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Cochlear implants can provide partial restoration of hearing, even with limited spectral resolution and loss of fine temporal
structure, to severely deafened individuals. Studies have indicated that background noise has significant deleterious effects on the
speech recognition performance of cochlear implant patients. This study investigates the effects of noise on speech recognition
using acoustic models of two cochlear implant speech processors and several predictive signal-processing-based analyses. The
results of a listening test for vowel and consonant recognition in noise are presented and analyzed using the rate of phonemic
feature transmission for each acoustic model. Three methods for predicting patterns of consonant and vowel confusion that are
based on signal processing techniques calculating a quantitative difference between speech tokens are developed and tested using
the listening test results. Results of the listening test and confusion predictions are discussed in terms of comparisons between
acoustic models and confusion prediction performance.
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1. INTRODUCTION

The purpose of a cochlear implant is to restore some degree
of hearing to a severely deafened individual. Among indi-
viduals receiving cochlear implants, speech recognition per-
formance varies, but studies have shown that a high level of
speech understanding is achievable by individuals with suc-
cessful implantations. The speech recognition performance
of individuals with cochlear implants is measured through
listening tests conducted in controlled laboratory settings,
which are not representative of the typical conditions in
which the devices are used by the individuals in daily life.
Numerous studies have indicated that a cochlear implant pa-
tient’s ability to understand speech effectively is particularly
susceptible to noise [1, 2, 3]. This is likely due to a variety of
factors, such as limited spectral resolution, loss of fine tem-
poral structure, and impaired sound-localization abilities.

The manner and extent to which noise affects cochlear
implantee’s speech recognition can depend on individual
characteristics of the patient, the cochlear implant device,

and the structure of the noise and speech signals. Not all of
these relationships are well understood. It is generally pre-
sumed that increasing the level of noise will have a nega-
tive effect on speech recognition. However, the magnitude
and manner in which speech recognition is affected is more
ambiguous. Particular speech processing strategies may be
more resistant to the effects of certain types of noise, or noise
in general. Other devices parameters, such as the number
of channels, number of stimulation levels, and compression
mapping algorithms, have also been shown to influence how
speech recognition will be affected by noise [4, 5, 6]. The
effects of noise also depend on the type of speech materi-
als and the linguistic knowledge of the listener. With all of
these interdependent factors, the relationship between noise
and speech recognition is quite complex and requires careful
study.

The goals of this study were to analyze and predict the
effects of noise on speech processed by two acoustic mod-
els of cochlear implant speech processors. The listening test
was conducted to examine the effects of noise on speech
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recognition scores using a complete range of noise levels.
Information transmission analysis was performed to illus-
trate the results of the listening test and to verify assump-
tions regarding the acoustic models. The confusion predic-
tion methods were developed to investigate whether a signal
processing algorithm would predict patterns of token confu-
sion similar to those seen in the listening test. The use of the
similarities and differences between speech tokens for pre-
diction of speech recognition and intelligibility has a basis
in previous studies. Müsch and Buus [7, 8] used statistical
decision theory to predict speech intelligibility by calculating
the correlation between variations of orthogonal templates of
speech tokens. A mathematical model developed by Svirsky
[9] used the ratio of frequency-channel amplitudes to locate
phonemes in a multidimensional perceptual space. A study
by Leijon [10] used hidden Markov models to approximate
the rate of information transmitted through a given acoustic
environment, such as a person with a hearing aid.

Themotivation for estimating trends in token confusions
and overall confusion rate, based solely on information in
the processed speech signal, is to enable preliminary anal-
ysis of speech materials prior to conducting listening tests.
Additionally, a method that estimates token confusions and
overall confusion rate would have applications in the devel-
opment of speech processing methods and noise mitigation
techniques. Sets of processed speech tokens that are readily
distinguishable by the confusion prediction method should
also be readily distinguishable by cochlear implantees, if the
prediction method is well conceived and robust.

The rest of this paper is organized as follows. Section 2
discusses the listening test conducted in this study. The ex-
perimental methods using normal-hearing subjects and the
information transmission analysis of vowel and consonant
confusions are detailed. Results, in the form of speech recog-
nition scores and information transmission analyses, are pro-
vided and discussed. Section 3 describes the methods and re-
sults of the vowel and consonant confusion predictions de-
veloped using signal processing techniques. The methods of
speech signal representation and prediction metric calcula-
tion are described, and potential variations are addressed.
Results are presented to gauge the overall accuracy of the in-
vestigated confusion prediction methods for vowels and con-
sonants processed with each of the two acoustic models.

2. LISTENING TEST

The listening test measured normal-hearing subjects’ abil-
ities to recognize noisy vowel and consonant tokens pro-
cessed by two acoustic models. Using acoustic models to test
normal-hearing subjects for cochlear implant research is a
widely used and well-accepted method for collecting exper-
imental data. Normal-hearing subjects provide a number of
advantages: they are more numerous and easier to recruit,
the experimental setups tend to be less involved, and there
are not subject variables, such as experience with cochlear
implant device, type of implanted device, cause of deafness,
and quality of implantation, that affect individual patient’s
performance. Results of listening tests using normal-hearing

subjects are often only indicative of trends in cochlear im-
plant patient’s performance; absolute levels of performance
tend to disagree [1, 11]. There are several sources of discrep-
ancies between the performance of cochlear implant subjects
and normal-hearing subjects using acoustic models, such as
experience with the device, acclimation to spectrally quan-
tized speech, and the idealistic rate of speech information
transmission through the acoustic model. However, acous-
tic models are still an essential tool for cochlear implant re-
search. Their use is validated by numerous studies where
cochlear implant patient’s results were successfully verified
and by the flexibility they provide in testing potential speech
processing strategies [12, 13].

Subjects

Twelve normal-hearing subjects were recruited to participate
in a listening test using two acoustic models for vowel and
consonant materials in noise. Prior to the listening tests, sub-
jects’ audiograms were measured to evaluate thresholds at
250Hz, 500Hz, 1 kHz, 2 kHz, 4 kHz, and 8 kHz to confirm
normal hearing, defined in this study as thresholds within
two standard deviations of the subject group’s mean. Sub-
jects were paid for their participation. The protocol and im-
plementation of this experiment were approved by the Duke
University Institutional Review Board (IRB).

Speechmaterials

Vowel and consonant tokens were taken from the Revised
Cochlear Implant Test Battery [14]. The vowel tokens used
in the listening test were {had, hawed, head, heard, heed,
hid, hood, hud, who’d}. The consonants tested were {b, d,
f, g, j, k, m, n, p, s, sh, t, v, z} presented in /aCa/ context.
The listening test was conducted at nine signal-to-noise ra-
tios: quiet, +10 dB, +8 dB, +6 dB, +4 dB, +2 dB, +1 dB, 0 dB,
and−2 dB. Pilot studies and previous studies in the literature
[3, 5, 15, 16] indicated that this range of SNRs would provide
a survey of speech recognition ability over the range of scores
from nearly perfect correct identification to performance on
par with random guessing. Speech-shaped noise, that is, ran-
dom noise with a frequency spectrum that matches the av-
erage long-term spectrum of speech, is added to the speech
signal prior to acoustic model processing.

Signal processing

This experiment made use of two acoustic models imple-
mented by Throckmorton and Collins [17], based on acous-
tic models developed in [18, 19]. The models will be re-
ferred to as the 8F model and the 6/20F model, named for
the number of presentation and analysis channels. A block
diagram of the general processing common to both acoustic
models is shown in Figure 1. With each model, the incoming
speech is prefiltered using a first-order highpass filter with
a 1 kHz cutoff frequency, to equalize the spectrum of the in-
coming signal. It is then passed through a 6th-order antialias-
ing Butterworth lowpass filter with an 11 kHz cutoff. Next,
the filterbank separates the speech signal into M channels
using 6th-order Chebyshev filters with no passband overlap.



Predicting Token Confusions in Implant Patients 2981

Amplitude modulation/
channel comparator

Highpass
prefiltering/
lowpass
antialias
filtering

Speech

Bandpass
filterbank

...

Ch. 1

Ch. 2

...

Ch. 8 (8F) or

Ch. 20 (6/20F)

Discrete
envelope
detector

...

cos(2π fc1)

cos(2π fc2)

cos(2π fcN )

...

6/20F
only

...

∑

X

X

X

Model
output

Figure 1: Block diagram of acoustic model. Temporal resolution is equivalent in both models, with channel envelopes discretized over 2-
millisecond windows. In each 2-millisecond window, the 8F model presents speech information from 150Hz to 6450Hz divided amongst
eight channels, whereas the 6/20F model presents six channels, each with narrower bandwidth, chosen from twenty channels spanning
250Hz to 10823Hz.

Each channel is full-wave rectified and lowpass filtered us-
ing an 8th-order Chebyshev with 400Hz cutoff to extract the
signal envelope for each frequency channel. The envelope is
discretized over the processing window of length L using the
root-mean-square value.

The numbers of channels and channel cutoff frequen-
cies for the two acoustic models used in this study were
chosen to mimic two popular cochlear implant speech pro-
cessors. For the 8F model, the prefiltered speech is filtered
into eight logarithmically spaced frequency channels cover-
ing 150Hz to 6450Hz. For the 6/20F model, the prefiltered
speech is filtered into twenty frequency channels covering
250Hz to 10823Hz, with linearly spaced cutoff frequencies
up to 1.5 kHz and logarithmically spaced cutoff frequencies
for higher filters. The discrete envelope for both models is
calculated over a two-millisecond window, corresponding to
44 samples for speech recorded at a sampling frequency of
22050Hz.

The model output is assembled by determining a set of
presentation channels, the set of frequency channels to be
presented in the current processing window, then amplitude
modulating each presentation channel with a separate sine-
wave carrier and summing the set of modulated presentation
channels. In each processing window, a set of N (N ≤ M)
channels is chosen to be presented. All eight frequency chan-
nels are presented (N = M = 8) with the 8F model. With
the 6/20F model, only the six channels with the largest am-
plitude in each processing window are presented (N = 6,
M = 20). The carrier frequency for each presentation chan-
nel corresponds to the midpoint on the cochlea between the
physical locations of the channel bandpass cutoff frequen-
cies. The discrete envelopes of the presentation channels are
amplitude modulated with sinusoidal carriers at the calcu-
lated carrier frequencies, summed, and stored as the model
output.

Procedure

The listening tests were conducted in a double-walled sound-
insulated booth, separate from the computer, experimenter,

and sources of background noise, with stimuli stored on disk
and presented through headphones. Subjects recorded their
responses using the computer mouse and graphical user in-
terface to select what they had heard from the set of tokens.
Subjects were trained prior to the tests on the same speech
materials processed through the acoustic models to provide
experience with the processed speech and mitigate learning
effects. Feedback was provided during training.

Testing began in quiet and advanced to increasingly noisy
conditions with two repetitions of a randomly ordered vowel
or consonant token set for training, followed by five repe-
titions of the same randomly ordered token set for testing.
The order of presentation of test stimuli and acoustic mod-
els were randomly assigned and balanced among subjects to
neutralize any effects of experience with the previous model
or test stimulus in the pooled results. Equal numbers of test
materials were presented for each test condition, defined by
the specific acoustic model and signal-to-noise ratio.

Results

The subjects’ responses from the vowel and consonant tests
at each SNR for each acoustic model were pooled for all
twelve subjects. The results are plotted for all noise levels in
Figure 2. Statistical significance, indicated by asterisks, was
determined using the arcsine transform [20] to calculate the
95% confidence intervals. The error bars in Figure 2 indicate
one standard deviation, which were also calculated using the
arcsine transform. The vowel recognition scores show that
the 6/20F model significantly outperforms the 8F model at
all noise levels. An approximately equivalent level of perfor-
mance was achieved with both acoustic models on the con-
sonant recognition test, with differences between scores at
most SNRs not statistically significant. Vowel recognition is
heavily dependent on the localization of formant frequen-
cies, so it is reasonable that subjects using the 6/20F model,
with 20 spectral channels, perform better on vowel recogni-
tion.

At each SNR, results of the vowel and consonant test were
pooled across subjects and tallied in confusionmatrices, with
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Figure 2: (a) Vowel token recognition scores. (b) Consonant token recognition scores.

rows corresponding to the actual token played, and columns
indicating the token chosen by the subject. An example con-
fusionmatrix is shown in Table 1. Correct responses lie along
the diagonal of the confusion matrix. The confusion matri-
ces gathered from the vowel and consonant test can be an-
alyzed based on the arrangement and frequency of incorrect
responses. One suchmethod of analysis is information trans-
mission analysis, developed by Miller and Nicely in [21]. In
each set of tokens presented, it is intuitive that some incor-
rect responses will occur more frequently than others, due
to common phonetic features of the tokens. The Miller and
Nicely method groups tokens based on the common pho-
netic features and calculates information transmission using
the mean logarithmic probability (MLP) and mutual infor-
mation T(x; y) which can be considered the transmission
from x to y in bits per stimulus. In the equations below, pi
is the probability of confusion, N is the number of entries
in the matrix, ni is the sum of the ith row, nj is the sum of
the jth column, and ni j is a value from the confusion ma-
trix resulting from grouping tokens with common phonetic
features:

MLP(x) = −
∑
i

pi log pi,

T(x; y) =MLP(x) +MLP(y)−MLP(xy)

= −
∑
i, j

ni j
N

log2
ninj

Nni j
.

(1)

The consonant tokens were classified using the five fea-
tures in Miller and Nicely—voicing, nasality, affrication, du-
ration, and place. Information transmission analysis was also

applied to vowels, classified by the first formant frequency,
the second formant frequency, and duration. The feature
classification matrices are shown in Table 2. Information
transmission analysis calculates the transmission rate of these
individual features, providing a summary of the distribution
of incorrect responses, which contains useful information
unavailable from a simple token recognition score.

Figure 3 shows the consonant feature percent trans-
mission, with percent correct recognition or “score” from
Figure 2 included, for the 6/20F model and 8F model. The
plots exhibit some deviation from the expected monotonic
result; however, this is likely due to sample variability and
variations in the random samples of additive noise used to
process the tokens. It appears that increasing levels of noise
deleteriously affect all consonant features for both acoustic
models. It is interesting to note that consonant recognition
scores for the 6/20F model and 8F model are nearly identical,
but feature transmission levels are quite different. The dif-
ferences in the two acoustic models result in two distinct sets
of information that result in approximately the same level
of consonant recognition. A previous study by Fu et al. [3]
performed information transmission analyses on consonant
data for 8-of-8 and 6-of-20 models and calculated closely
grouped feature transmission rates at each SNR for both
models, resembling the 8F results shown here. Both Fu et
al. models as well as the 8F model in this study have similar
model bandwidths, and it is possible that the inclusion of
higher frequencies in the 6/20F model and their effect on
channel location and selection of presentation channels
results in the observed spread of feature transmission rates.
Further comments on these results are presented in the
discussion.
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Table 1: Example confusion matrix for 8F vowels at +1 dB SNR. Responses are pooled from all test subjects.

8F acoustic model, SNR = 1 dB

Responded

had hawed head heard heed hid hood hud who’d

Played

had 29 10 12 3 0 0 1 5 0

hawed 0 53 0 1 1 0 0 4 1

head 9 2 19 5 3 14 5 2 1

heard 0 2 4 34 1 4 9 3 3

heed 2 0 1 6 31 0 7 0 13

hid 2 2 15 2 6 26 2 3 2

hood 0 2 4 6 4 2 26 4 12

hud 1 19 1 2 0 0 3 31 3

who’d 1 1 1 7 2 1 12 0 35

Table 2: Information transmission analysis classification matrices
for (a) consonants and (b) vowels. The numbers in each column
indicate which tokens are grouped together for analysis of each of
the features. For some features, multiple groups are defined.

(a)

Consonants Voicing Nasality Affrication Duration Place

b 1 0 0 0 0

d 1 0 0 0 1

f 0 0 1 0 0

g 1 0 0 0 4

j 1 0 0 0 3

k 0 0 0 0 4

m 1 1 0 0 0

n 1 1 0 0 1

p 0 0 0 0 0

s 0 0 1 1 2

sh 0 0 1 1 3

t 0 0 0 0 1

v 1 0 1 0 0

z 1 0 1 1 2

(b)

Vowels Duration F1 F2

had 2 2 1

hawed 1 2 0

head 1 1 1

heard 1 1 0

heed 2 0 1

hid 0 1 1

hood 0 1 0

hud 0 2 0

who’d 0 0 0

The patterns of feature transmission are muchmore con-
sistent between the two acoustic models for vowels, as shown
in Figure 4. The significantly higher vowel recognition scores

at all noise levels using the 6/20F model translate to greater
transmission of all vowel features at all noise levels. Hence,
the better performance of the 6/20Fmodel is not due tomore
effective transmission of any one feature.

3. CONFUSION PREDICTIONS

Several signal processing techniques were developed in the
context of this research to measure similarities between pro-
cessed speech tokens for the purpose of predicting patterns of
vowel and consonant confusions. The use of the similarities
and differences between speech tokens has a basis in previous
studies predicting speech intelligibility [7, 8], and investigat-
ing the perception of speech tokens presented through an
impaired auditory system [10] and processed by a cochlear
implant [9].

The three prediction methods that are developed in this
study use two different signal representations and three dif-
ferent signal processing methods. The first method is to-
ken envelope correlation (TEC), which calculates the cor-
relation between the discrete envelopes of each pair of to-
kens. The second method is dynamic time warping (DTW)
using the cepstrum representation of the speech token. The
third prediction method uses the cepstrum representation
and hidden Markov models (HMMs). These three methods
provide for comparison a method using only the tempo-
ral information (TEC), a deterministic measure of distance
between the speech cepstrums (DTW), and a probabilistic
distance measure using a statistical model of the cepstrum
(HMM).

Dynamic time warping

For DTW [22], the (ith, jth) entry in the prediction metric
matrix is the value of the minimum-cost mapping through
a cost matrix of Euclidean distances between the cepstrum
coefficients of the ith given token and the jth response to-
ken. To calculate the (ith, jth) entry in the prediction metric
matrix, the cepstrum coefficients are computed from energy-
normalized speech tokens. A cost matrix is constructed from
the cepstrums of the two tokens. Each row of the cost matrix
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Figure 3: (a) 6/20F consonant information transmission analysis. (b) 8F consonant information transmission analysis.

specifies a vector of cepstrum coefficients calculated during
one window of the given signal, each column corresponds to
a vector of cepstrum coefficients calculated during one win-
dow of the response signal, and the entry in the cost ma-
trix is a measure of distance between the two vectors. In this
project, the coefficient vector differences were quantified us-
ing the Euclidean distance d2(x, y),

d2(x, y) =
√√√√√

N∑

k=1

∣∣xk − yk
∣∣2. (2)

The minimum-cost path is defined as the contiguous se-
quence of cost matrix entries from (1,1) to (N ,M), where
N is the length of the given token cepstrum and M is the
length of the response token cepstrum, such that the sum of
the sequence entries is minimized. To reduce the complex-
ity of searching for the minimum-cost path, sequence steps
are restricted to three cases: horizontal (n,m + 1), vertical
(n+1,m), and diagonal (n+1,m+1). Additionally, since the
shortest path from (1,1) to (N ,M) will be nearly diagonal,
the cost matrix entry is multiplied with a weighting parame-
ter in the case of a diagonal step, to prevent the shortest path
from becoming the default minimum-cost path. The value
for the weighting parameter, equal to 1.5 in this study, can be
increased or decreased resulting in a lesser or greater propen-
sity for diagonal steps.

Next, the cumulative minimum-cost matrix Dij contain-
ing the sum of the entries for the minimum-cost path from
(1,1) to any point (n,m) in the cost matrix is calculated.
Given the restrictions on sequence-step-size, sequence step

direction, and weighting parameter, the cumulative cost ma-
trix is calculated as

Dn+1,m+1 =




1.5 · dn+1,m+1 + min
(
Dn,m,Dn+1,m,Dn,m+1

)

if min
(
Dn,m,Dn+1,m,Dn,m+1

) = Dn,m,

dn+1,m+1 + min
(
Dn,m,Dn+1,m,Dn,m+1

)

if min
(
Dn,m,Dn+1,m,Dn,m+1

) �= Dn,m.

(3)

The value of the minimum-cost path from (1,1) to (N ,M)
is DN ,M . The final value of the prediction metric is the mini-
mum costDN ,M divided by the number of steps in the path to
normalize values for different token lengths. Diagonal steps
are counted as two steps when determining the path length.

Token envelope correlation
For TEC, the (ith, jth) entry in the prediction metric ma-
trix is the normalized inner product of the discrete envelopes
of two processed speech tokens that have been temporally
aligned using dynamic time warping. The discrete envelope
was originally calculated as a step in the acoustic model pro-
cessing. The discrete envelope used in TEC is similar to the
discrete envelope calculated in the acoustic model, with a
lower cutoff frequency on the envelope extraction filter.

The cepstrums of the ith processed given token and the
jth processed response token are used in the DTW proce-
dure to calculate the minimum-cost path for the two tokens.
The minimum-cost path is then used to temporally align the
two discrete envelopes, addressing the issue of different token



Predicting Token Confusions in Implant Patients 2985

0

10

20

30

40

50

60

70

80

90

100
Tr
an
sm

is
si
on

(%
)

−2 0 2 4 6 8 10 Quiet

SNR (dB)

Duration
F1

F2
Score

(a)

0

10

20

30

40

50

60

70

80

90

100

Tr
an
sm

is
si
on

(%
)

−2 0 2 4 6 8 10 Quiet

SNR (dB)

Duration
F1

F2
Score

(b)

Figure 4: (a) 6/20F vowel information transmission analysis. (b) 8F vowel information transmission analysis.

lengths in a more elegant manner than simple zero padding.
Using DTW to align the signals injects flexibility in the align-
ment to account for potential listener ambiguity regarding
the starting point and pace of the speech token.

After alignment of the given token and response token,
the final value of the prediction metric can be calculated as

Mi, j =
xiTy j√

xiTxi
√
y j Ty j

, (4)

where xi is the discrete envelope of the ith given token, y j is
the discrete envelope of the jth response token, and Mi, j is
the (ith, jth) entry in the prediction metric matrix.

HiddenMarkovmodels
The third prediction method is based on hidden Markov
models (HMMs) [22, 23]. Using HMMs, the (ith, jth) entry
in the prediction metric matrix is the log-likelihood that the
cepstrum of the ith given token is the observation produced
by the HMM for the cepstrum of the jth response token. To
calculate the (ith, jth) entry in the prediction metric matrix
using HMMs, a continuous-observation HMM was trained
for each speech token using a training set of 100 tokens. All
training data were collected from a single male speaker in
quiet. HMMs were trained for different numbers of states Q
and numbers of Gaussian mixtures M, with Q ranging from
two to six andM ranging from two to four. Training was per-
formed using the expectation-modification method to iter-
atively determine the parameters that locally maximize the
probability of the observation sequence. The state transition
matrix and Gaussian mixture matrix were initialized using

random values. A k-means algorithm was used to initialize
the state-observation probability distributions. The proba-
bility of an observation was determined using the forward al-
gorithm [23] to calculate P(O1O2 · · ·OT , qT = Si | λ), where
Oi is the ith element in the observation sequence, qT = Si in-
dicates that the model is in the ith state at time T , and λ are
the HMM parameters.

Prediction performance

The accuracy of each prediction method was verified using
the vowel and consonant confusionmatrices generated in the
listening test as basis for comparison. The confusionmatrices
at each of the eight noise levels and in quiet were pooled to
produce a general pattern of confusions independent of any
specific noise level. Combining the confusionmatrices across
noise levels was justified by information transmission analy-
ses, which indicated that increasing the amount of additive
noise most significantly affected the rate of confusions rather
than the pattern of confusions.

The first test of confusion prediction performance
gauged the ability to predict the most frequent incorrect re-
sponses (MFIRs). The prediction of MFIRs was measured
in terms of successful near predictions, defined as the case
where one token in the set of MFIRs matches one token in
the predicted set of MFIRs. Sets of two tokens were used
for vowel near predictions (25% of possible incorrect re-
sponses), three tokens for consonants (23% of possible in-
correct responses). For example, if the twoMFIRs for “head”
were “hid” and “had,” then either “hid” or “had” would have
to be one of the two predicted MFIRs for a successful near
prediction. Measuring prediction performance using near
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Figure 5: Most frequent incorrect response (MFIR) near predic-
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predictions satisfies the objective of predicting patterns in the
confusions, rather than strictly requiring that the predicted
MFIR was indeed the most frequent incorrect response. The
purpose of measuring near predictions is to test whether the
methods are distributing the correct tokens to the extremes
of the confusion response spectrum.

Figure 5 shows the percentages for successful near predic-
tion of the MFIR tokens for each acoustic model and token
set. Percentages of successful near prediction were calculated
out of possible nine trials for vowels (N = 9) and fourteen
trials for consonants (N = 14). Near-perfect performance
is achieved using DTW. The HMM method performs at a
similarly high level. The TEC method consistently underper-
forms the twomethods utilizing the cepstrum coefficients for
confusion prediction. Chance performance is also shown for
comparison.

The second test of confusion prediction performance an-
alyzed the ability of each method to discern how frequently
each individual token will be confused, as represented by the
main diagonal of the confusion matrices. Rather than pre-
dicting the absolute rate of confusion, which would be de-
pendent on noise level, the test evaluates the accuracy of a
predicted ranking of the tokens from least to most recog-
nized, or most often to least-often confused.

To calculate the predicted ranking of the individual-
token recognition rates, the off-diagonal values in each row
of the prediction metric matrix were averaged and ranked,
as a means of evaluating each token’s uniqueness. The more
separation between the played token and the set of incorrect
responses, where separation is measured by the prediction
metrics, the less likely it is that an incorrect response will oc-
cur.
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Figure 6: Scatter plot for 8F vowel predicted rankings using TEC
versus actual recognition rankings. Includes regression line and R2

value, corresponding to top-left value in Table 3a.

The fit of the predicted token recognition rankings to the
actual recognition rankings was represented using linear re-
gression. The coefficient of determination R2 [24] was calcu-
lated for the linear regression of a scatter plot with one set
of rankings plotted on the ordinate and another on the ab-
scissa. R2 values were calculated for two different sets of scat-
ter plots. The first set of scatter plots was created by plotting
the predicted recognition rankings and token length rank-
ings against the true recognition rankings. A ranking of token
lengths was included to investigate any potential effects of to-
ken length on either the calculation of the prediction metrics
or the listening test results. Figure 6 displays an example scat-
ter plot for TEC predicted 8F vowels rankings including the
regression line and R2 value. Each token is represented by one
point on the chart. The x-axis value is determined by token
rank in terms of recognition rate in the listening test, and the
y-axis value is determined by the token’s predicted recogni-
tion ranking using TEC. Similar scatter plots (not shown)
were created for the other prediction methods. All of the R2

values with listening test rankings on the x-axis are shown in
Table 3a. A second set of scatter plots was created by assign-
ing token length rankings to the x-axis, rather than listening
test rankings, and using predicted rankings and listening test
rankings for the y-axis values (Table 3b).

Table 3 shows the R2 values for the two different meth-
ods of plotting. With the percent correct plotted on the x-
axis, the HMM is shown to perform very well for vowel
recognition rankings with either acoustic model. DTW and
HMM perform similarly on 8F consonants, but not at the
level of HMM on vowels. HMM performance is weaker for
6/20F consonants than for 8F consonants. Predicted recog-
nition rankings for any material set using TEC do not appear
promising.
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Table 3: Summary of coefficient of determination for linear fittings. R2 values calculated for percent correct along x-axis (a) and length
along x-axis (b).

(a)

Percent correct along x-axis

Method 8F vow. 6/20F vow. 8F cons. 6/20F cons.

TEC 0.1111 0.3403 0.0073 0.003

DTW 0.0336 0.0278 0.4204 0.4493

HMM 0.6944 0.5136 0.4261 0.2668

Length 0.3463 0.0544 0.0257 0.0333

(b)

Length along x-axis

Method 8F vow. 6/20F vow. 8F cons. 6/20F cons.

TEC 0.0711 0.0044 0.0146 0.3443

DTW 0.16 0.444 0.01 0.0136

HMM 0.64 0.5378 0.09 0.2759

Correct (%) 0.34 0.0544 0.0257 0.033

Investigating the potential relationship between token
length and predicted recognition rankings leads to the ob-
servation that HMMpredicted rankings for vowels with both
acoustic models and DTWpredicted rankings for 6/20F vow-
els appear to correspond to token length. The true recogni-
tion ranking also appears related to length for 8F vowels. The
relationship between HMM predicted rankings and token
length can potentially be explained by the structure of the
HMM. The state transition probabilities are adapted to ex-
pect tokens of a certain length; longer or shorter tokens can
cause state transitions that are forced early or delayed. This
would affect the calculated log-likelihood values, and could
result in artifacts of token length in the predicted recognition
rankings.

The third task tested whether the performance gap seen
in the listening test between the token sets with different
materials and acoustic models was forecast by any of the
prediction methods. DTW was the only method that ap-
peared to have any success predicting the differences in to-
ken correct identification for the different acoustic mod-
els and token sets. The token identification trend lines for
vowels and consonants are shown in Figure 7a. The over-
all level of token recognition for any combination of to-
ken set and acoustic model was predicted with DTW by
averaging the off-diagonal prediction metrics. The average
confusion distance is plotted as a constant versus SNR in
Figure 7b since the metric is not specific to the performance
at any particular noise level, and indicates that the pattern
of the trends of recognition levels is reasonably well pre-
dicted.

Predicted trends for TEC and HMM are not shown, but
did not accurately indicate the trends in the listening test.
The failure of TEC at the third task supports the conclusion
that the strictly temporal representation lacks sufficient dis-
tinguishing characteristics. Since the measure for this task is

essentially an average of the token recognition rankings cal-
culated in the second task, another measure of prediction
performance for which TEC scored poorly, the poor perfor-
mance using TEC for this task is not surprising. However,
the HMM prediction metric performed very well on the first
two tasks. Based on that performance, the failure of HMMs
was unexpected, especially with the accuracy of the predicted
trends using DTW.

4. DISCUSSION

Information transmission analysis using the method devel-
oped by Miller and Nicely [21] calculates how effectively the
two acoustic models transmitted the features of vowels and
consonants. The increased spectral resolution of the 6/20F
model, credited for the better performance of the 6/20F
model for vowel token recognition, also appeared in the in-
formation transmission results, with proportionally greater
transmission of both the F1 and F2 features. The results
of the consonant feature analyses are more difficult to clas-
sify. A reasonable hypothesis would be that the 8F model
should more effectively transmit broadband features, since
it has a continuous frequency spectrum with greater band-
width than the 6/20F model. The 6/20F model should bet-
ter transmit frequency-specific consonant features due to
greater frequency resolution. However, many outcomes from
the consonant feature transmission analysis disagree with
this hypothesis. Affrication, a broadband feature, is transmit-
ted with similar efficiency by both acoustic models. Voicing
is relatively narrowband and suspected to be more effectively
transmitted by the 6/20F model; however, it is also trans-
mitted with similar efficiency by both acoustic models. The
6/20F model transmits place and duration more effectively
than the 8F model. Duration is essentially a temporal fea-
ture, and differences between the acoustic models should not
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Figure 7: (a) Trends in results of the listening tests separated by model and test material. (b) Trends predicted by DTW using average
confusion distance.

affect transmission of this feature. An acoustic description of
the effect of place is very complex and difficult to describe in
general terms for all tokens. Place can appear as a broadband
or narrowband feature in different regions of the frequency
spectrum. The 8F model was more efficient at transmitting
the nasality feature. With regards to the 6/20F model, it is
possible that six spectral channels do not provide sufficient
information to maximally transmit some of the consonant
features, whereas for vowels, only a few channels are required
for transmission of the formants.

This examination of the information transmission analy-
sis results can benefit from the observation that the vowel and
consonant features are not independent of each other. For
example, the vowel feature duration, a temporal feature, was
much more effectively transmitted, with a difference of ap-
proximately 50% transmission across all noise levels, by the
6/20F model than by the 8F model; however, the two mod-
els have the same temporal resolution. The increased spectral
resolution would have legitimately increased transmission of
the formant features, resulting in a reduced number of incor-
rect responses in the listening test, which would in turn raise
the calculated transmission of duration information as a side
effect. It is expected that some of the calculated percent trans-
mission of features for consonants may also reflect strong
or weak performance of other features, or could potentially
be influenced by unclassified features. Analysis of the feature
classification matrices could help explain potential relation-
ships between the calculated values for feature transmission.

The results of the confusion predictions indicate that
analysis of the differences between tokens can provide insight
to the token confusions. The three tasks used in this study
to analyze the performance of the confusion predictions in-
vestigate prediction of trends along the rows, the diagonal,
and the overall separation of prediction metrics, providing a
multifaceted view of the accuracy of the overall token confu-
sion pattern. The two methods utilizing the cepstrum coef-
ficients for representing the speech token outperformed the
method using strictly temporal information in all three tests.
The experiment setup and speech-shaped noise characteris-
tics, either of which could potentially affect patterns of token
confusion, were not considered in the prediction metric cal-
culations. Expanding the prediction methods to include such
additional factors could improve the accuracy of confusion
pattern prediction.

Not considering the effects of the noise characteristics
and experiment setup also resulted in symmetric prediction
metrics matrices calculated using DTW and TEC. This is not
entirely consistent with the results of the listening test, how-
ever the results presented in this study using DTW indicate
that symmetry does not prohibit prediction of trends in to-
ken confusion. The procedure for calculating the prediction
metric with each prediction method included steps to nor-
malize the outcome for tokens of different lengths, to empha-
size the differences within the speech signals and minimize
any effect of differences in token length. However, Table 3 in-
dicates that token length may have been used by the listening
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test participants to distinguish the speech tokens. Reinsert-
ing some effect of token length in the calculation of the pre-
diction metrics or removing token length as a factor in the
listening test may also improve confusion prediction accu-
racy.

In summary, this study presented results of a listening
test in noise using materials processed through two acoustic
models mimicking the type of speech information presented
by cochlear implant speech processors. Information trans-
mission analyses indicate different rates of transmission for
the consonant features, likely due to differences in spectral
resolution, number of channels, and model frequency band-
width, despite similar speech recognition scores. The devel-
opment of signal processing methods to robustly and accu-
rately predict token confusions would allow for preliminary
analysis of speech materials to evaluate prospective speech
processing and noise mitigation schemes prior to running
listening tests. Results presented in this study indicate that
measures of differences between speech tokens calculated us-
ing signal processing techniques can forecast token confu-
sions. Future work to improve the accuracy of the confusion
predictions should include refining the prediction methods
to consider additional factors contributing to token confu-
sions, such as speech-shaped noise characteristics, experi-
ment setup, and token length.
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