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A comprehensive linear minimummean squared error (LMMSE) approach for parametric speech enhancement is developed. The
proposed algorithms aim at joint LMMSE estimation of signal power spectra and phase spectra, as well as exploitation of corre-
lation between spectral components. The major cause of this interfrequency correlation is shown to be the prominent temporal
power localization in the excitation of voiced speech. LMMSE estimators in time domain and frequency domain are first formu-
lated. To obtain the joint estimator, we model the spectral signal covariance matrix as a full covariance matrix instead of a diagonal
covariance matrix as is the case in the Wiener filter derived under the quasi-stationarity assumption. To accomplish this, we de-
compose the signal covariance matrix into a synthesis filter matrix and an excitation matrix. The synthesis filter matrix is built
from estimates of the all-pole model coefficients, and the excitation matrix is built from estimates of the instantaneous power
of the excitation sequence. A decision-directed power spectral subtraction method and a modified multipulse linear predictive
coding (MPLPC) method are used in these estimations, respectively. The spectral domain formulation of the LMMSE estimator
reveals important insight in interfrequency correlations. This is exploited to significantly reduce computational complexity of the
estimator. For resource-limited applications such as hearing aids, the performance-to-complexity trade-off can be conveniently
adjusted by tuning the number of spectral components to be included in the estimate of each component. Experiments show that
the proposed algorithm is able to reduce more noise than a number of other approaches selected from the state of the art. The
proposed algorithm improves the segmental SNR of the noisy signal by 13 dB for the white noise case with an input SNR of 0 dB.
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1. INTRODUCTION

Noise reduction is becoming an important function in hear-
ing aids in recent years thanks to the application of powerful
DSP hardware and the progress of noise reduction algorithm
design. Noise reduction algorithms with high performance-
to-complexity ratio have been the subject of extensive re-
search study for many years. Among many different ap-
proaches, two classes of single-channel speech enhancement
methods have attracted significant attention in recent years
because of their better performance compared to the clas-
sic spectral subtraction methods (a comprehensive study of

This is an open access article distributed under the Creative Commons
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spectral subtraction methods can be found in [1]). These
two classes are the frequency domain block-based minimum
mean squared error (MMSE) approach and the signal sub-
space approach. The frequency domain MMSE approach
includes the noncausal IIR Wiener filter [2], the MMSE
short-time spectral amplitude (MMSE-STSA) estimator [3],
the MMSE log-spectral amplitude (MMSE-LSA) estima-
tor [4], the constrained iterative Wiener filtering (CIWF)
[5], and the MMSE estimator using non-Gaussian priors
[6]. These MMSE algorithms all rely on an assumption of
quasi-stationarity and an assumption of uncorrelated spec-
tral components in the signal. The quasi-stationarity as-
sumption requires short-time processing. At the same time,
the assumption of uncorrelated spectral components can
be warranted by assuming the signal to be infinitely long
and wide-sense stationary [7, 8]. This infinite data length
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assumption is in principle violated when using the short-
time processing, although the effect of this violation may be
minor (and is not themajor issue this paper addresses). More
importantly, the wide-sense stationarity assumption within
a short frame does not well model the prominent temporal
power localization in the excitation source of voiced speech
due to the impulse train structure. This temporal power lo-
calization within a short frame can be modeled as a non-
stationarity of the signal that is not resolved by the short-
time processing. In [9], we show how voiced speech is ad-
vantageously modeled as nonstationary even within a short
frame and that this model implies significant inter-frequency
correlations. As a consequence of the stationarity and long
frame assumptions, the MMSE approaches model the fre-
quency domain signal covariance matrix as a diagonal ma-
trix.

Another class of speech enhancement methods, the sig-
nal subspace approach, implicitly exploits part of the inter-
frequency correlation by allowing the frequency domain
signal covariance matrix to be nondiagonal. This class in-
cludes the time domain constraint (TDC) linear estima-
tor and spectral domain constraint (SDC) linear estima-
tor [10], and the truncated singular value decomposition
(TSVD) estimator [11]. In [10], the TDC estimator is shown
to be an LMMSE estimator with adjustable input noise level.
When the TDC filtering matrix is transformed to the fre-
quency domain, it is in general non-diagonal. Nevertheless,
the known signal-subspace-based methods still assume sta-
tionarity within a short frame. This can be seen as follows.
In TDC and SDC the noisy signal covariance matrices are
estimated by time averaging of the outer product of the sig-
nal vector, which requires stationarity within the interval of
averaging. The TSVD method applies singular value decom-
position to the signal matrix instead. This can be shown to be
equivalent to the eigen decomposition of the time-averaged
outer product of signal vectors. Compared to the mentioned
frequency domainMMSE approaches, the known signal sub-
space methods implicitly avoid the infinite data length as-
sumption, so that the inter-frequency correlation caused by
the finite-length effect is accommodated. However, the more
important cause of inter-frequency correlation, that is, the
non stationarity within a frame, is not modeled.

In terms of exploiting the masking property of the hu-
man auditory system, the above-mentioned frequency do-
main MMSE algorithms and signal-subspace-based algo-
rithms can be seen as spectral masking methods without ex-
plicit modeling of masking thresholds. To see this, observe
that the MMSE approaches shape the residual noise (the re-
maining background noise) power spectrum to one more
similar to the speech power spectrum, thereby facilitating a
certain degree of masking of the noise. In general, the MMSE
approaches attenuate more in the spectral valleys than the
spectral subtraction methods do. Perceptually, this is ben-
eficial for high-pitch voiced speech, which has sparsely lo-
cated spectral peaks that are not able to mask the spectral
valley sufficiently. The signal subspace methods in [10] are
designed to shape the residual noise power spectrum for
a better spectral masking, where the masking threshold is

found experimentally. Auditory masking techniques have re-
ceived increasing attention in recent research of speech en-
hancement [12, 13, 14]. While the majority of these works
focus on spectral domain masking, the work in [15] shows
the importance of the temporal masking property in connec-
tion with the excitation source of voiced speech. It is shown
that noise between the excitation impulses is more perceiv-
able than noise close to the impulses, and this is especially so
for the low-pitch speech for which the excitation impulses lo-
cate temporally sparsely. This temporal masking property is
not employed by current frequency-domain MMSE estima-
tors and the signal subspace approaches.

In this paper, we develop an LMMSE estimator with
a high temporal resolution modeling of the excitation of
voiced speech, aiming for modeling a certain non-station-
arity of the speech within a short frame, which is not
modeled by quasi-stationarity-based algorithms. The exci-
tation of voiced speech exhibits prominent temporal power
localization, which appears as an impulse train superim-
posed with a low-level noise floor. We model this tem-
poral power localization as a non-stationarity. This non-
stationarity causes significant inter-frequency correlation.
Our LMMSE estimator therefore avoids the assumption of
uncorrelated spectral components and is able to exploit the
inter-frequency correlation. Both the frequency domain sig-
nal covariance matrix and filtering matrix are estimated as
complex-valued full matrices, which means that the infor-
mation about inter-frequency correlation are not lost and the
amplitude and phase spectra are estimated jointly. Specifi-
cally, wemake use of the linear-prediction-based source-filter
model to estimate the signal covariance matrix, upon which
a time domain or frequency domain LMMSE estimator is
built. In the estimation of the signal covariance matrix, this
matrix is decomposed into a synthesis filter matrix and an
excitation matrix. The synthesis filter matrix is estimated by
a smoothed power spectral subtraction method followed by
an autocorrelation linear predictive coding (LPC) method.
The excitation matrix is a diagonal matrix with the instan-
taneous power of the LPC residual as its diagonal elements.
The instantaneous power of the LPC residual is estimated
by a modified multipulse linear predictive coding (MPLPC)
method. Having estimated the signal covariance matrix, we
use it in a vector LMMSE estimator. We show that by doing
the LMMSE estimation in the frequency domain instead of
time domain, the computational complexity can be reduced
significantly due to the fact that the signal is less correlated
in the frequency domain than in the time domain. Com-
pared to several quasi-stationarity-based estimators, the pro-
posed LMMSE estimator results in a lower spectral distortion
to the enhanced speech signal while having higher noise re-
duction capability. The algorithm applies more attenuation
in the valleys between pitch impulses in time domain, while
small attenuation is applied around the pitch impulses. This
arrangement exploits the temporal masking effect and results
in a better preservation of abrupt rise of the waveform am-
plitude while maintaining a large amount of noise reduction.

The rest of this paper is organized as follows. In Section 2
the notations and assumptions used in the derivation of
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LMMSE estimators are outlined. In Section 3, the non-
stationary modeling of the signal covariance matrices is
described. The algorithm is summarized in Section 4. In
Section 5, the computational complexity of the algorithm is
reduced by identifying an interval of significant correlation
and by simplifying the modified MPLPC procedure. Experi-
mental settings, objective, and subjective results are given in
Section 6. Finally, Section 7 discusses the obtained results.

2. BACKGROUND

In this section, notations and statistic assumptions for the
derivation of LMMSE estimators in time and frequency do-
mains are outlined.

2.1. Time domain LMMSE estimator

Let y(n, k), s(n, k), and v(n, k) denote the nth sample of noisy
observation, speech, and additive noise (uncorrelated with
the speech signal) of the kth frame, respectively. Then

y(n, k) = s(n, k) + v(n, k). (1)

Alternatively, in vector form we have

y = s + v, (2)

where boldface letters represent vectors and the frame indices
are omitted to allow a compact notation. For example y =
[y(1, k), y(2, k), . . . , y(N , k)]T is the noisy signal vector of the
kth frame, where N is the number of samples per frame.

To obtain linear MMSE estimators, we assume zero-
mean Gaussian PDFs for the noise and the speech processes.
Under this statistic model the LMMSE estimate of the signal
is the conditional mean [16]

ŝ = E[s|y] = Cs
(
Cs + Cv

)−1
y, (3)

where Cs and Cv are the covariance matrices of the signal
and the noise, respectively. The covariance matrix is defined
as Cs = E[ssH], where (·)H denotes Hermitian transposition
and E[·] denotes the ensemble average operator.

2.2. Frequency domain LMMSE
estimator andWiener filter

In the frequency domain the goal is to estimate the com-
plex DFT coefficients given a set of DFT coefficients of the
noisy observation. Let Y(m, k), θ(m, k), and V(m, k) denote
the mth DFT coefficient of the kth frame of the noisy ob-
servation, the signal, and the noise, respectively. Due to the
linearity of the DFT operator, we have

Y(m, k) = θ(m, k) +V(m, k). (4)

In vector form we have

Y = θ +V, (5)

where again boldface letters represent vectors and the frame
indices are omitted. As an example, the noisy spectrum vec-

tor of the kth frame is arranged as Y = [Y(1, k),Y(2, k),
. . . ,Y(N , k)]T where the number of frequency bins is equal
to the number of samples per frame N .

We again use the linear model. Y, θ, andV are assumed to
be zero-mean complex Gaussian random variables and θ and
V are assumed to be uncorrelated to each other. The LMMSE
estimate is the conditional mean

θ̂ = E[θ|Y] = Cθ
(
Cθ + CV

)−1
Y, (6)

where Cθ and CV are the covariance matrices of the DFT co-
efficients of the signal and the noise, respectively. By applying
inverse DFT to each side, (6) can be easily shown to be iden-
tical to (3).

The relation between the two signal covariance matrices
in time and frequency domains is

Cθ = FCsF
−1, (7)

where F is the Fourier matrix. If the frame was infinitely long
and the signal was stationary, Cs would be an infinitely large
Toeplitz matrix. The infinite Fourier matrix is known to be
the eigenvector matrix of any infinite Toeplitz matrix [8].
Thus, Cθ becomes diagonal and the LMMSE estimator (6)
reduces to the noncausal IIR Wiener filter with the transfer
function

HWF(ω) = Pss(ω)
Pss(ω) + Pvv(ω)

, (8)

where Pss(ω) and Pvv(ω) denote the power spectral density
(PSD) of the signal and the noise, respectively. In the sequel
we refer to (8) as the Wiener filter or WF.

3. HIGH TEMPORAL RESOLUTIONMODELING FOR
THE SIGNAL COVARIANCEMATRIX ESTIMATION

For both time and frequency domains LMMSE estima-
tors described in Section 2, the estimation of the signal
covariance matrix Cs is crucial. In this work, we assume
the noise to be stationary. For the signal, however, we pro-
pose the use of a high temporal resolution model to capture
the non-stationarity caused by the excitation power varia-
tion. This can be explained by examining the voice produc-
tion mechanism. In the well-known source-filter model for
voiced speech, the excitation source models the glottal pulse
train, and the filter models the resonance property of the
vocal tract. The vocal tract can be viewed as a slowly vary-
ing part of the system. Typically in a duration of 20ms to
30ms it changes very little. The vocal folds vibrate at a faster
rate producing periodic glottal flow pulses. Typically there
can be 2 to 8 glottal pulses in 20ms. In speech coding, it is
common practice to model this pulse train by a long-term
correlation pattern parameterized by a long-term predictor
[17, 18, 19]. However, this model fails to describe the lin-
ear relationship between the phases of the harmonics. That
is, the long-term predictor alone does not model the tempo-
ral localization of power in the excitation source. Instead, we
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apply a time envelope that captures the localization and con-
centration of pitch pulse energy in the time domain. This, in
turn, introduces an element of non-stationarity to our sig-
nal model because the excitation sequence is now modeled
as a random sequence with time-varying variance, that is, the
glottal pulses are modeled with higher variance and the rest
of the excitation sequence is modeled with lower variance.
This modeling of non-stationarity within a short frame im-
plies a temporal resolution much finer than that of the quasi-
stationarity-based-algorithms. The latter has a temporal res-
olution equal to the frame length. Thus we term the former
the high temporal resolution model. It is worth noting that
some unvoiced phonemes, such as plosives, have very fast
changing waveform envelopes, which also could be modeled
as non-stationarity within the analysis frame. In this paper,
however, we focus on the non-stationary modeling of voiced
speech.

3.1. Modeling signal covariancematrix

The signal covariance matrix is usually estimated by averag-
ing the outer product of the signal vector over time. As an
example this is done in the signal subspace approach [10].
This method assumes ergodicity of the autocorrelation func-
tion within the averaging interval.

Here we propose the following method of estimating
Cs with the ability to model a certain element of non-
stationarity within a short frame. The following discussion
is only appropriate for voiced speech. Let r denote the excita-
tion source vector andH denote the synthesis filteringmatrix
corresponding to the vocal tract filter such that

H =




h(0) 0 0 · · · 0

h(1) h(0) 0
...

h(2) h(1) h(0)
...

...
. . . 0

h(N − 1) h(N − 2) · · · h(0)



, (9)

where h(n) is the impulse response of the LPC synthesis filter.
We then have

s = Hr, (10)

and therefore

Cs = E
[
ssH
] = HCrHH , (11)

where Cr is the covariance matrix of the model residual vec-
tor r. In (11) we treat H as a deterministic quantity. This
simplification is common practice also when the LPC filter
model is used to parameterize the power spectral density in
classic Wiener filtering [5, 20]. Section 3.2 addresses the es-
timation of H. Note that (10) does not take into account the
zero-input response of the filter in the previous frame. Either
the zero-input response can be subtracted prior to the esti-
mation of each frame or a windowed overlap-add procedure
can be applied to eliminate this effect.

We nowmodel r as a sequence of independent zero-mean
random variables. The covariance matrix Cr is therefore di-
agonal with the variance of each element of r as its diagonal
elements. For voiced speech, except for the pitch impulses,
the rest of the residual is of very low amplitude and can be
modeled as constant variance random variables. Therefore,
the diagonal of Cr takes the shape of a constant floor with a
few periodically located impulses. We term this the temporal
envelope of the instantaneous residual power. This tempo-
ral envelope is an important part of the new MMSE estima-
tor because it provides the information of uneven temporal
power distribution. In the following two subsections, we will
describe the estimation of the spectral envelope and the tem-
poral envelope, respectively.

3.2. Estimating the spectral envelope

In the context of LPC analysis, the synthesis filter has a spec-
trum that is the envelope of the signal spectrum. Thus, our
goal in this subsection is to estimate the spectral envelope of
the signal. We first use the decision-directed method [3] to
estimate the signal power spectrum and then use the auto-
correlation method to find the spectral envelope.

The noisy signal power spectrum of the kth frame |Y(k)|2
is obtained by applying the DFT to the kth observation vector
y(k) and squaring the amplitudes. The decision-directed es-

timate of the signal power spectrum of the kth frame, | ˆ̂θ(k)|2,
is a weighted sum of two parts, the power spectrum of the
estimated signal of the previous frame, |θ̂(k − 1)|2, and the
power-spectrum-subtraction estimate of the current frame’s
power spectrum:

∣∣ ˆ̂θ(k)∣∣2 = α
∣∣θ̂(k − 1)

∣∣2
+ (1− α)max

(∣∣Y(k)∣∣2 − E
[∣∣V̂(k)∣∣2], 0),

(12)

where α is a smoothing factor α ∈ [0, 1] and E[|V̂(k)|2] is the
estimated noise power spectral density. The purpose of such
a recursive scheme is to improve the estimate of the power-
spectrum-subtractionmethod by smoothing out the random
fluctuation in the noise power spectrum, thus reducing the
“musical noise” artifact [21]. Other iterative schemes with
similar time or spectral constraints are applicable in this con-
text. For a comprehensive study of constraint iterative filter-
ing techniques, readers are referred to [5]. We now take the
square root of the estimated power spectrum and combine it
with the noisy phase to reconstruct the so called intermediate
estimate, which has the noise-reduced amplitude spectrum
and a noisy phase. An autocorrelation method LPC analy-
sis is then applied to this intermediate estimate to obtain the
synthesis filter coefficients.

3.3. Estimating the temporal envelope
We propose to use amodifiedMPLPCmethod to robustly es-
timate the temporal envelope of the residual power. MPLPC
is first introduced by Atal and Remde [17] to optimally de-
termine the impulse position and amplitude of the excitation
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in the context of analysis-by-synthesis linear predictive cod-
ing. The principle is to represent the LPC residual with a few
impulses in which the locations and amplitudes (gains) of
the impulses are chosen such that the difference between the
target signal and the synthesized signal is minimized. In the
noise reduction scenario, the target signal will be the noisy
signal and the synthesis filter must be estimated from the
noisy signal. Here, the synthesis filter is treated as known.
For the residual of voiced speech, there is usually one domi-
nating impulse in each pitch period. We first determine one
impulse per pitch period then model the rest of the resid-
ual as a noise floor with constant variance. In MPLPC the
impulses are found sequentially [22]. The first impulse lo-
cation and amplitude are found by minimizing the distance
between the synthesized signal and the target signal. The ef-
fect of this impulse is subtracted from the target signal and
the same procedure is applied to find the next impulse. Be-
cause this way of finding impulses does not take into account
the interaction between the impulses, reoptimization of the
impulse amplitudes is necessary every time a new impulse
is found. The number of pitch impulses p in a frame is de-
termined in the following way. p is first assigned an initial
value equal to the largest number of pitch periods possible in
a frame. Then p impulses are determined using the above-
mentioned method. Only the impulses with an amplitude
larger than a threshold are selected as pitch impulses. In our
experiment, the threshold is set to 0.5 times the largest im-
pulse amplitude in this frame. Having determined the im-
pulses, a white noise sequence representing the noise floor of
the excitation sequence is added into the gain optimization
procedure together with all the impulses. We use a codebook
of 1024 white Gaussian noise sequences in the optimization.
The white noise sequence that yields the smallest synthesis
error to the target signal is chosen to be the estimate of the
noise floor. This procedure is in fact a multistage coder with
p impulse stages and one Gaussian codebook stage, with a
joint reoptimization of gains. Detailed treatment of this op-
timization problem can be found in [23]. After the optimiza-
tion, we use a flat envelope equal to the square of the gain
of the selected noise sequence to model the variance of the
noise floor. Finally, the temporal envelope of the instanta-
neous residual power is composed of the noise floor variance
and the squared impulses. When applied to noisy signals, the
MPLPC procedure can be interpreted as a nonlinear least
square fitting to the noisy signal, with the impulse positions
and amplitudes as the model parameters.

4. THE ALGORITHM

Having obtained the estimate of the temporal envelope of the
instantaneous residual power and the estimate of the synthe-
sis filter matrix, we are able to build the signal covariance
matrix in (11). The covariance matrix is used in the time
LMMSE estimator (3) or in the spectral LMMSE estimator
(6) after being transformed by (7).

The noise covariance matrix can be estimated using
speech-absent frames. Here, we assume the noise to be sta-
tionary. For the time domain LMMSE estimator (3), if the

(1) Take the kth frame.
(2) Estimate the noise PSD from the latest speech-absent

frame.
(3) Calculate the power spectrum of the noisy signal.
(4) Do power-spectrum-subtraction estimation of the signal

PSD, and refine the estimate using decision-directed
smoothing (equation (12)).

(5) Reconstruct the signal by combining the amplitude
spectrum estimated by step (4) and the noisy phase.

(6) Do LPC analysis to the reconstructed signal. Obtain the
synthesis filter coefficients and form the synthesis matrix
H.

(7) IF the frame is voiced
Estimate the envelope of the instantaneous residual

power using the modified MPLPC method.
(8) IF the frame is unvoiced

Use a constant envelope for the instantaneous residual
power.

(9) ENDIF
(10) Calculate the residual covariance matrix Cr.
(11) Form the signal covariance matrix Cs = HCrH

H

(equation (11)).
(12) IF time domain LMMSE:

ŝ = Cs(Cs + Cv)
−1y (equation (3)).

(13) IF frequency domain LMMSE: transform Cs to
frequency domain Cθ = FCsF

−1, filter the noisy
spectrum θ̂ = Cθ(Cθ + CV)−1Y (equation (6)), and
obtain the signal estimate by inverse DFT.

(14) ENDIF
(15) Calculate the power spectrum of the filtered signal,

|θ̂(k − 1)|2, for use in the PSD estimation of next frame.
(16) k = k + 1 and go to step (1).

Algorithm 1: TFE-MMSE estimator.

noise is white, the covariance matrix Cv is diagonal with the
noise variance as its diagonal elements. In the case of colored
noise, the noise covariance matrix is no longer diagonal and
it can be estimated using the time-averaged outer product of
the noise vector. For the spectral domain LMMSE estimator
(6),CV is a diagonalmatrix with the power spectral density of
the noise as its diagonal elements. This is due to the assumed
stationarity of the noise.1 In the special case where the noise
is white, the diagonal elements all equal the variance of the
noise.

We model the instantaneous power of the residual of un-
voiced speech with a flat envelope. Here, voiced speech is re-
ferred to as phonemes that require excitation from the vo-
cal folds vibration, and unvoiced speech consists of the rest
of the phonemes. We use a simple voiced/unvoiced detector

1In modeling the spectral covariance matrix of the noise we have ig-
nored the inter-frequency correlations caused by the finite-length window
effect. With typical window length, for example, 15ms to 30ms, the inter-
frequency correlations caused by the window effect are less significant than
those caused by the non-stationarity of the signal. This can be easily seen by
examining a plot of the spectral covariance matrix.
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Figure 1: (a) The voiced speech waveform and (b) its time domain (left) and frequency domain (right) (amplitude) covariance matrices
estimated with the nonstationary model. Frame length is 128 samples.

that utilize the fact that voiced speech usually has most of
its power concentrated in the low frequency band, while un-
voiced speech has a relatively flat spectrumwithin 0 to 4 kHz.
Every frame is lowpass filtered and then the filtered signal
power is compared with the original signal power. If the
power loss is more than a threshold, the frame is marked as
an unvoiced frame, and vice versa. Note however that even
for the unvoiced frames, the spectral covariance matrix is
non-diagonal because the signal covariance matrix Cs, built
in this way, is not Toeplitz. Hereafter, we refer to the pro-
posed approach as the time-frequency-envelope MMSE es-
timator (TFE-MMSE), due to its utilization of envelopes in
both time and frequency domains. The algorithm is summa-
rized in Algorithm 1.

5. REDUCING COMPUTATIONAL COMPLEXITY

The TFE-MMSE estimators require inversion of a full covari-
ance matrix Cs or Cθ . This high computational load pro-
hibits the algorithm from real-time application in hearing

aids. Noticing that both covariance matrices are symmetric
and positive definite, Cholesky factorization can be applied
to the covariance matrices, and the inversion can be done
by inverting the Cholesky triangle. A careful implementation
requires N3/3 operations for the Cholesky factorization [24]
and the algorithm complexity is O(N3). Another computa-
tion intensive part of the algorithm is the modified MPLPC
method. In this section we propose simplifications to these
two parts.

Further reduction of complexity for the filtering requires
understanding the inter-frequency correlation. In the time
domain the signal samples are clearly correlated with each
other in a very long span. However, in the frequency do-
main, the correlation span is much smaller. This can be seen
from the magnitude plots of the two covariance matrices (see
Figure 1).

For the spectral covariance matrix, the significant val-
ues concentrate around the diagonal. This fact indicates that
a small number of diagonals capture most of the inter-
frequency correlation. The simplified procedure is as follows.
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Half of the spectrum vector θ is divided into small segments
of l frequency bins each. The subvector starting at the jth
frequency is denoted as θsub, j , where j ∈ [1, l, 2l, . . . ,N/2]
and l � N . The noisy signal spectrum and the noise spec-
trum can be segmented in the same way giving Ysub, j and
Vsub, j . The LMMSE estimate of θsub, j needs only a block of
the covariance matrix, which means that the estimate of a
frequency component benefits from its correlations with l
neighboring frequency components instead of all compo-
nents. This can be written as

θ̂sub, j = Cθsub, j

(
Cθsub, j + CVsub, j

)−1
Ysub, j . (13)

The first half of the signal spectrum can be estimated seg-
ment by segment. The second half of the spectrum is simply
a flipped and conjugated version of the first half. The seg-
ment length is chosen to be l = 8, which, in our experi-
ence, does not degrade performance noticeably when com-
pared with the use of the full matrix. Other segmentation
schemes are applicable, such as overlapping segments. It is
also possible to use a number of surrounding frequency com-
ponents to estimate a single component at a time. We use the
nonoverlapping segmentation because it is computationally
less expensive while maintaining good performance for small
l. When the signal frame length is 128 samples and the block
length is l = 8, using this simplified method requires only
8 × 83/1283 = 1/512 times of the original complexity for
the filtering part of the algorithm with an extra expense of
FFT operations to the covariance matrix. When l is set to val-
ues larger than 24, very little improvement in performance is
observed. When l is set to values smaller than 8, the quality
of enhanced speech degrades noticeably. By tuning the pa-
rameter l, an effective trade-off between the enhanced speech
quality and the computational complexity is adjusted conve-
niently.

In the MPLPC part of the algorithm, the optimization of
the impulse amplitude and the gain of the noise floor brings
in heavy computational load. It can be simplified by fixing
the impulse shape and the noise floor level. In the simplified
version, the MPLPC method is only used for searching the
locations of the p dominating impulses. Once the locations
are found, a predetermined pulse shape is put at each loca-
tion. An envelope of the noise floor is also predetermined.
The pulse shape is chosen to be wider than an impulse in
order to gain robustness against estimation error of the im-
pulse locations. This is helpful as long as noise is present.
The pulse shape used in our experiment is a raised cosine
waveform with a period of 18 samples and the ratio between
the pulse peak and the noise floor amplitude is experimen-
tally determined to be 6.6. Finally, the estimated residual
power must be normalized. Although the pulse shape and
the relative level of the noise floor are fixed for all frames,
experiments show that the TFE-MMSE estimator is not sen-
sitive to this change. The performance of both the simpli-
fied procedure and the optimum procedure is evaluated in
Section 6. Figure 2 shows the estimated envelopes of residual
in the two ways.
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Figure 2: Estimated magnitude envelopes of the residual by (a) the
complete MPLPC method and (b) the simplified MPLPC method.

6. RESULTS

Objective performance of the TFE-MMSE estimator is first
evaluated and compared with the Wiener filter [2], the
MMSE-LSA estimator [4], and the signal subspace method
TDC estimator [10]. For the TFE-MMSE estimator, both the
complete algorithm and the simplified algorithms are eval-
uated. For all estimators the sampling frequency is 8 kHz,
and the frame length is 128 samples with 50% overlap. In
the Wiener filter we use the same decision-directed method
as in the MMSE-LSA and the TFE-MMSE estimator to es-
timate the PSD of the signal. An important parameter for
the decision-directed method is the smoothing factor α.
The larger the α, the more noise is removed and more dis-
tortion imposed to the signal, because of more smoothing
made to the spectrum. In the MMSE-LSA estimator with
the aforesaid parameter setting, we found experimentally
α = 0.98 to be the best trade-off between noise reduction
and signal distortion. We use the same α for the WF and the
TFE-MMSE estimator as for the MMSE-LSA estimator. For
the TDC, the parameter µ (µ � 1) controls the degree of
oversuppression of the noise power [10]. The larger the µ,
the more attenuation to the noise but larger distortion to the
speech. We choose µ = 3 in the experiments by balancing the
noise reduction and signal distortion.

All estimators run with 32 sentences from different
speakers (16 male and 16 female) from the TIMIT database
[25] added with white Gaussian noise, pink noise, and car
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Figure 3: (a), (b) SNR gain, (c), (d) segSNR gain, and (e), (f) log-spectral distortion gain for the white Gaussian noise case. (a), (c), and (e)
are for male speech and (b), (d), and (f) are for female speech.

noise in SNR ranging from 0dB to 20dB. The white Gaus-
sian noise is computer generated, and the pink noise is gen-
erated by filtering white noise with a filter having a 3 dB

per octave spectral power descend. The car noise is recorded
inside a car with a constant speed. Its spectrum is more low-
pass than the pink noise. The quality measures used include
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Table 1: Preference test between WF and TFE-MMSE3 with addi-
tive white Gaussian noise.

Gender Approach 15dB 10dB 5dB

Male WF 8% 7% 37%

speaker TFE 92% 83% 63%

Female WF 37% 33% 58%

speaker TFE 63% 67% 42%

Table 2: Preference test between MMSE-LSA and TFE-MMSE3
with additive white Gaussian noise.

Gender Approach 15dB 10dB 5dB

Male LSA 4% 25% 46%

speaker TFE 96% 75% 54%

Female LSA 25% 42% 50%

speaker TFE 75% 58% 40%

the SNR, the segmental SNR, and the log-spectral distortion
(LSD). The SNR is defined as the ratio of the total signal
power to the total noise power in the sentence. The segmental
SNR (segSNR) is defined as the average ratio of signal power
to noise power per frame. To prevent the segSNR measure
from being dominated by a few extreme low values, since the
segSNR is measured in dB, it is common practice to apply a
lower power threshold ε to the signals. Any frame that has an
average power lower than ε is not used in the calculation. We
set ε to 40 dB lower than the average power of the utterance.
The segSNR is commonly considered to be more correlated
to perceived quality than the SNR measure. The LSD is de-
fined as [26]

LSD = 1
K

K∑
k=1

[
1
M

M∑
m=1

(
20log10

∣∣X(m, k)
∣∣ + ε∣∣X̂(m, k)
∣∣ + ε

)2]1/2

, (14)

where ε is to prevent extreme low values. We again set ε to
40 dB lower than the average power of the utterance. Results
of the white Gaussian noise case are given in Figure 3. TFE-
MMSE1 is the complete algorithm, and TFE-MMSE2 is the
one with simplified MPLPC and reduced covariance matrix
(l = 8). It is observed that the TFE-MMSE2, though a result
of simplification of TFE-MMSE1, has better performance
than the TFE-MMSE1. This can be explained as follows. (1)
Its wider pulse shape is more robust to the estimation error
of impulse positions. (2) The wider pulse shape can model
to some extent the power concentration around the impulse
peaks, which is overlooked by the spiky impulses. For this
reason, in the following evaluations we investigate only the
simplified algorithm.

Informal listening tests reveal that, although the speech
enhanced by the TFE-MMSE algorithm has a significantly
clearer sound (less muffled than the reference algorithms),
the remaining background noise has musical tones. A solu-
tion to the musical noise problem is to set a higher value
to the smoothing factor α. Using a larger α sacrifices the

SNR and LSD slightly at high input SNRs, but improves the
SNR and LSD at low input SNRs, and generally improves the
segSNR significantly. The musical tones are also well sup-
pressed. By setting α = 0.999, the residual noise is greatly
reduced, while the speech still sounds less muffled than for
the reference methods. The reference methods cannot use
a smoothing factor as high as the TFE-MMSE: experiments
show that at α = 0.999 the MMSE-LSA and the WF result in
extremely muffled sounds. The TDC also suffers from a mu-
sical residual noise. To suppress its residual noise level to as
low as that of the TFE-MMSE with α = 0.999, the TDC re-
quires a µ lager than 8. This causes a sharp degradation of the
SNR and LSD and results in very muffled sounds. The TFE-
MMSE2 estimator with a large smoothing factor (α = 0.999)
is hereafter termed TFE-MMSE3 and its objective measures
are also shown in the figures. To verify the perceived qual-
ity of the TFE-MMSE3 subjectively, preference tests between
the TFE-MMSE3 and the WF, and between the TFE-MMSE3
and the MMSE-LSA are conducted. TheWF and the MMSE-
LSA use their best value of smoothing factor (α = 0.98). The
test is confined to white Gaussian noise and a limited range
of SNRs. Three sentences by male speakers and three by fe-
male speakers at each SNR level are used in the test. Eight un-
experienced listeners are required to vote for their preferred
method based on the amount of noise reduction and speech
distortion. The utterances are presented to the listeners by a
high-quality headphone. The clean utterance is first played
as a reference, and the enhanced utterances are played once,
or more if the listener finds this necessary. The results in Ta-
bles 1 and 2 show that (1) at 10 dB and 15dB the listeners
clearly prefer the TFE-MMSE over the two reference meth-
ods, while at 5 dB the preference on the TFE-MMSE is un-
clear; (2) the TFE-MMSE method has a more significant im-
pact on the processing of male speech than on the processing
of female speech. At 10 dB and above, the speech enhanced
by TFE-MMSE3 has barely audible background noise, and
the speech sounds less muffled than the reference methods.
There is one artifact heard in rare occasions that we believe is
caused by remaining musical tones. It is of very low power
and occurs some times at speech presence. The two refer-
ence methods have higher residual background noise and
suffer from muffling and reverberance effects. When SNR is
lower than 10dB, a certain speech-dependent noise occurs at
speech presence in the TFE-MMSE3 processed speech. The
lower the SNR is, themore audible this artifact is. Comparing
the male and female speech processed by the TFE-MMSE3,
the female speech sounds a bit rough.

The algorithms are also evaluated for pink noise and car
noise cases. The objective results are shown in Figures 4 and
5. In these results the TDC algorithm is not included because
the algorithm is proposed based on the white Gaussian noise
assumption. An informal listening test shows that the percep-
tual quality in the pink noise case for all the three algorithms
is very similar to that in the white noise case, and that in the
car noise case all tested methods have very similar perceptual
quality due to the very lowpass spectrum of the noise.

A comparison of spectrograms of a processed sentence
(male “only lawyers love millionaires”) is shown in Figure 6.
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Figure 4: (a), (b) SNR gain, (c), (d) segSNR gain, and (e), (f) log-spectral distortion gain for the pink noise case. (a), (c), and (e) are for
male speech and (b), (d), and (f) are for female speech.

7. DISCUSSION

The results show that for male speech, the TFE-MMSE3
estimator has the best performance in all the three objec-

tive measures (SNR, segSNR, and LSD). For female speech,
the TFE-MMSE3 is the second in SNR, the best in LSD,
and among the best in segSNR. The TFE-MMSE3 estima-
tor allows a high degree of suppression to the noise while
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Figure 5: (a), (b) SNR gain, (c), (d) segSNR gain, and (e), (f) log-spectral distortion gain for the car noise case. (a), (c), and (e) are for male
speech and (b), (d), and (f) are for female speech.

maintaining low distortion to the signal. The speech en-
hanced by the TFE-MMSE3 has a very clean background and
a certain speech-dependent residual noise. When the SNR is

high (10 dB and above), this speech-dependent noise is very
well masked by the speech, and the resulting speech sounds
clean and clear. As spectrograms in Figure 6 indicate, the
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Figure 6: Spectrograms of enhanced speech. Input SNR is 10 dB. (a) Clean signal, (b) noisy signal, (c) TDC processed signal, (d) TFE-
MMSE3 processed signal, (e) MMSE-LSA processed signal, and (f) WF processed signal.
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Figure 7: Comparison of waveforms of enhanced signals and the original signal. Dotted line: original, solid line: TFE-MMSE, dashed line:
WF.

clearer sound is due to a better preserved signal spectrum
and amore suppressed background noise. At SNR lower than
5dB, although the background still sounds clean, the speech-
dependent noise becomes audible and perceived as a dis-
tortion to the speech.The listeners preference starts shifting
from the TFE-MMSE3 towards the MMSE-LSA that has a

more uniform residual noise, although the noise level is high.
The conclusion here is that at high SNR, it is preferable to
remove background noise completely using the TFE-MMSE
estimator without major distortion to the speech. This could
be especially helpful at relieving listening fatigue for the hear-
ing aid user, whereas, at low SNR, it is preferable to use a
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noise reduction strategy that produces uniform background
noise, such as the MMSE-LSA algorithm.

The fact that female speech enhanced by the TFE-MMSE
estimator sounds a little rougher than the male speech is
consistent with the observation in [15], where male voiced
speech and female voiced speech are found to have different
masking properties in the auditory system. For male speech,
the auditory system is sensitive to high frequency noise in
the valleys between the pitch pulse peaks in the time domain.
For the female speech, the auditory system is sensitive to low
frequency noise in the valleys between the harmonics in the
spectral domain. While the time domain valley for the male
speech is cleaned by the TFE-MMSE estimator, the spectral
valleys for the female speech are not attenuated enough; a
comb filter could help to remove the roughness in the female
voiced speech.

In the TFE-MMSE estimator, we apply a high tempo-
ral resolution non-stationary model to explain the pitch im-
pulses in the LPC residual of voiced speech. This enables the
capture of abrupt changes in sample amplitude that are not
captured by an AR linear stochastic model. In fact, the es-
timate of the residual power envelope contains information
about the uneven distribution of signal power in time axis.
In Figure 7 the original signal waveform, the WF enhanced
signal waveform, and the TFE-MMSE enhanced signal wave-
form of a voiced segment are plotted. It can be observed in
this figure that by a better model of temporal power distri-
bution the TFE-MMSE estimator represents the sudden rises
of amplitude better than the Wiener filter.

Noise in the phase spectrum is reduced by the TFE-
MMSE estimator. Although human ears are less sensitive to
phase than to power, it is found in recent work [27, 28, 29]
that phase noise is audible when the source SNR is very low.
In [27] a threshold of phase perception is found. This phase-
noise tolerance threshold corresponds to an SNR threshold
of about 6 dB, which means, for spectral components with
local SNR smaller than 6dB, that it is necessary to reduce
phase noise. The TFE-MMSE estimator has the ability of en-
hancing phase spectra because of its ability to estimate the
temporal localization of residual power. It is the linearity
in the phase of harmonics in the residual that makes the
power be concentrated at periodic time instances, thus pro-
ducing pitch pulses. Estimating the residual power temporal
envelope enhances the linearity of the phase spectrum of the
residual and therefore reduces phase noise in the signal.
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