
EURASIP Journal on Applied Signal Processing 2005:18, 2991–3002
c© 2005 Michael Büchler et al.
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A sound classification system for the automatic recognition of the acoustic environment in a hearing aid is discussed. The system
distinguishes the four sound classes “clean speech,” “speech in noise,” “noise,” and “music.” A number of features that are inspired
by auditory scene analysis are extracted from the sound signal. These features describe amplitude modulations, spectral profile,
harmonicity, amplitude onsets, and rhythm. They are evaluated together with different pattern classifiers. Simple classifiers, such
as rule-based and minimum-distance classifiers, are compared with more complex approaches, such as Bayes classifier, neural
network, and hidden Markov model. Sounds from a large database are employed for both training and testing of the system. The
achieved recognition rates are very high except for the class “speech in noise.” Problems arise in the classification of compressed
pop music, strongly reverberated speech, and tonal or fluctuating noises.
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1. INTRODUCTION

It was shown in the past that one single setting of the fre-
quency response or of compression parameters in the hear-
ing aid is not satisfying for the user. Kates [1] presented a
summary of a number of studies where it was shown that dif-
ferent hearing aid characteristics are desired under different
listening conditions. Therefore, modern hearing aids provide
typically several hearing programs to account for different
acoustic situations, such as quiet environment, noisy envi-
ronment, music, and so forth. These hearing programs can
be activated either by means of a switch at the hearing aid
or with a remote control. The manual switching between dif-

This is an open access article distributed under the Creative Commons
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ferent hearing programs is however annoying, as the user has
the bothersome task of recognizing the acoustic environment
and then switching to the program that best fits this situa-
tion. Automatic sensing of the current acoustic situation and
automatic switching to the best fitting program would there-
fore greatly improve the utility of today’s hearing aids.

There exist already simple approaches to automatic
sound classification in hearing aids, and even though today
their performance is not faultless in every listening situation,
a field study with one of these approaches has shown that
an automatic program selection system in the hearing aid is
appreciated very much by the user [2]. It was shown in this
study that the automatic switching mode of the test instru-
ment was deemed useful by a majority of test subjects (75%),
even if its performance was not always perfect. These results
were a strong motivation for the research described in this
paper.
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Figure 1: Basic structure of a sound classification system comprising feature extraction, classification, and postprocessing.

There are several commercially available hearing aids
which make use of sound classification techniques. Most
existing techniques are employed to control noise clean-
ing means (i.e., noise canceller and/or beamformer). In
an approach that is based on an algorithm by Ludvigsen
[3], impulse-like sounds are distinguished from continuous
sounds by means of amplitude statistics. Ludvigsen states
that the amplitude histogram of more or less continuous sig-
nals, like background noise and certain kinds of music, shows
a narrow and symmetrical distribution, whereas the distribu-
tion is broad and asymmetric for speech or knocking noises.

Ostendorf et al. [4] propose a system in which the three
sound classes “clean speech,” “speech in noise,” and “noise
without speech” are distinguished by means of modulation
frequency analysis. Due to the speech pauses, the modula-
tion depth of speech is large, with a maximum at modulation
frequencies between 2 and 8Hz. By way of contrast, noise
shows often weaker but faster modulations and has therefore
its maximum at higher modulation frequencies. Ostendorf
found that clean speech is very well identified on the basis of
the modulation spectra, while noise and speech in noise are
confused more often.

A sound classification is also described by Phonak [5].
The algorithm is based on the analysis of the temporal level
fluctuations and the form of the spectrum as originally pro-
posed by Kates [1]. Kates used the algorithm for the classifi-
cation of some everyday background noises, whereas Phonak
exploited it to reliably distinguish speech in noise signals
from all other sound kinds.

In an approach of Nordqvist [6], the sound is classified
into clean speech and different kinds of background noises
by means of linear prediction coefficients (LPC) and hid-
den Markov models. Feldbusch [7] identifies clean speech,
speech babble, and traffic noise by means of various time-
and frequency-domain features and a neural network.

All of the above mentioned approaches allow a robust
separation of clean speech signals from other signals. Music
however cannot be distinguished at all, and it is only partly
possible to separate noise from speech in noise.

Another application of sound classification which has re-
cently gained importance is the automatic data segmentation
and indexing in multimedia databases. For example, Zhang
and Kuo [8] describe a system where the audio signal is seg-
mented and classified into twelve essential scenes using four
signal features and a rule-based heuristic procedure. Signals
containing only one basic audio type (e.g., pure speech or
music) were classified robustly, whereas, for hybrid sounds
(e.g., speech in noise or singing), misclassification occurred
more often. Mixtures of sounds, however, are characteristic
of many everyday listening situations. For hearing aid users,

especially the situation “speech in noise” is a critical situa-
tion, a class that was not included by Zhang and Kuo.

Other typical sound classification systems operate usually
on much less universal target signals than the above men-
tioned applications. Examples of such systems are the recog-
nition of different music styles [9, 10] and the identification
of different instruments [11], the differentiation of speech
and music signals [12], or the classification of different noise
types [13] or alarm signals [14]. Some of these algorithms try
to identify classes that contain only one distinct sound, such
as a barking dog or a flute tone, and are therefore on a much
more detailed layer than is initially desired for an applica-
tion in hearing aids. The sound classes that are important for
hearing aid users typically contain many different sounds,
such as the class “music,” which consists of various music
styles. Nevertheless, concepts from these algorithms may be
used for a more specific classification in the future.

The objective of the work described in this paper is the
detection of the general classes “speech,” “noise,” “speech in
noise,” and “music.” With the algorithms mentioned above, a
robust recognition of the class “speech in noise” was not pos-
sible, and none of the approaches for hearing aids allows to
classify music so far. Thus, a combination of existing features
with features that are inspired by auditory scene analysis is
performed to achieve a robust classification system. These
features are evaluated together with different types of pattern
classifiers.

2. SOUND CLASSIFICATION INSPIRED
BY AUDITORY SCENE ANALYSIS

The basic structure of a sound classification system is illus-
trated in Figure 1. The classifier separates the desired classes
based on the features extracted from the input signal. Post-
processing is employed to correct possible classification er-
rors and to control the transient behavior of the sound clas-
sification system. Considering the approaches described in
the introduction, it can be stated that in most algorithms, the
emphasis lies on the feature extraction stage. Without good
features, a sophisticated pattern classifier is of little use. Thus,
themain goal is to find appropriate features before evaluating
them with different pattern classifier architectures. In order
to find such features, it is considered how the human audi-
tory system performs the analysis of an acoustic scene.

2.1. Auditory scene analysis

Auditory scene analysis [15] describes mechanisms and pro-
cessing strategies on which the auditory system relies in the
analysis of the acoustic environment. Although this whole
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process is not yet completely understood, it is known that
the auditory system extracts characteristic features from the
acoustic signals. The features are analyzed based on grouping
rules and possibly also on prior knowledge and hypotheses
to form acoustic events. These events are then combined and
respectively segregated into multiple sound sources.

The features which are known to play a key role in au-
ditory grouping, the so-called auditory features, are spectral
separation, spectral profile, harmonicity, onsets and offsets, co-
herent amplitude and frequency variations, spatial separation,
and temporal separation. For more details on auditory fea-
tures in particular and auditory scene analysis in general the
reader is referred to the literature, for example, Mellinger and
Mont-Reynaud [16] or Yost [17].

Note that the auditory system attempts to separate and
identify the individual sound sources, whereas sound clas-
sification does not necessarily require the separation of the
sources. The same is the case for computational models of
auditory scene analysis, for example, from Brown and Cooke
[18], Ellis [19], or Mellinger and Mont-Reynaud [16]. The
aim of these models is to separate sources, rather than to clas-
sify them, and they use only little prior knowledge up to now,
that is, they simply rely on primitive grouping rules. How-
ever, it seems that especially the computation of feature maps
in the models can be adapted to gain measures for different
signal characteristics, like occurrence of onsets and offsets,
autocorrelation for pitch determination, and so forth. In the
next section, some of the feature calculation is implemented
following these models.

2.2. Features for sound classification

In this approach to sound classification, the aim is to mimic
the human auditory system at least partially by making use of
auditory features as known from auditory scene analysis. So
far, four auditory feature groups are used: amplitude modu-
lations, spectral profile, harmonicity, and amplitude onsets.

Amplitude modulations are characteristic of various nat-
ural sound sources, and they differ in strength and frequency
for many of these sources. They are described in three dif-
ferent ways here in order to later evaluate those features that
perform best for sound classification purposes.

The amplitude histogram of the sounds can be modeled
by means of percentiles. The width of the amplitude his-
togram is used to characterize the modulation depth in the
signal. This concept is illustrated in Figure 2. A similar kind
of amplitude statistics was already used by Ludvigsen [3] for
the differentiation of impulse-like sounds from continuous
sounds.

The amplitude modulations might also be determined
in a similar way as described by Ostendorf et al. [4]. The
modulation spectrum of the signal envelope is calculated in
three modulation frequency ranges: 0–4Hz, 4–16Hz, and
16–64Hz. A value for the modulation depth of each of the
three channels is obtained, the modulation features m1, m2,
andm3 (Figure 3).

Furthermore, the approach of Kates [1] is chosen for the
description of the amount of level fluctuations. The mean
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Figure 2: Envelope histogram and percentiles for 30 seconds of
clean speech. The amplitude modulations are characterized by
means of the amplitude statistics. The amplitude histogram (bar
graph) is approximated by several percentiles (dashed lines). The
width of the amplitude histogram is defined as the difference of
the 90% and 10% percentiles. For clean speech, the width becomes
large, whereas, for continuous signals like background noise, the
width remains small.
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Figure 3: Description of amplitude modulations by extraction of
the modulation depth of the signal envelope in three modulation
frequency ranges (0–4Hz, 4–16Hz, 16–64Hz), resulting in the fea-
turesm1 (solid line),m2 (dashed line), andm3 (dotted line).

level fluctuation strength MLFS is defined as the logarithmic
ratio of the mean to the standard deviation of the magni-
tude in an observation interval. It was approximated with the
following formula:

MLFS = 10 · log E(ObsInterval)
STD(ObsInterval)

≈ log
MLAV

(1/3)
(
ML max−MLAV

)
(1)
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Figure 4: Extraction of amplitude modulations by computation of
the mean level fluctuation strength MLFS. Within a time frame of
one second, the logarithmic ratio of the mean to the standard de-
viation is computed. The MLFS gets small or negative values for
strongly fluctuating signals like clean speech, and large values for
smooth continuous signals like background noise.

with

MLAV = 1
Tmean

∑
Tmean

(
1
N

N∑
n=1

log
(∣∣P(n)∣∣)

)
,

ML max = max
TMean

(
1
N

N∑
n=1

log
(∣∣P(n)∣∣)

)
.

(2)

The mean level average MLAV is calculated out of the sum of
the log magnitude P of N = 20 Bark bands averaged over a
time Tmean = 1 second. The standard deviation is approx-
imated by a third of the difference of the maximum and
the mean within the observation time Tmean, assuming that
the amplitude spectrum has a Gaussian distribution, which
might not necessarily be the case. The logarithm is calculated
because it makes the MLFS more convenient to handle and
display. Large values stand for smooth signals, while small or
even negative values indicate a signal with large level fluctu-
ations. An example of the determination of the MLFS within
a 1-second time frame is given in Figure 4.

The spectral profile of a sound can contribute to the classi-
fication in that its formmay differ for different sound classes,
such as for music or noise. Moreover, the shape of the spec-
trum of most sound sources remains constant as the over-
all level of the sound is changed. Thus, the auditory sys-
temmonitors the relative differences of the amplitudes of the
spectral components as the overall level changes. The spectral
profile is modeled here in a very rudimentary way by means
of two features, the spectral center of gravity CGAV, and the
fluctuations of the spectral center of gravity CGFS. The CGAV
is a static characterization of the spectral profile determined
by calculating the first moment of the Bark spectrum and av-
eraging it over an observation interval of Tmean = 1 second,
with N = 20 Barks, kn FFT bins, and magnitude P in Bark n
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Figure 5: Spectral center of gravity and fluctuations of the spec-
tral center of gravity as employed in the description of the spectral
profile.

(using a 128 point FFT at 22 kHz sampling rate):

CGAV = 1
TMean

∑
Tmean

CG with CG =
∑N

n=1 n · |P(n)| · kn∑N
n=1 |P(n)| · kn

,

k1–20 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 7, 9, 12].
(3)

The CGFS describes dynamic properties of the spectral pro-
file; it is defined as the logarithmic ratio of the mean to the
standard deviation of the center of gravity within the obser-
vation interval, equivalent to the calculation of the MLFS:

CGFS = log
E(CG)

STD(CG)
≈ log

CGAV
(1/3)(CG max−CGAV)

(4)

with

CG max = max
TMean

(CG). (5)

CGAV and CGFS have already been employed in an earlier
sound classifier of Phonak [5]. Figure 5 illustrates the ap-
proach.

To describe harmonicity, the pitch of the sound is usu-
ally employed. Pitch perception is regarded as being an im-
portant feature in auditory scene analysis; the existence or
the absence of a pitch as well as the temporal behavior of the
pitch gives much information about the nature of the signal.
The pitch is extracted by calculating a quasi-autocorrelation
function as shown in Figure 6, following a simplified algo-
rithm from Karjalainen and Tolonen [20]. If no peak can be
detected above a threshold of 20% of the signal energy (0.2 ·
ACF(0)) and within the range of 50–500Hz, the pitch fre-
quency is set to 0Hz. Figure 7 shows the temporal behav-
ior of the extracted pitch of clean speech and classical mu-
sic. In the present approach, two features are computed that
describe the harmonicity: the tonality of the sound and the
pitch variance. The tonality is defined as the ratio of har-
monic to inharmonic (i.e., pitch frequency = 0Hz) parts in
the sound in an interval of 1 second. The same interval ap-
plies for the pitch variance. Note that the pitch value itself is
not employed as a feature.
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Figure 6: Block diagram of the pitch extractor. A quasi-autocorrelation function is calculated by applying an IFFT to the amplitude spec-
trum, and the pitch is determined by the maximum within a range of 50–500Hz.
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Figure 7: Typical temporal behavior of the pitch frequency for (a) clean speech and (b) classical music. Where a pitch exists, the sound
is harmonic; otherwise, where no pitch can be extracted (indicated by 0Hz), the sound is defined as inharmonic. In speech, the pitch is
determined by its prosody, in music by single tones as well as chords. Tonality is the ratio of harmonic to inharmonic periods over time.
Pitch variance refers to the harmonic parts of the sound only.

Common amplitude onsets of partials are a strong group-
ing feature in auditory scene analysis. If synchronous onsets
of partials occur, they fuse together to one source, whereas
asynchronous onsets indicate the presence of more than one
source and are therefore used for segregation. Small onset
asynchronies between partials are an important contribution
to the perceived timbre of the sound source (i.e., musical in-
strument).

For modeling amplitude onsets, the approach from
Brown and Cooke [18] is simplified. The envelope of the sig-
nal is calculated in twenty Bark bands with a time constant
of 10 milliseconds. This removes the glottal pulses of speech
stimuli, but detects fast onsets from plosives. Then, the dif-
ference in dB from one frame of 5.8 milliseconds to the next
is determined. The outputs of the algorithm are spectrotem-
poral onset maps as shown in Figure 8 for clean speech and
speech in traffic noise. Onsets above 7 dB/frame are displayed
as small dots, and above 10 dB/frame as large dots. Four dif-
ferent features are then extracted from the onset map: the
mean and the variance of the onset strength in an observa-
tion interval of 1 second (onsetm and onsetv), the number of
common onsets across bands (onsetc), averaged over the ob-
servation interval, and the relation of high to low frequent
onsets in the observation interval (onsethl).

Finally, the onset maps reveal also some information
about the rhythm in the signal. Figure 9 shows the onsets of
a pop music sample with a strong beat, which can clearly be
seen in the onset pattern. Thus, a feature is extracted from the
onset map that describes the strength of the beat in the signal.
In each Bark band, the onset values are quasi-autocorrelated
(similar to the pitch extraction in Figure 6) over a time win-
dow of 5.9 seconds (1024 frames of 5.8 milliseconds), and

the summary autocorrelation function is then computed (an
approach similar to what was chosen by Scheirer [21]). A
number of consecutive summary autocorrelation functions
are then again summed up to observe a longer time interval
of some 30 seconds. This emphasizes beats that remain stable
over a longer period of time, assuming that this is more the
case for music than for speech. The beat feature is then the
value of the highest peak of the output within a time interval
of 200 to 600 milliseconds (1.7 to 5Hz, or 100 to 300 bpm).

2.3. Pattern classifiers

After the extraction of feature vectors out of the signal, a
decision is made about the class that the signal belongs to.
This process is performed in the pattern classifier block. The
principle of pattern classification is a mapping from the fea-
ture space to a decision space: for every point in the feature
space a corresponding class is defined. The borders between
the classes are found by performing some sort of training.
This is accomplished with a suitable set of sound data. Once
the borders are fixed with a set of training sounds, the perfor-
mance of the classifier is tested with a set of test sounds that
is independent of the training set.

There exist a huge number of approaches for pattern clas-
sifiers, many of which require quite a lot of computing power
and/or memory (for an overview, see, e.g., Schürmann [22],
or Kil and Shin [23]). For the application in hearing aids, it
is crucial to keep the need for computing time and memory
low. Thus, in this paper, the evaluation concentrates on clas-
sifiers of low to moderate complexity. Six different classifiers
were chosen for this purpose as follows.

A straightforward approach is to define boundaries for
every feature itself, that is, some rules are established based



2996 EURASIP Journal on Applied Signal Processing

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

5
10
15
20

Time (s)

Fr
eq
u
en
cy

(B
ar
k)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

5
10
15
20

Fr
eq
u
en
cy

(B
ar
k)

Time (s)

(b)

Figure 8: Amplitude onsets in twenty Bark bands for (a) clean speech and (b) speech in traffic noise. Dark areas of the image indicate regions
of strong onsets. In speech, many strong onsets occur simultaneously over the bands. If the speech is masked by noise, the onsets are much
weaker.
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Figure 9: Amplitude onsets in twenty Bark bands for pop music. The strong rhythmic beat in the sample is very well described by the onsets
and can be identified by autocorrelating the onsets in each frequency band over a longer period of time.

on the training data and on the a priori knowledge. With
such a rule-based classifier, the boundaries between the
classes are lines orthogonal to the feature axes. For many
cases, these straight lines will certainly not be the optimal
boundaries. In the present approach, it was tried to choose
only few features that allow to divide the feature space in a
simple way: the amplitude modulation featuresm1, m2, and
m3 were used to discriminate between speech and other sig-
nals, and the two pitch features between music, noise, and
speech in noise.

With aminimum-distance classifier, the distance of an ob-
servation to all classes is measured, and the class with the
shortest distance is chosen. For a spherical distribution of
the classes, the Euclidean distance is chosen; for a nonspher-
ical distribution, the Mahalanobis distance may give better
results, as it takes also the variances of the features into con-
sideration.

The Bayes classifier does the classification with the help
of histograms of the class-specific probabilities: the class-
specific distribution is approximated with multidimensional
histograms. Different numbers of histogram intervals were
considered to find the optimal number.

The multilayer perceptron, a sort of neural network, al-
lows to approximate any discriminant function to arbitrary
accuracy. A two-layer perceptron with different numbers of
neurons in the hidden layer and sigmoid activation functions
was chosen for the evaluation.

Hidden Markov models (HMMs) are a widely used sta-
tistical method for speech recognition. One major advantage
of HMMs over the previously described classifiers is that they
account for the temporal statistics of the occurrence of differ-
ent states in the features. Typically, LPC are chosen as input
of anHMM (see, e.g., Rabiner and Juang [24]). In the present
study, however, the features inspired by auditory scene analy-

sis were used. The same basic HMM structure was chosen for
all classes, an ergodic HMMwith two or more states (ergodic
meaning that each state can be reached from any other state).

Finally, a simple two-stage approach was evaluated. The
idea of a multistage strategy is to verify the output of a classi-
fier with a priori information of the signal and to correct the
classification if necessary. The HMM classifier was used as
first stage together with the feature set that had turned out to
be optimal (see Section 3). Its output was then verified with
a rule-based classifier and a second feature set. This second
stage could also be regarded as a special form of Postprocess-
ing.

2.4. Postprocessing

Asmentioned earlier, the purpose of postprocessing is to cor-
rect possible classification errors and to control the transient
behavior of the sound classification system. This is achieved
in a very simple manner by observing the classification out-
comes over a certain time (e.g., 10 seconds) and taking as a
result the class which has occurredmost often. By varying the
length of the observation interval the transient behavior of
the classification result is controlled. However, for the evalu-
ations described in the next section, only the static behavior
was tested, and the Postprocessing was left away.

3. EVALUATIONOF DIFFERENT
CLASSIFICATION SYSTEMS

3.1. Motivation

In the previous section, various features and pattern clas-
sifiers have been described, but it was not obvious which
combination of features would be optimal with which classi-
fier. For application in hearing aids, “optimal” does not only
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Table 1: The four main classes of the sound database and their subclasses.

60 speech 80 speech in noise 80 noise 80 music

40 clean or slightly reverberated
23 in social noise 23 social 19 classic

7 in the car 7 in the car 19 pop/rock

10 compressed 14 in traffic noise 14 traffic 19 single instruments

10 strongly reverberated
16 in industrial noise 16 industrial 16 singing

20 in other noise 20 other 7 other

mean to achieve a high recognition rate, but also to keep the
need for computing time and memory low. Thus, the goal
was to evaluate feature sets and classifiers of different com-
plexity to find a classification system that gives a good score
for reasonable computational effort.

3.2. Sound database

The sound database used for the evaluations contains some
300 real-world sounds of 30-second length each, sampled at
22 kHz/16 bit. All of the four desired sound classes (“speech,”
“speech in noise,” “noise,” and “music”) are represented with
various examples (Table 1). The sounds were composed and
manually labeled by the authors; they were either recorded
in the real world (e.g., in a train station) or in a sound-
proof room, or taken from other media. The class “speech” is
comprised of different speakers speaking different languages,
with different vocal efforts, at different speeds, and with dif-
ferent amounts of reverberation and compression. The class
“noise” is the most widely varying sound class, comprising
social noises, traffic noise, industrial noise, and various other
noises such as household and office noises. “Speech in noise”
sounds consist of speech signals mixed with noise signals at
signal-to-noise ratios (SNRs) between +2 and −9 dB. The
class “music,” finally, comprises music styles from classics
over pop and rock up to single instruments and singing.

3.3. Procedure

For the evaluation, different combinations of the described
features and classifiers were considered. If all combinations
of the features had been evaluated, it would have resulted
in about 214 different feature sets. Thus, an iterative strat-
egy was developed heuristically to find the best feature set,
by primarily trying to combine features that describe differ-
ent attributes of the signal. The strategy followed six steps.

(1) The pitch feature tonality was used together with fea-
tures describing the amplitude modulations (AM),
that is, histogram width,m1,m2,m3, and MLFS.

(2) The best AM set of step (1) was used without the tonal-
ity, but together with the second pitch feature, pitch
variance.

(3) The best set of step (2) was enriched with the spectral
features CGAV and CGFS.

(4) The onset features were added to the best set of step
(3).

(5) The best set of step (4) was reduced in succession by
the AM feature(s) and by the spectral feature(s) of
steps (1) and (3).

(6) The beat feature was added to the best set of steps (4)
and (5).

In addition to this iterative approach, the classification was
performed with all of the above features. This resulted in
about thirty feature sets that had to be processed for each
classifier in order to find the optimal combination. Note that
this procedure was not performed for the rule-based classi-
fier and for the second stage of the two-stage approach. The
structure of these classifiers was explicitly defined by the fea-
tures that were chosen, and training was performed empir-
ically by observing the distribution of all sounds in the re-
spective feature space and setting the boundaries manually.

In addition, different structures were evaluated for some
of the classifiers. For the minimum-distance classifier, both
the Euclidean and the Mahalanobis distances were used. In
the Bayes classifier, the number of histogram intervals ranged
from 5 to 50. The number of hidden neurons in the two-layer
perceptron was chosen between 2 and 12. Finally, the number
of states in the HMM was changed.

For each sound of 30-second length, classification was
calculated once per second, and the class that occurred most
frequently was taken as an output for that sound. The dy-
namic behavior within a sound was not evaluated, but in-
formal tests showed that, for most sounds, classification was
either stable (although not necessarily correct) after two or
three seconds, or fluctuating between two classes, such as
“speech” and “speech in noise.”

About 80% of the sounds were used for the training of
the classifier, and 20% for testing (for the rule-based classi-
fier, only the test set was used, as it was implicitly trained with
a priori knowledge). The sounds for the training and the test
sets were chosen at random, and this random choice was re-
peated 100 times. The actual score was then the mean of the
scores of these 100 training and test cycles.

The trained classifier was not only tested with the test
data, but also with the training data, in order to check how
well the classifier is able to generalize. If the score for the
training set is much better than that for the test set, then the
classifier is overfitted to the training data; it behaves well for
known data, but cannot cope with new data. This can hap-
pen when the classifier has many free parameters and only
few training data, or when the training data does not repre-
sent the whole range of each class homogeneously.
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Table 2: Classification results for the six classifiers. For each classifier, the score for the best parameter and the best feature set is given. The
simpler approaches achieve around 80% overall test hit rate, which can be improved to some 90% with the more complicated systems.

Classifier type,
best parameters Best feature set

Training
set score
(%)

Test set score (%)

Overall
hit rate

Overall
hit rate

Speech Speech
in noise

Noise Music

Hit False Hit False Hit False Hit False

Rule-based
Tonality, pitch variance,
m1,m2,m3

— 78 79 1.3 67 9.9 88 11.8 78 7.0

Minimum distance,
Euclidean

Tonality, pitch variance,m1,m2,
m3, CGFS, onsetv, beat

84 83 86 3.5 83 11.2 80 7.0 85 1.0

Bayes, 15 intervals Tonality, pitch variance,m1,
m2,m3, CGFS, onsetm, onsetc

86 85 90 4.3 83 10.1 84 5.0 82 1.5

Two-layer perceptron,
8 hidden nodes

Tonality, width, CGAV,
CGFS, onsetc, beat

89 87 86 1.7 86 7.0 89 5.9 87 2.8

Ergodic HMM, 2 states Tonality, width, CGAV, CGFS,
onsetc, onsetm

90 88 92 2.2 84 7.0 84 5.3 91 2.2

Two-stage (best HMM and
rule-based)

Tonality, pitch variance,
width, CGAV, CGFS, onsetc,
onsetm

— 91 92 1.4 87 5.3 91 3.8 93 2.3

3.4. Results
The performance of each evaluated classification system is
expressed by hit and false alarm rates. The hit rate is defined
as the percentage of correctly recognized sounds of a particu-
lar class; the corresponding false alarm rate is the percentage
of sounds which were falsely classified as this class. The re-
sults are summarized in Table 2. For each of the classifiers,
the best score is shown, that is, the classifier parameter and
the feature set for which the overall test hit rate achieves a
maximum.

The hit rate of 78% achieved with the simple rule-based
approach is not really convincing, but only pitch and ampli-
tudemodulation features were needed to get this score. Many
sounds of the class “speech in noise” were misclassified. Re-
verberated and compressed speech was classified either as
“music” or “speech in noise,” and pop music as “noise.” On
the other hand, “noise” was never misclassified as “music” or
“speech,” only as “speech in noise.”

The minimum-distance classifier achieved similar results
for the Euclidean and the Mahalanobis distances, which in-
dicates that the class distribution in the feature space is fairly
(“hyper”)spherical. The best hit rate of 83% was obtained
using features of each category. The false alarm rates show
that many files were misclassified as “speech in noise,” espe-
cially reverberated speech and cafeteria noises. This is also
why the hit rate for “noise” is not so high. The beat fea-
ture helped separate rhythmic noises and pop music from
the class “speech in noise.” There was no danger of overfit-
ting (the difference of the training and test hit rates remained
small for all feature sets), because it is not possible to divide
the feature space in a complex way with this sort of classifier.

For the Bayes classifier, an optimum was reached with
about 15 histogram intervals. More intervals only lead to
overfitting. Overfitting could also occur if too many features
were used. For the best hit rate of 85%, features of each cate-
gory except the beat feature were employed. Themisclassified
sounds were mainly reverberated speech, fluctuating noises,
and pop music. They were all regarded as being “speech in
noise.” Tonal noises, such as a vacuum cleaner, were mostly
classified as “music.”

The neural network performed best with about 8 hid-
den nodes and features of each category, achieving a hit rate
of 87%. More hidden nodes caused overfitting. Most con-
fusions concerned “noise” and “speech in noise,” which in-
cluded fluctuating noises like cafeteria noise, a passing train,
or a weavingmachine, and speech in noise with poor SNR. In
addition, a few of the reverberated speech sounds were clas-
sified as “speech in noise,” and a few of the pop music sounds
as “noise,” especially if they were compressed (i.e., recorded
from the radio). Finally, a few tonal noises were regarded as
“music.”

For the ergodic HMM, it was not possible to use more
than two states; otherwise not all parameters had data as-
signed during training and the training did not converge.
One reason for this is certainly that the sounds of a class can
be very different, especially regarding their temporal struc-
ture. Thus, the best hit rate of 88% was achieved with a two-
state HMM and six features of each except the beat category.
Using more features, especially the beat feature, only leads to
overfitting. Most confusions occurred in the classes “noise”
and “speech in noise.” Fluctuating noises were often regarded
as “speech in noise” and “speech in noise” with poor SNR
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Figure 10: Hit rates of the two-stage classifier for the subclasses of “speech,” “noise,” and “music.” Compressed and reverberated speech as
well as pop and rock music are still not robustly classified.

as “noise.” Some compressed speech sounds as well as a few
of the compressed pop music sounds were misclassified as
“speech in noise.”

In the two-stage approach, we tried to correct some clas-
sification errors that the above described HMM system had
made. The second rule-based stage considered the classifica-
tion output of the HMM together with the two pitch and the
two spectral features to perform this. The aim was especially
to correctly classify compressed or reverberated speech, fluc-
tuating noises and pop music. The highest improvement of
8% was achieved for the class “noise,” because most fluctu-
ating noises that had been misclassified by the HMM could
be moved to the correct class in the second stage. Further-
more, at least some of the previously misclassified pop music
sounds were classified correctly in the second stage, which
is why the false alarm rate of “speech in noise” was slightly
improved. However, it was not possible to identify the mis-
classified compressed or reverberated speech sounds. If a cor-
rection had been tried here, many true “speech in noise”
sounds would have been moved to the class “speech.” Finally,
“speech in noise” with very high SNR was still classified as
“speech,” and with very low SNR as “noise.” This, however, is
not necessarily wrong. It shows how the boundaries between
“speech,” “speech in noise,” and “noise” are somewhat fuzzy.

In Figure 10, the hit rates for the subclasses of “speech,”
“noise,” and “music” are also depicted. It can clearly be seen
that problems arise in the classification of compressed and
strongly reverberated speech as well as pop and rock music.

3.5. Discussion

The single stage approach that performed best was an HMM
classifier, followed by the neural network, which performed
only slightly worse. The Bayes and minimum-distance clas-
sifiers performed a little worse. However, the Bayes classi-
fier could especially be suited if computing time is more
limited than memory. If also the memory is restricted, the
minimum-distance classifier may be a good choice, because
it needs about four times less computing time and memory

compared to the HMM or neural network. The rule-based
approach might be improved if more features are added,
but then it will become difficult to handle. After all, train-
able classifiers have been developed so that the training is no
longer needed to be done manually. Finally, the HMM score
was enhanced by about 3% when a simple rule-based stage
was added. This second stage can be regarded as a special
form of Postprocessing, or also as a different way of weight-
ing the features (compared to the HMM). This stage espe-
cially improved the hit rate for the class “noise” in that many
fluctuating noises were then correctly classified.

There is obviously only little temporal information in the
features that can bemodeled with anHMM.HMMs are com-
monly more used for the identification of transient sounds,
where the HMM states model the onset, the stationary, and
the offset parts of a sound (see, e.g., Oberle [14], or Zhang
and Kuo [8]). In continuous sounds, as they occur in the
sound classes desired in this paper, the states represent differ-
ent stationary parts that occur in random order, for example,
parts with speech and parts with silence, or parts with speech
and parts with noise. However, the problem of these sound
classes is that the sounds within a class can differ very much
(e.g., stationary noises versus impulse-like noise, rock music
versus classical music). This means that there might not be a
common temporal structure in a class that can be modeled
by an HMM.

The features needed for good performance were at least
the pitch feature tonality and one of the amplitude modula-
tion features. When the spectral features CGAV and CGFS as
well as one of the onset features were added, the score could
be further improved. The beat feature, however, was of little
use.

It is also important to see that the scores are partly a re-
sult of the sound database that was used. It was intended to
include a great variety of sounds in each class to cover the
whole range of the class homogeneously. However, some of
these sounds may be quite exotic. A pile driver, for example,
is not a noise to which hearing impaired persons are exposed
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in everyday life. If such sounds are left away, the hit rates
will improve. On the other hand, there are everyday sounds
that are mostly misclassified, for example, compressed and
strongly reverberated speech. Howmany of these sounds and
how many clean speech sounds will be put into the sound
database? The hit rate will indeed only be determined by this
choice; it will be 100% if only clean speech is taken, and near
0% if only compressed and strongly reverberated speech is
used. This example illustrates that classification scores always
have to be interpreted with caution.

Another issue related to this is the labeling of the sounds
at the time of composing the sound database. Does strongly
reverberated speech really belong to the class “speech,” or is it
already “speech in noise”? Is hard rockmusic not perceived as
being “noise” by some people? And which SNR is the bound-
ary between “speech in noise” and “noise”? If our perception
tells us already that the sound does not really sound as it has
been labeled, can it be astonishing that its physical properties
let the classifier put it into the “wrong” class?

Thus, the choice and labelling of the sounds used in-
fluences the classification performance considerably through
both training and testing. On the other hand, one and the
same signal might be classified differently depending on the
context. Speech babble, for example, could either be a “noise”
signal (several speakers talking all at once) or a “speech in
noise” signal (e.g., a dialog with interfering speakers). Again,
the outcome of the classifier in such ambiguous situations
depends on the labelling of the sound data.

Ultimately, the perception of a listener also depends on
what he wants to hear. For example, in a bar where music
plays and people are talking, music may either be the target
signal (the listener wants to sit and enjoy) or a background
signal (the listener is talking to somebody). This shows the
fundamental limitations of any artificial sound classification
system. No artificial classifier can read the listener’s mind,
and therefore there will always exist ambiguities in classifica-
tion.

4. CONCLUSIONS

For the general classification of the acoustic environment
in a hearing aid application, the four main sound classes
“speech,” “speech in noise,” “noise,” and “music” will be
distinguished. For this purpose, a number of auditory fea-
tures were extracted from the acoustic signal and classified by
means of several pattern classifiers, to assess which combina-
tion of features was optimal with which classifier. The em-
ployed features describe level fluctuations, the spectral form,
harmonicity, onsets, and rhythm.

The results achieved so far are promising. All sound
classes except the class “speech in noise” were identified
with hit rates over 90%. For “speech in noise” signals, the
hit rate was slightly lower (87%). Many sounds of the four
classes were very robustly recognized: clean and slightly re-
verberated speech, speech in noise with moderate SNR, traf-
fic and social noise, and classical music, single instruments,
and singing. The misclassified sounds consist of four groups:
“speech in noise” with very low or very high SNR, which

was classified as “noise” or “speech,” respectively, compressed
and strongly reverberated speech, a few tonal and fluctuating
noises, and compressed pop music, which were all classified
as “speech in noise.”

During the evaluation of the described sound classifi-
cation system, insight was gained in how the system could
be improved in the future. So far, the performance of the
sound classification system has only been tested on sounds
from the sound database. One of the next steps should there-
fore be to evaluate such a system in a field experiment to
gain more practical experience. For this purpose, a portable
system seems mandatory, as it will enable to carry out the
evaluation of the sound classification system in real time.
This approach should most probably also provide new ideas
about possible optimization strategies.

Taking into account further or ameliorate existing fea-
tures will be an important aspect for improving and refining
the classification. This includes the following.
(a) A better modeling of the spectral profile: so far, the

spectral profile has only been modeled in a rudimen-
tary way. It was not possible to describe the tone color
of the sound (which contributes to the perceived tim-
bre) in a detailed form. This seems to be a difficult task,
because the intraclass variance of the tone colormay be
very high. Zhang and Kuo [25] analyzed the spectral
profile for the classification of some specific environ-
mental sounds, although on a more detailed layer than
desired here.

(b) A feature that describes the amount of reverberation
in the signal, for example, after approaches presented
by Shoda and Ando [26] and Ando et al. [27].

(c) A feature that determines the SNR of the signal, for
a more gradual classification of signals containing
speech and/or noise.

(d) Spatial features, to analyze where the signal and where
the noise come from, or to check both front and back
signals on speech content. The latter would, for ex-
ample, allow to distinguish between “speech signal in
speech noise” (speech from the front and from the
back), “speech signal in other noise” (speech from the
front, noise from the back), and “speech noise only”
(speech from the back). Directional microphone and
noise reduction in the hearing aid could be set accord-
ingly.

However, we are far from achieving similar performance in
a hearing aid as with our auditory system.Today’s limitations
are on the one hand the ambiguity and context dependence
of a large part of the acoustic situations. On the other hand,
it is still lacking to understandmany of the processes involved
in auditory perception. It is striking to realize what complex
tasks have tobe solved in these processes.However, in contrast
to a hearing aid, the human auditory system has a lifetime
for training, and it gets also substantial feedback from other
senses, such as the visual system. With this, the auditory sys-
tem can fall back upon invaluable a priori knowledge—the
visual system will announce that music will be heard soon
even before the orchestra has played a single note.
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[7] F. Feldbusch, “Geräuscherkennung mittels Neuronaler Netze
[Noise recognition by means of neural networks],” Zeitschrift
für Audiologie, vol. 37, no. 1, pp. 30–36, 1998.

[8] T. Zhang and C.-C. J. Kuo, “Audio content analysis for online
audiovisual data segmentation and classification,” IEEE Trans.
Speech Audio Processing, vol. 9, no. 4, pp. 441–457, 2001.

[9] H. Soltau, T. Schultz, M. Westphal, and A. Waibel, “Recogni-
tion of music types,” in Proc. IEEE Int. Conf. Acoustics, Speech,
Signal Processing (ICASSP ’98), vol. 2, pp. 1137–1140, Seattle,
Wash, USA, May 1998.

[10] T. Lambrou, P. Kudumakis, R. Speller, M. Sandler, and A. Lin-
ney, “Classification of audio signals using statistical features
on time and wavelet transform domains,” in Proc. IEEE Int.
Conf. Acoustics, Speech, Signal Processing (ICASSP ’98), vol. 6,
pp. 3621–3624, Seattle, Wash, USA, May 1998.

[11] K. D. Martin and Y. E. Kim, “Musical instrument identifica-
tion: a pattern-recognition approach,” in Proc. 136th Meeting
of the Acoustical Society of America (ASA ’98), Norfolk, Va,
USA, October 1998.

[12] E. D. Scheirer and M. Slaney, “Construction and evaluation
of a robust multifeature speech/music discriminator,” in Proc.
IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP
’97), vol. 2, pp. 1331–1334, Munich, Germany, April 1997.

[13] C. Couvreur, V. Fontaine, P. Gaunard, and C. G. Mubikang-
iey, “Automatic classification of environmental noise events by
hidden Markov models,” Applied Acoustics, vol. 54, no. 3, pp.
187–206, 1998.

[14] S. Oberle and A. Kaelin, “Recognition of acoustical alarm sig-
nals for the profoundly deaf using hiddenMarkov models,” in
Proc. IEEE Int. Symp. Circuits and Systems (ISCAS ’95), vol. 3,
pp. 2285–2288, Seattle, Wash, USA, April–May 1995.

[15] A. S. Bregman, Auditory Scene Analysis: The Perceptual Orga-
nization of Sound, MIT Press, Cambridge, Mass, USA, 1990.

[16] D. K. Mellinger and B. M. Mont-Reynaud, “Scene Analysis,”
in Auditory Computation, H. L. Hawkins, T. A. McMullen, A.
N. Popper, and R. R. Fay, Eds., pp. 271–331, Springer, New
York, NY, USA, 1996.

[17] W. A. Yost, “Auditory image perception and analysis: the ba-
sis for hearing,” Hearing Research, vol. 56, no. 1-2, pp. 8–18,
1991.

[18] G. J. Brown and M. Cooke, “Computational auditory scene
analysis,” Computer Speech & Language, vol. 8, no. 4, pp. 297–
336, 1994.

[19] D. P. W. Ellis, Prediction-driven computational auditory scene
analysis, Ph.D. thesis, Massachusetts Institute of Technology,
Cambridge, Mass, USA, 1996.

[20] M. Karjalainen and T. Tolonen, “Multi-pitch and periodicity
analysis model for sound separation and auditory scene analy-
sis,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing
(ICASSP ’99), vol. 2, pp. 929–932, Phoenix, Ariz, USA, March
1999.

[21] E. D. Scheirer, “Tempo and beat analysis of acoustic musical
signals,” Journal of the Acoustical Society of America, vol. 103,
no. 1, pp. 588–601, 1998.
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