of speech enhancement and noise suppression schemes as
well. An important issue to note is that for the present study,
we employ an AMT. In many objective measures, such as
SegSNR, overall speech signal energy and noise signal energy
are used within a frame-by-frame basis. Since the purpose of
the AMT is to balance noise suppression versus processing
artifacts, the AMT is in effect disabling the noise suppression
scheme in regions, where further noise suppression would,
only introduce, audible processing artifacts. Therefore, for
measures such as SegSNR, methods which did not employ
an AMT would, in theory, always be selected over those with
an AMT since more noise power is left behind (even if that
noise is not audible). As such, it would be appropriate to con-
sider a direct comparison of speech enhancement methods
that either (i) process noisy speech without an AMT or (ii)
employ an AMT, but do not compare between methods that
have AMT engaged and disabled. For this reason, we do not
report objective measures within our enhancement methods
for engaged/disabled AMT processing.

For a broad objective quality evaluation, the 192-
sentence core test set in the TIMIT database, with both
male and female speakers, was degraded with both station-
ary (FLN) and nonstationary (LCR) additive noise sources.
The noise levels were set at 0dB and 5dB SNR. Overall av-

TaBLE 1: Comparison of the objective quality measures across
different noise SNRs for the degraded and enhanced GMMSE-
AMT[ERB-NH] speech corpus. (SegSNR is in dB, so larger is better;
IS measure reflects distortion, so closer to 0 is better.)

SegSNR I

Noise DEG ENH DEG ENH
FLN 0 dB ~4.95 ~1.63 4.23 245
FLN 5dB ~2.09 0.87 3.35 1.90
FLN 8 dB ~0.62 2.38 2.95 1.64
LCROdB —4.41 ~1.73 3.03 2.16
LCR5dB ~1.85 0.59 2.38 1.63
LCR8dB ~0.06 2.08 2.01 1.40

TaBLE 2: Comparison of the overall objective quality measures for
the degraded speech corpus at 0 dB SNR and the speech corpus en-
hanced with the TMK algorithm and with the GMMSE-AMT [ERB-
NH] speech corpus. (SegSNR is in dB, so larger is better; IS measure
reflects distortion, so closer to 0 is better.)

FLN: LCR:
Flat comm. noise Large crowd noise
Algorithm SegSNR IS SegSNR IS
Degraded -4.95 4.23 -4.41 3.03
TMK —-1.56  2.46 —-1.66  2.54
GMMSE-AMT[ERB-NH]  —1.63  2.45 173 2.16

erage objective quality measures for the entire 192-sentence
TIMIT core set, spoken by both male and female speak-
ers, are presented in Table 1. There are approximately 67 000
speech frames and 8000 silence frames in each test. These re-
sults are indicative of the algorithm performance for large
speech corpus.

The objective quality results of speech degraded with
FLN and LCR noise with different SNRs (0 dB, 5dB, 8 dB)
and enhanced with GMMSE-AMT|[ERB-NH] are presented
in Table 1 (note that each entry represents an average over
192-TIMIT-sentences). There is a measurable improvement
in SegSNRs for both noise types at all SNR levels. There is
also a corresponding level of improvement in the IS mea-
sure for the enhanced speech over the degraded speech for
all conditions (this is especially true for noise types at 5dB
SNR).

Next, we consider performance of the proposed enhance-
ment method with respect to TMK. In Table 2, we present
the average SegSNR and IS objective speech quality mea-
sures for the 192-TIMIT-sentence test set for FLN and LCR
noise distortions at 0 dB SNR. Both noise level (SegSNR) and
speech quality (IS) are significantly impacted by both noise
sources. Using the TMK algorithm, we performed enhance-
ment for all 192-sentences, and measurable improvement is
seen. Since FLN noise is closer to white Gaussian noise, the
level of improvement in IS is slightly larger than for the LCR
noise, which has multiple speakers in a crowd setting and
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is more time varying.> The results from Table 2 confirm a
similar level of noise suppression, as represented in SegSNR
measure, between GMMSE-AMT[ERB-NH] and TMK algo-
rithms. For quality improvement, the performance is com-
parable for FLN, and GMMSE-AMT[ERB-NH] is slightly
better than TMK for LCR. Having considered overall per-
formance, we now wish to examine where in the acous-
tic phoneme space TMK versus GMMSE-AMT[ERB-NH]
shows improvement. In Table 3, we summarize individual
IS objective measure performance for each phoneme from
the 192 TIMIT sentence test set. The original degraded
speech at an SNR of 5dB with FLN noise is shown un-
der “DEG,” and corresponding IS measures for the TMK
and proposed enhancement method (labeled as ERB). There
are 76 876 frames of speech processed in each case. From
this table, we see that GMMSE-AMT[ERB-NH] provides a
consistently higher level of quality for nasals, vowels, diph-
thongs, and semi-vowels. Fricatives and stops resulted in
similar level of performance for both enhancement meth-
ods. The only class which showed a slight loss for GMMSE-
AMT[ERB-NH] was for the silence class (a reduction in
IS of 0.15 when going to GMMSE-AMT[ERB-NH] from
TMK).

3.3. Listener evaluations

In this section, we describe the procedures used to evaluate
the effectiveness of the GMMSE-AMT[ERB-NH] scheme in
normal-hearing listeners and the GMMSE-AMT|[ERB-NH]
and GMMSE-AMT|[ERB-HI] schemes in hearing-impaired
listeners. Our current evaluation uses a sampling rate of
8000 Hz, which was motivated by our earlier studies on
speech enhancement for telephone/telecommunication ap-
plications [24], as well as limited computational resources for
hearing aid systems.

3.3.1. Listeners

Six listeners with normal hearing and ten listeners with hear-
ing loss participated in this study. Listeners with normal
hearing had thresholds of 20 dB HL (ANSI, 1989) or better
at octave frequencies from 250-8000 Hz, inclusive. Listeners
with hearing loss demonstrated test results consistent with
sensorineural pathology: normal tympanometry; absence of
otoacoustic emissions in regions of threshold loss and ab-
sence of an air-bone gap exceeding 10 dB at any frequency.
Listeners with hearing loss had a mild-to-severe hearing loss.
All listeners were tested monaurally. Table 4 provides a sum-
mary of the characteristics of the listeners with hearing loss,
including the audiometric thresholds of the test ear. The
test ear of the hearing-impaired listeners was chosen based
on the ear with a threshold configuration, allowing the best
digital filter design for linear amplification (see below). Lis-
teners were tested individually in a double-walled sound
booth. Daily test sessions typically lasted one hour but did

3We note that the study by Hansen and Arslan [24] does compare sta-
tionarity of FLN, LCR, and other noise sources in the context of speech en-
hancement and robust speech recognition in noise.

not extend beyond two hours. Listeners were compensated 8
USD/hour for their participation.

3.3.2. Stimuli

Speech materials. Two different sets of speech stimuli were
used in this study. Speech quality was assessed using 256 sen-
tences from the hearing-in-noise test [25]. Speech intelligi-
bility was assessed using 102 syllables from the CUNY non-
sense syllable test [26]. The speech stimuli were digitized at
an 8 kHz sampling rate and stored on a Pentium IV com-
puter.

Noise conditions. Speech stimuli were degraded with large
crowd room noise (LCR) and flat channel noise (FLN) at
overall SNRs of 0 dB and +5 dB.

Signal processing. Digitized speech was degraded with
sample noise files with appropriate scaling to generate each
SNR. This set of “degraded” signals was then processed by
the GMMSE-AMT(ERB) scheme to generate the set of “en-
hanced” speech signals. In all enhancement processing, the
noise spectrum was estimated during an initial portion of
silence/noise prior to speech activity, and this estimate was
kept constant across the syllable (NST material) or sen-
tence (HINT). The GMMSE-AMT(ERB) scheme was applied
in two ways. The first approach GMMSE-AMT(ERB-NH)
used thresholds and auditory filter bandwidths characteris-
tic of a normally functioning auditory system. Both listener
groups were evaluated with the GMMSE-AMT (ERB-NH)
approach. Implemented only for the hearing-impaired lis-
tener group, the second approach GMMSE-AMT(ERB-HI)
used thresholds and auditory filter bandwidths characteristic
of sensorineural hearing loss. Customized for each individ-
ual hearing-impaired listener, the GMMSE-AMT(ERB-HI)
implementation adjusted the spread-of-masking functions
based on individual thresholds and auditory filter band-
widths [14].

Table 5 provides a summary of the stimulus conditions.
Quality and intelligibility were measured in a total of eight
conditions for the normal-hearing group (2 noise types with
2 SNRs for 2 processing conditions) and a total of 12 condi-
tions for the hearing-impaired group (2 noise types with 2
SNRs for 3 processing conditions).

3.3.3. Equipment

For listener presentation, the digitally stored stimuli went
through a digital-to-analog converter (TDT AP2, DD1), a
4000 Hz anti-aliasing filter (TDT FT3), an attenuator (TDT
PA4), and a headphone buffer (TDT HB6). Finally, the stim-
uli were presented monaurally to the test ear of each listener
through a TDH-49 earphone.

3.3.4. Presentation level

All stimuli were presented to normal-hearing listeners at an
equalized RMS level of 60dB SPL. Because listeners with
hearing loss were not wearing hearing aids, the preprocessed
stimuli were frequency-shaped through digital filtering to
simulate amplification. Thus, the stimuli presented to the
hearing-impaired subjects through headphones was an am-
plified version of the signal presented to the normal-hearing
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TaBLE 3: A comparison of individual phoneme Itakura-Saito objective speech quality measures for the 192-TIMIT-sentence test set for FLN
noise at 5dB SNR (labeled DEG), TMK processed, and GMMSE-AMT[ERB-NH] (labeled ERB) enhancement algorithms. Here, #Fr refers
to the number of frames for each individual phoneme with a total of 76 870 frames in the test set.

Objective speech quality across American phonemes

Ph. DEG TMK ERB #Fr Ph. DEG TMK ERB #Fr
Consonants-nasals Consonant-unvoiced stops
/m/ me 3.508 1.886 1.743 1645 Ip/ pan 2.447 1.270 1.302 796
/n/ no 3.847 2.141 1.932 2270 /t/ fan 1.914 0.925 0.909 1114
Ing/ Sinfg 3.955 2.230 1.967 402 /k/ key 2.293 1.204 1.190 1132
/nx/ many 1.605 0.867 0.823 141 Consonant-voiced stops
/em/ problem 3.612 2.573 1.944 37 /b/ be 2.012 1.071 0.995 304
/en/ traction 3.984 2.309 1.994 283 /d/ dawn 2.228 1.142 1.059 375
/eng/ greasiig 3.243 1.366 1.264 6 g/ give 2.399 1.177 1.187 255
Consonant-unvoiced fricatives Consonant-closure stops
/sl sip 2.819 1.341 1.299 4892 Jtcl/ it pays 5.519 3.486 3.489 1732
/th/ thing 4.042 2.146 2.116 392 kel/ pockets 5.847 3.737 3.789 1583
/1] fan 3.248 1.503 1.508 1825 /bcl/ to buy 6.255 4.127 3.929 972
/sh/ show 1.772 0.924 0.820 1109 /dcl/ sandwich 5.226 3.392 3.215 1212
Consonant-voiced fricatives /gcl/ iguanas 5.577 3.616 3.467 527
lzl zip 3.232 1.596 1.446 2036 Ipcl/ accomglish 6.593 4.291 4.282 1247
/zh/ garage 1.960 0.920 0.910 115 Consonant-glottal stop flap
/dh/ that 2.807 1.494 1.421 630 /q/ _allow 3.017 1.695 1.627 898
vl van 3.378 1.749 1.596 741 /dx/ put.in 1.699 0.924 0.862 327
Consonants-affricates Consonant-unvoiced whisper
/ih/ joke 2.354 1.270 1.164 357 /hh/ had 2.761 1.451 1.398 414
/ch/ chop 2.263 1.092 1.111 477 Consonant-voiced whisper
/hv/ you have 2.148 1.208 1.280 275
Vowels-front Diphthongs
/ih/ hid 1.433 0.812 0.755 2070 lay/ hide 1.046 0.633 0.588 1818
/eh/ head 1.225 0.695 0.657 2265 oyl coin 1.712 0.896 0.769 396
[ae/ had 0.996 0.575 0.557 1940 leyl pain 1.161 0.664 0.602 2064
Jux/ to buy 1.999 1.005 0.952 603 /ow/ code 2.072 1.083 1.045 1540
Vowels-mid Jaw/ pout 1.267 0.791 0.697 696
aa/ odd 1.507 0.865 0.758 2227 liy/ new 1.712 0.983 0.835 2841
ler/ earth 2.146 1.186 1.110 1582 Semivowel-liquids
/ah/ up 1.556 0.870 0.828 1524 /1] ran 2.279 1.245 1.206 2071
/ao/ all 2.105 1.167 1.004 1622 N/ lawn 2.397 1.361 1.258 1895
Vowels-back fel/ chemicals 3.194 1.809 1.693 702
[uw/ boot 2.466 1.378 1.349 313 Semivowels-glides
/uh/ foot 1.972 1.119 1.077 295 Iwil wet 3.095 1.715 1.619 1179
Vowel-front schwa Iyl you 1.743 0.987 0.890 390
/ix/ heed 2.508 1.332 1.249 2527 Silence
Vowel-back schwa /#/ extended 7.479 4.739 4.882 9716
Jax/ aton 2.627 1.448 1.387 1119 /pau/ pause 6.000 3.599 3.589 1158
Vowel-retroflexed schwa Jepi/ epenthetic 4.881 2.729 2.621 253
Jaxt/ after 2.877 1.617 1.605 1488
Vowel-voiceless schwa Overall 3.345 1.950 1.904 76870
Jax-h/ sub 3.846 2.230 1.890 55 Overall-/#/ 2.747 1.547 1.473 67154
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TABLE 4: Age (yrs), test ear (left/right), and audiometric thresholds (in dB HL) of listeners with hearing loss. (“na” means threshold mea-

surements were not available.)

HI listener ~ Age Test ear 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz 6000 Hz 8000 Hz
1 65 R 30 55 60 65 55 50 70
2 40 R 25 35 50 60 75 70 55
3 44 R 30 25 35 55 105 na 90
4 23 R 35 35 50 60 50 na 35
5 70 L 85 80 65 60 50 45 55
6 80 L 25 10 15 45 70 70 70
7 25 R 5 15 40 40 55 50
8 59 R 5 5 50 70 50 40
9 56 L 5 15 35 70 90 85 90

10 47 L 15 15 25 30 45 55 60

TasLE 5: Conditions in which subjective speech intelligibility and quality were evaluated for the group of normal-hearing listeners (NH) and

the group of hearing-impaired listeners (HI).

Group Normal-hearing (NH) Hearing-impaired (HI)
Noise type (1) Flat channel no%se (FCN) (1) Flat channel noi.se (FCN)
(2) Large crowd noise (LCR) (2) Large crowd noise (LCR)
SNR (1) 0dB (1) 0dB
(2)5dB (2)5dB

1) Degraded
Processing conditions (1) Deg

(1) Degraded
(2) GMMSE-AMT[ERB-NH]

(2) GMMSE-AMT[ERB-NH]

(3) GMMSE-AMT[ERB-HI]

subjects, with the amplification approximating the linear
gain prescribed by the NAL-R fitting procedure [15].

3.3.5. Speech quality ratings

The categorical rating scales used for the quality ratings are
the same as those used by Neuman et al. [27] and are similar
to those developed by Gabrielson et al. [28]. A 10-point rat-
ing scale was used to obtain ratings on five different stimulus
attributes: clarity, pleasantness, background noise, loudness,
and overall impression, with a rating of “0” being worst and
a rating of “10” being best. Listeners used a written response
form containing the five quality scales to record their ratings.
For each condition, participants listened to a block of 30 of
the 256 HINT sentences and then used the 10-point scales to
rate the quality of the speech for each of the five attributes.
The starting sentence for each block of 30 sentences was ran-
domly selected such that on one block of trials the subject
would listen to sentences 45 through 75, on the next block
sentences 125 through 155 and so forth. A set of quality rat-
ings consisted of ratings on each of the five attributes in each
of the eight conditions. The order of the conditions in each
set was randomized. Three sets of quality ratings were ob-
tained. Each set took about 40 minutes to complete.

3.3.6.

Nonsense syllable test. The nonsense syllable test (NST) [26,
29] is a closed-set test in which a listener hears a nonsense

Intelligibility

syllable and then chooses between seven and nine response
alternatives. The test consists of 102 syllables contained in 11
subtests, each of which contains between seven and nine syl-
lables. The subtests differ in terms of voicing and position of
consonants as well as the vowel. The order of presentation
of the 102 nonsense syllables was randomized on each block
of trials. The intelligibility session for each listener included
one 102-syllable list in each condition, with the order of the
conditions randomized within the set. The overall measure
of performance is the percentage of correctly identified non-
sense syllables.

3.4. Results

3.4.1. Speech quality ratings

Speech quality ratings for each attribute were first averaged
for the three trials for each listener. Ratings were then av-
eraged across listeners in each group. Average ratings for
the five attributes of quality for the normal-hearing listen-
ers and hearing-impaired listeners are shown in Figure 6. A
separate repeated measures analysis of variance (ANOVA)
was done for each quality attribute for each of the listener
groups. Listener groups were considered separately because
the number of processing conditions differed between the
two groups. The results of these statistical analyses are shown
in Table 6. Enhancement with the GMMSE-AMT[ERB] tech-
nique resulted in significant benefit in quality ratings on
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FIGURE 6: Average ratings of the normal-hearing listeners (left column) and the hearing-impaired listeners (right column) for the five at-
tributes of quality (clarity, pleasantness, background noise, loudness, and overall impression) for degraded (DEG) and enhanced (AMT(NH)
and AMT(HI)) speech conditions.
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Ficure 7: Intelligibility percent-correct scores on the nonsense
syllable test scores for normal-hearing listeners (left) and for
hearing-impaired listeners (right) for degraded (DEG) and en-
hanced (AMT(NH) and AMT(HI)) speech conditions.

several attributes in both subject groups. In normal-hearing
listeners, enhancement resulted in significantly less noisy rat-
ings, better clarity ratings, and better overall quality rat-
ings. In hearing-impaired listeners, enhancement resulted in
significantly better clarity ratings, significantly less noisy rat-
ings, and significantly better overall quality ratings. In the
hearing-impaired group, loudness ratings increased slightly
(albeit significantly) in the enhanced conditions. Increasing
SNR had a significant effect on four of the five rating scales
in each listener group (NH: ratings of clarity, pleasantness,
loudness, and overall quality; HI: ratings of clarity, back-
ground noise, loudness, and overall quality). Overall vari-
ability was greater in the HI group versus the NH group. In
the normal-hearing group, noise type was a significant factor
in quality ratings: LCR was consistently rated more favorably
compared to FLN. In both listener groups, the (processing x
SNR) interaction was significant for the background noise
scale: stimuli enhanced with GMMSE-AMT[ERB] showed
significantly larger changes (decreases) in ratings of noisiness
in the 5dB SNR condition.

3.4.2. Intelligibility: NST

Figure 7 shows NST scores (in proportion correct) for de-
graded and enhanced conditions for both normal-hearing
listeners (left) and hearing-impaired listeners (right). The
NST percent-correct scores were first subjected to an arc-
sin transform [30] and then submitted to repeated measures
ANOVAs. The ANOVA results are shown in Table 7. NST
scores were better (20% on average) and less variable in the
normal-hearing listeners than in the hearing-impaired listen-
ers. In the normal-hearing group, the main effects of noise
and SNR were significant: intelligibility scores were better
in the +5dB SNR condition and for the LCR noise. In the
hearing-impaired group, the only significant main effect was

SNR. Enhancement did not significantly affect intelligibility
scores in either group.

4. DISCUSSION AND CONCLUSIONS

In this study, we have considered the problem of speech
enhancement in diverse environmental conditions using a
speech enhancement scheme that employs an auditory mask-
ing threshold (AMT) to balance the degree of noise sup-
pression versus perceived processing artifacts. The goals of
this study have been to (i) modify the suppression struc-
ture to incorporate the modified generalized minimum mean
square error (GMMSE) estimators, and (ii) establish a work-
ing framework for speech enhancement which directly incor-
porates the hearing response of individual hearing-impaired
listeners. This approach was motivated by the earlier study
that resulted in the TMK algorithm [1], which showed a
substantial level of intelligibility improvement as measured
by the DRT (diagnostic rhyme test) for individuals with
normal-hearing. Motivated by this first demonstration of in-
telligibility improvement in the speech enhancement litera-
ture, we previously developed an approach which improved
on the estimation of the AMT [9] and also evaluated the im-
proved procedure using quality measures and formal DRT
testing [9]. We saw that an approach that improves on the
estimation of the AMT and integrates this into a generalized
MMSE noise suppression algorithm [10, 11] does improve
quality, but the level of intelligibility improvement was only
modest for normal-hearing individuals [9]. Even so, we feel
that these prior studies served as an important foundation
to develop improved noise suppression schemes for hearing-
impaired persons, and, in theory, should offer the potential
to develop more effective automatic speech processing algo-
rithms for digital hearing aids, which could both improve
quality and intelligibility.

The present study has considered a revised formulation
that is more suitable for hearing aid applications and incor-
porated the following processing phases: (i) a modified gen-
eralized minimum mean square error estimator (GMMSE)
was employed, (ii) the frequency resolution of the cochlea
was represented using the auditory filter equivalent rect-
angular bandwidths (ERBs) rather than the critical band
scale, (iii) estimation of the auditory masking threshold and
spreading functions for masking were adjusted to address the
elevated thresholds and broader auditory filters that result
from sensorineural hearing loss, and (iv) the current algo-
rithm did not include the tonality offset developed for use
in MPEG-4 audio coding applications, since it is based more
on the harmonic structure of sounds associated with music.
After developing the GMMSE-AMT[ERB] noise suppression
scheme, we specialized the approach to those with normal
hearing and hearing impaired listeners (i.e., NH and HI algo-
rithm versions). The output level of the speech waveform was
set to different levels for normal and hearing-impaired indi-
viduals. The algorithm was evaluated using large crowd room
noise and flat communications channel noise at two separate
SNRs. Using objective speech quality measures, the output
SegSNR performance improved from 2.44 to 3.32 dB over the
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TaBLE 6: Summary of the main effects (processing, noise, SNR) from the analysis of variance carried out for the five attributes of quality
using HINT sentences for each listener group: *p < 0.05; **p < 0.01; * * * p < 0.001. F-values are also reported for significant interactions.

Clarity Pleasant Background noise Loudness Overall
Normal-hearing group F (1,5) F (1,5) F (1,5) F (1,5) F (1,5)
Processing 20.3%* 4.5 16.6** 2.0 25.7%*
Noise 41.4%** 30.9%* 7.7* 10.5* 48.3%**
SNR 15.2%* 6.6* 0.30 24.0%* 15.6*
(Processing < SNR) — — 9* — —
Noise X SNR — — — — 13*
Hearing-impaired group F (1,5) F (1,5) F(1,5) F(1,5) F(1,5)
Processing 4.5% 0.886 25% %% 5.3* 6.8%*
Noise 0.74 1.4 3.1 2.6 0.745
SNR 8.5% 0.488 13.1* 5.12* 6.3*
(Processing X SNR) — — 10.9% * * — —
(Processing X noise) — — — 4.2% —

TaBLE 7: Summary of main effects for ANOVA for NST scores for
each listener group (NH, HI) with factors of processing, noise, and
signal-to-noise ratio (SNR). Significant interaction effects are also
listed. * p < 0.05; **p < 0.01; *** p < 0.001.

Source NH group HI group

df F (NH) df F (HI)
Processing 1,3 1.7 2,18 2.9
Noise 1,3 31.4% 1,9 2.9
SNR 1,3 11.8* 1,9 23.2%*
Processing X noise 1,3 28.3% — —
Processing X SNR — — 2,18 4.7*

original degraded corpus. Using the Itakura-Saito objective
quality measure, the level of distortion was measurably re-
duced from an initial degraded level of 2.38-4.23 down to
1.63-2.45, improvements ranging from 0.75 to 1.78. This im-
provement came within the acoustic phoneme space primar-
ily in nasals, vowels, diphthongs, and semi-vowels, with the
same performance for stops and fricatives.

Next, formal listener evaluations using 6 normal and 10
hearing-impaired individuals were performed for quality us-
ing HINT sentences and intelligibility using the CUNY non-
sense syllable test. For subjective quality tests, a measur-
able level of speech quality improvement and background
noise reduction were obtained with GMMSE-AMT[ERB-
NH] for NH and HI listeners. The GMMSE-AMT|[ERB-HI]
version of the enhancement algorithm also showed quality
improvement over the original degraded materials. How-
ever, results with GMMSE-AMT[ERB-HI] and GMMSE-

AMT|[ERB-NH] were similar. Customization of the AMT did
not show significant advantages over the uncustomized (de-
fault NH version) method in listener ratings of quality.

Formal intelligibility evaluations using NST materi-
als showed either a slight improvement, the same, or
a slight reduction across the four noise conditions for
GMMSE-AMT[ERB-HI] and GMMSE-AMT[ERB-NH] al-
gorithm configurations. This is in stark contrast to the level
of intelligibility improvement reported in [1] for normal-
hearing individuals. As addressed in [9], possible reasons
for discrepancies reported between [1] and our work in-
clude (i) differences in sampling rate/bandwidth, (ii) use of a
voice activity detector with noise spectral update in [1] ver-
sus a single initial noise estimate for our studies, (iii) dif-
ferences in linguistic backgrounds (Greek versus English)
of listeners, and (iv) procedures used for listener evalua-
tions. Finally, while the present study established a frame-
work for customization, the customized implementation was
not significantly better for hearing-impaired listeners. In the
present formulation, two steps are crucial for speech en-
hancement: these include the particular method for estimat-
ing the AMT, and second the particular method used to per-
form the noise suppression given the AMT. Given the results
from the present study, it is natural to ask if

(i) the noise suppression was not capable of taking full ad-
vantage of the customization for individual hearing re-
sponses; and/or

(ii) whether there remains an error in how the AMT esti-
mation is performed for HI listeners; and finally,

(iii) whether there is additional knowledge or information,
either separate or in addition to the AMT, needed to
perform effective customized noise suppression for HI
listeners.
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In future studies, it would be useful to consider these
three issues. Also, we maintained a single noise spectral es-
timate across the speech sentence, and engaging the voice
activity detector to update noise estimates as well as « in
the GMMSE enhancement scheme could improve perfor-
mance. We believe that it would be possible to incorporate
a codebook-based AMT scheme such as that in [31] for indi-
viduals with cochlear hearing loss. Such an approach would
require extensive modeling of the particular types of hear-
ing loss for each listener, and to incorporate this bias into the
AMT codebook entry selection process.
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