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Text-independent speaker recognition systems such as those based on Gaussian mixture models (GMMs) do not include time
sequence information (TSI) within the model itself. The level of importance of TSI in speaker recognition is an interesting ques-
tion and one addressed in this paper. Recent works has shown that the utilisation of higher-level information such as idiolect,
pronunciation, and prosodics can be useful in reducing speaker recognition error rates. In accordance with these developments,
the aim of this paper is to show that as more data becomes available, the basic GMM can be enhanced by utilising TSI, even in
a text-independent mode. This paper presents experimental work incorporating TSI into the conventional GMM. The resulting
system, known as the segmental mixture model (SMM), embeds dynamic time warping (DTW) into a GMM framework. Results
are presented on the 2000-speaker SpeechDat Welsh database which show improved speaker recognition performance with the
SMM.
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1. INTRODUCTION

Most current state-of-the-art text-independent speaker
recognition systems are based on the Gaussian mixture
model (GMM), introduced by Reynolds [1] in 1992. The
GMM can be viewed as a single state hidden Markov model
(HMM); thus with only a single state there can be no inter-
state transitions and there can be no time sequence infor-
mation (TSI) within the model. TSI in this context is de-
fined as information derived from the make-up of atomic
speech units along the time course. Transition features, pop-
ular in both speech and speaker recognition, provide an ex-
ample of TSI since they measure the rate of change of the
instantaneous features. The basic atomic units and these
derivatives are invariably in the form of cepstra and delta
cepstra, respectively, and are very widely used in both speech

and speaker recognition. The instantaneous form is typically
derived from a frame of speech spanning 20–30milliseconds
and is given the term atomic here to reflect the shortest prac-
tical time interval over which meaningful features can be
extracted. The transition features are derived from a short
sequence of instantaneous features. This idea was first pro-
posed by Furui in 1981 [2] using regression analysis.

The level of importance of TSI in speaker recognition is
in itself an interesting question and one addressed in this
paper. The focus here is on text-independent speaker recog-
nition systems, defined as those that place no constraints on
the contents of the spoken test utterance. TSI is the bastion of
the complementary task of speech recognition, since the tem-
poral sequence itself conveys the text of the spoken utterance.

It is well known that as the amount of data increases,
more complex models can be trained, potentially leading
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to better recognition performance. It is interesting to note
that today’s state-of-the-art speech recognition systems are
trained on more speech than a human is likely to hear in a
lifetime [3]. Clearly obtaining such volumes of speaker spe-
cific data is impossible and hence in the task considered here,
namely text-independent speaker recognition, it is argued
that the model structure should reflect the amount of data
available in a given situation.

The fact that GMMs rather than HMMs underpin the
state-of-the-art speaker recognition systems might be inter-
preted to mean that there are negligible benefits in using
TSI in this form of speaker recognition. The use of models
that possess temporal properties such as HMMs has shown
negligible advantages over the GMM. Supporting this view,
Tishby [4], for example, reports that the Markovian transi-
tion probabilities from an HMM lend negligible improve-
ments to text-independent speaker recognition.

However, the recent works of Doddington [5] and the
SuperSID workshop [6] illustrate the potential benefits
of higher-level information in speaker recognition, where
higher level comprises idiolect, pronunciation, and prosod-
ics. Such concepts involve TSI and speech units well above
the atomic level, even though the foundations might well re-
main the atomic units. It is interesting to observe that in the
transition from one form of information to the other, two
observations are apparent, one relating to the type of infor-
mation and the other relating to time; there is a clear move
from formative measures close to the signal toward cognitive
units such as words and phrases; in terms of time, the classi-
fication units move from tens of milliseconds to seconds. The
cognitive level is illustrated by comments such as a high pitch
or stressed speech, enabling the listener to “know” some-
thing about the speaker. A critical practical factor at the cog-
nitive level is the need for large amounts of speaker specific
training data. When these large quantities of data are avail-
able, higher-level information can prove beneficial in speaker
recognition [5, 6, 7, 8].

It is therefore likely that other forms of TSI, compris-
ing short sequences of atomic units, could also prove to be
beneficial in speaker recognition. These might well call for
intermediate quantities of speaker specific data. So a key
point here, and one addressed in this paper, is the quan-
tity of data required to train the recogniser. This is likely to
influence the choice of speech unit (feature) utilised in the
classification. In the minimal case the atomic units are pre-
dicted to perform best and when more data becomes avail-
able then longer units become viable. Ultimately, systems can
harness higher-level information. The dependency of higher-
level systems on large amounts of training data is well il-
lustrated by considering idiolectic word-level measures. In
order to obtain statistics on word usage for a given speaker
then relatively long and, in practise, multiple recordings are
necessary, much more than has been considered historically
in speaker recognition research.

The general idea is presented in Figure 1 in which curves
trace a path of hypothesised accuracy for different quan-
tities of training data against different classification units,
where the different classification units represent increasing
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Figure 1: Hypothesised recognition accuracy. As the amount of
data increases, the utilisation of longer speech units becomes viable.

levels of information over longer time units. As the amount
of data increases, there is an initial rapid improvement ob-
tained at the atomic level of classification unit. Only when
greater amounts of data are available is it likely that higher
level units (extracted over longer time intervals) will con-
tribute to recognition performance. At this stage the atomic-
level classification can be enhanced with different structures
and with higher-level information. In this paper the focus
is on the region just beyond the atomic level within the
shaded area in Figure 1. The aim is to show that as more
training data becomes available the standard GMM is ca-
pable of being enhanced and accuracy improved by utilis-
ing TSI.

Of course, in practice, recognition performance is inher-
ently linked to both the training and testing durations. In this
paper the major theme is the model itself, its complexity and
its training requirements, particularly in the context of TSI.
In most applications, the training data is captured over mul-
tiple sessions and is much longer than the test data. While
the absolute performance of the system is a function of both
testing and training data, the main theme here is the model
and its training.

The remainder of this paper is organised as follows.
Section 2 discusses the data-model relationship in a purely
hypothetical context. In Section 3 the approach with which
TSI is harnessed is introduced. This takes the form of
short segments embedded in a standard GMM configura-
tion and is termed the segmental mixture model (SMM).
The hypothesis put forward in Section 2 is then tested ex-
perimentally on the 2000-speaker SpeechDat Welsh database
[9]. Results are presented in Section 4; these compare the
standard GMM to the proposed SMM in a text-independent
speaker recognition context. Conclusions are presented in
Section 5.
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2. DATA-MODEL RELATIONSHIP

The amount and quality of both test and training data are
known to be influential factors in speaker recognition per-
formance and these factors are application dependent. In the
case of telephony applications, for example, the quality of
data might be relatively low due to background noise and
possible transmission degradations; but this can be offset by
the potential for large quantities of data [10]. Thus at one
end of the scale there might be just a few short utterances
while at the other end of the scale there is the situation where
very large quantities of data are available, both for testing and
training. Radio and television broadcasting are situations
where good quality and quantity of speaker specific data can
be available. It would be possible to collect large quantities
of data from well-known broadcasters or entertainers, build
models from this data, and use these to search archives for
instances of these people [11]. A recent paper by Dodding-
ton [5] addresses this latter scenario of large amounts of data,
and shows that word frequencies are potentially useful in dis-
criminating people. This idiolectic-based approach presents
an interesting contrast to the conventional spectral-based ap-
proaches which have dominated the field until recently.

As mentioned above, the GMM approach [1] can be
thought of as operating on atomic levels in speech space, with
potentially many thousands of components in the model.
However, a speaker will display a degree of text dependency
and, as a consequence, recognition systems could incorpo-
rate a corresponding degree of text dependence. This raises
the very interesting question of how best to harness this
information. This paper is concerned with the approaches
taken to speaker recognition as the amount of speech data
changes. In other words, how might the optimal models
change as more data becomes available?

Returning to Figure 1, the profiles represent hypothesised
accuracy of speaker recognition systems. For a given amount
of data, illustrated on the vertical axis, contributions become
feasible from different classification units, indicated on the
horizontal axis. Assuming that the data available is limited to
just a few short utterances, and assuming a text-independent
mode, then the classification unit is likely to be on the far
left of the horizontal axis, in the form of the atomic speech
units. The classifier is likely to be a standard GMM or equiv-
alent working directly on the atomic units of speech. Given
several minutes of speech data, it might then be possible to
make use of the dynamics of the speech feature sequence.
This hypothesis is supported by the widespread use of transi-
tional features in the classification process [2]. Transitional
features capture information from the time sequence and
therefore are a form of TSI. First-order derivatives are gener-
ally used and give good discrimination when sufficient data
is available. This might be thought of as a first small step in
the use of TSI.

Immediately to the right of the GMM on the horizontal
axis is the SMM [12, 13]. Here the aim is to capture TSI over
and above that in the transitional speech features and to do
so in the model rather than in the features. The SMM is a
step away from the so-called atomic level of vectors spanning

tens of milliseconds and a step, albeit a small one, toward the
much higher level of n-grams for which the speech is likely
to span much longer time intervals, in the order of seconds.

As mentioned above, systems operating on longer time
units tend to demand increasing amounts of data, particu-
larly training data. The complexity of such models and their
performance as a function of training data is now consid-
ered. Figure 2 depicts the hypothetical performance of three
speaker recognition systems which differ only in the quantity
of data that is used for model training. Figure 2a corresponds
to the least amount of data, Figure 2c the most. The plots
are of recognition error rates (vertical axis) versus model size
(horizontal axis). Each figure illustrates three different pro-
files corresponding to different model complexities or clas-
sification units and shows the effect of increasing the model
size on the recognition error. In all cases the simplest model,
labelled A + 0, utilises simple atomic classification units; in
the context of a GMM this would be the number of com-
ponents in the mixture. The other two profiles, labelled A +
1 and A + 2, illustrate the variation in speaker recognition
performance as classification units utilise increasing levels of
TSI, that is, implicitly over longer time intervals. Whilst the
amount of data corresponding to configurations between fig-
ures changes, within each figure the amount of data used for
training in the different configurations is constant. The three
hypothesised experiments are now discussed in turn.

Minimum data

Figure 2a, is for a relatively small amount of training data,
for example, a few seconds or a single utterance. For the least
complex model, A + 0, recognition error (vertical axis) falls
steadily as the model size increases and for all model sizes
there is sufficient data to accurately train each model. The
A + 1 profile is for a slightly more complex model, captur-
ing a minimal level of TSI; again the recognition error falls
steadily for the smallermodel sizes. However, since themodel
is now moderately more complex, the same amount of train-
ing data is insufficient to accurately train models of relatively
larger size and thus recognition error begins to increase. The
most complex model (A + 2) which captures TSI over and
above that in the A + 1 profile, also falls for smaller model
sizes but curves upward sooner than the A + 1 profile.

Medium data

Figure 2b shows a similar scenario to Figure 2a except that
more data is now available, perhaps a few minutes or a few
sentences, for example. Once again, for the least complex
model, A + 0, recognition error falls steadily as the model
size increases, there again being sufficient data to accurately
train the model. This time, however, the profile correspond-
ing to the model of medium complexity, A + 1, falls steadily
and gives reduced recognition error for all model sizes con-
sidered. There is now more data available, thus allowing for
accurate training of slightly more complex and larger mod-
els. However, for larger model sizes there is still insufficient
data to accurately train the most complex model, A + 2, the
profile for which again begins to curve upward for larger
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Figure 2: Hypothetical performance of speaker recognition utilis-
ing different quantities of speaker specific data: (a) minimum data,
for example, a few seconds, (b) medium data, for example, a few
minutes, and (c) maximum data, for example, hours to lifetime. For
each different quantity of data, three different profiles are illustrated
corresponding to minimal complexity (A + 0), medium complexity
(A + 1) which captures a minimal level of TSI and, maximum com-
plexity (A + 2) which captures an increased level of TSI.

model sizes. This point represents the model size at which
the amount of training data is no longer sufficient to reli-
ably train all the components. The recognition errors of the
A + 0 and A + 1 models continue to improve as they are less
complex and the data is sufficient to reliably estimate the pa-
rameters.

Maximum data

Figure 2c is for a much larger amount of training data, per-
haps a few hours or more. This time, for all model sizes con-
sidered, the three profiles remain monotonic with the error
rates dropping as the model sizes increase. Note, in this case

the profiles do not intersect each other. The most complex
model, A + 2, consistently has the lowest error rates and the
least complex, A + 0, the greatest error rates. In this case the
amount of training data is large, sufficient to utilise the com-
plexity of the most complex model which thus gives the best
performance.

The three figures serve to illustrate that increasing the
amount of training data will not only allow larger models
for fixed complexity, but also more complex ones, the poten-
tial benefit of which is seen in the error rates. Note however,
that in the limits of large model size and large quantities of
data then ultimately the profiles must intersect, or at least
converge. In the limits the optimum classifier is the nearest
neighbour [14] and thus the least complex arrangement is
the best when the training data tends to infinity. The hypo-
thetical theme presented here is examined experimentally be-
low, where the classifying unit for which the similarity score
is derived is expanded from a single atomic unit in the stan-
dard GMM (i.e., A + 0 in the presented hypothesis) to a short
sequence of units in the SMM (i.e., A + 1 in the presented hy-
pothesis).

3. HARNESSING TSI

TSI is present in the temporal order of the atomic units of
speech features and it is known that this information can
be usefully harnessed for speaker recognition. One form of
TSI is obviously present in the dynamic features that are em-
ployed in almost every state-of-the-art speaker recognition
system. The aim here is to capture TSI beyond that inherently
present in the dynamic features. The TSI suggested here is of
a different nature to dynamic features in that it is embedded
in the model itself.

In order to demonstrate the potential of the two forms,
dynamic features and the new model-based TSI, the two are
used in combination. First the GMM baseline is established
in a standard configuration utilising dynamic features. Then
the model-based SMM is tested in otherwise identical condi-
tions (i.e., including dynamic features) in order to establish
the contribution from the model-based TSI. Model-based
TSI here takes the form of short segments comprised of con-
tiguous feature vectors. The duration of the segments within
the SMM is a design parameter. It has to be long enough
to exhibit some level of discrimination but short enough
to accommodate the text-independent nature of the task. It
must also reflect the amount of training data. Other practi-
cal factors in TSI configurations include whether or not the
segment lengths are fixed or variable and to what extent the
scoring process is constrained to the temporal axis.

3.1. Implementation

The proposed SMM is to provide detailed level compar-
isons of short segments; in terms of implementation this
can be achieved with a statistical model in the form of an
HMM or a template matching process such as dynamic time
warping (DTW). In many ways these two are equivalent in
that DTW can be mapped to specific HMM configurations.
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However, DTW has been preferred in the context of speaker
recognition by [2, 15, 16, 17]. There are some factors in DTW
which are not readily mapped into HMMs, one example be-
ing repeated scoring of a given input vector. Such flexibility
of the DTW template matching process possibly contributes
to its preference in situations where detailed time alignment
is of paramount interest and is the motivation for its choice
here. DTW is embedded within the GMM, leading to the
SMM. The training and testing procedures of the SMM re-
main very similar to the GMM differing only by the DTW
alignment scoring.

Many constraints may be given to a DTW system. These
can be given in the form of directional restrictions, repetition
restrictions, weighted movements, and global constraints.
The constraints applied here allow for skips and repetitions
and are similar to the widely adopted Itakura constraints in
[18]. DTWprovides for two normalisation processes, namely
global for the overall length normalisation and local atomic
unit alignments. Only the latter is relevant here since the seg-
ments themselves are of the same length. Further discussions
relating to DTW constraints and the context of the SMM can
be found in [12].

3.2. The GMM

As mentioned previously, the standard GMM can be thought
of as a single-state HMM. TSI is inherent in the conventional
HMM structure in the form of state transitions which reflect
the content of a specific utterance. However the basic GMM,
as viewed in terms of a special case of the HMM, has only one
state and hence possesses no TSI. One possibility for TSI in
the text-independent mode would be an ergodic HMM with
all states fully interconnected and then state transitions to-
gether with state occupancy might well offer speaker specific
TSI. Such ideas have been reported by Charlet [19], albeit in
a text dependent mode. Alternatively, and as proposed here,
the standard GMM can bemodified so that a single state pos-
sesses TSI. To see how this might be achieved, first the scoring
process of the GMM is considered followed by the equivalent
process for the proposed SMM.

Each GMM component consists of a mean, a covariance
matrix, and a weight. The probability density function (pdf)
of component i given the input vector �x is given by

bi
(
�x
) = 1√

(2π)D
∣∣Σi

∣∣ exp
{
− 1

2

(
�x − �µi

)′
Σ−1i

(
�x − �µi

)}
, (1)

where Σi is the covariance matrix, �µi is the mean vector, and
D is the dimension of the vector.

In a simplified form, popular in practical speaker recog-
nition, each component consists of a mean vector, a weight,
and the diagonal of the covariance matrix on the assumption
of statistical independence for the mixture components. The
pdf of the input speech X given the model λ is given by

p(X|λ) =
T∏
t=1

p
(
�xt|λ

)
, (2)

where T is the total number of input vectors, �xt.

The goal in training a GMM is to estimate a model λ
with parameters that best match the distribution of the train-
ing vectors, that is, to maximise the likelihood of the GMM,
given the training data. For this purpose the expectation-
maximisation (EM) algorithm is invariably used. The EM al-
gorithm is an iterative process that takes an initial model, λ,
and estimates a new one, λ̄, such that p(X|λ̄) ≥ p(X|λ); the
new model becomes the model for the next iteration and the
process continues until some convergence criterion has been
reached.

In practice, speaker specific GMMs are derived from a
“world” model [20], also known as a universal background
model [21]. The world model provides a means of normal-
isation and compensates for the general lack of speaker spe-
cific training data. Speaker specific models are generated by
adapting the world model using the speaker specific data in
the adaptation process.

3.3. The SMM

In the segmental mixture model each mixture component,
λ, of the standard GMM becomes a short sequence of single
components called a segment. Segments consist of a number
of contiguous feature vectors, S. When S is one, then the sys-
tem is the standard GMM. When S is greater than one, then
the system is the SMM. For the SMM, the similarity measure
is thus a modified form of the standard GMMmeasure in (1)
leading to an equivalent pdf interpretation for the SMM out-
put applying to segments rather than single vectors. The den-
sity, given an input segment �x, is the sum of M-weighted
segment densities:

p(�x|λ) =
M∑
i=1

wibi(�x), (3)

where wi is the segment weight andM is the total number of
model components. A segment density bi(�x) is

bi(�x) = ln
{ S∏

s

∣∣Σi

∣∣−1/2 exp
[
− 1

2
dw

]}
, (4)

where dw is the DTW warp difference between an input seg-
ment �x and a model segment, and

∏S
s |Σi|−1/2 is the prod-

uct of the diagonal covariance matrices taken along the DTW
warp path. S is the size of the segment measured in vectors.
The DTW warp difference is given by

dw =WS
s

((
�xs − �µis

)′
Σ−1i

(
�xs − �µis

))
, (5)

where W is the normalising term along the warp path of
�x and �µis. The DTW process time aligns the test segments
against each of the M model components. Thus for every
test segment, the optimal score against each of the M model
components is derived and these scores are weighted and
summed as indicated in (3).

The above serves to show how the DTW technique is em-
bedded into GMM to give the new SMM and in so doing
introduces TSI to the popular speaker recognition method.
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The overall processes of testing and training are identical for
the GMM and the SMM other than in the details of the scor-
ing as indicated in (1) and (2) for the GMM and (3), (4), and
(5) for the SMM. In summary the similarity measure applies
to segments of vectors in the SMM rather than to single vec-
tors in the GMM. The potential benefit lies in the granularity
of time warping and pattern matching with short segments.

The SMM can be viewed as an inverted HMM, where
the overarching state transitions are moved to the heart of
the similarity measure. In the implementation reported here,
however, time alignment is achieved via DTW. Another valid
approach would be to align the segments using HMM-style
state transitions. In this case a given test segment would be
scored against each of the M HMM-style submodels. Such
an arrangement is a viable alternative. However, the DTW
implementation is adopted here for reasons given above.

4. EXPERIMENTALWORK

This section presents experimental work to assess the theme
under investigation in this paper, namely the benefits of TSI
in speaker recognition and the training data-model relation-
ship. The first set of experimental results aim to compare the
performance of the standard GMM and the proposed SMM
with differing amounts of training data. The second set of
experiments considers SMM performance for different seg-
ment and model sizes where the aim is to investigate the hy-
pothesis presented in Section 2.

All experiments use data from a 2000-speaker database
recorded over the public-switched telephone network [9].
Speech data from 1000 of the 2000 speakers are used to cre-
ate a world model1 and the other 1000 speakers are used for
speaker model training and testing. A total of about 8 hours
of data is used to train a world model. Each speaker model
is trained using phonetically rich sentences and experiments
are conducted with approximately 3 seconds, 10 seconds, and
30 seconds of data per speaker. Testing is text-independent
using one-digit utterance per speaker per test giving 1000
tests in total. Throughout, the features are standard MFCC-
14 instantaneous together with their dynamic counterparts
giving a 28th-order feature.

4.1. GMMversus SMM

Figure 3 shows the baseline GMM verification results. The
detection error tradeoff (DET) profile depicts the miss prob-
ability against the false alarm probability and, as might be
predicted, error rates reduce with increasing training data.
The profiles shown are for 3 seconds, 10 seconds, and 30 sec-
onds of speaker specific training data; in all cases the models
have 256 components. Figure 4 shows directly equivalent re-
sults for a 3-segment SMM. It is noticed that at the high end

1Similar experiments are reported in [13] in which slightly better results
are presented. It was subsequently discovered that in [13], the same 1000
speakers were used in both testing and training. Here, the world model is
generated from a different 1000 speakers resulting in slightly inferior recog-
nition scores.
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Figure 3: Detection error tradeoff (DET) profiles for a standard
GMM speaker verification system with 256 components, trained
on approximately 3, 10, and 30 seconds of speaker specific train-
ing data. In all cases, the test is a single-digit utterance. The profiles
illustrate a decreasing EER as more speaker specific training data
become available.

of false alarms the SMM is marginally better for all three lev-
els of training, while the reverse is true at the low end of this
scale where the GMM is better than the SMM especially for
the shorter training sets. For example, with 3-second train-
ing, at the extreme of 50% miss probability the false alarm
rate is 0.5% and 1.5% for the GMM and SMM, respectively.

The central region of the profiles, where the miss prob-
ability matches the false alarm probability, leads to an often
quoted measure of performance, namely the equal error rate
(EER). From Figure 4 the SMM is seen to have an EER a lit-
tle below 5% while for the GMM it is marginally above 5%
(Figure 3). These values, along with the other EER values, are
shown in Figure 5. The EER for the GMM (solid profile) and
3-segment SMM (dashed profile) are shown against the three
levels of training. The two profiles illustrate that with a mini-
mal level of training data (3 seconds) the GMM outperforms
the SMM, whereas for greater amounts of training data (10
and 30 seconds) the SMM is better.

4.2. Data-model relationship

From the experimental evidence presented thus far, it is evi-
dent that the SMM can outperform the standard GMM given
sufficient speaker specific training data. The emphasis now
moves to further assessing the performance of the SMM in
terms of available data, the number of components in the
model, and the sequence lengths in the SMM scoring process,
that is, the segment size. It should be noted that the defini-
tion of a component in the cases of the GMM and the SMM
are different. In the case of the GMM, it is the conventional
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Figure 4: DET profiles for a 3-segment SMM. Again the profiles
illustrate a decreasing EER as more speaker specific training data
become available.

Gaussian component whereas in the case of the SMM a com-
ponent is not a Gaussian distribution but is comprised of a
segment having more than one mean, a pooled variance, and
a single weight. Nonetheless, the termmodel size refers to the
number of components.

Experimental results are presented in Figures 6, 7, 8, and
9 which show EER profiles against model size (a) and against
segment size (b) for each of four training conditions. Again
lengths of 3, 10, and 30 seconds of phonetically rich sentences
are used. In addition, to utilise the database to the full, the
30-second case is extended by digit string utterances giving a
total of approximately 40 seconds per speaker.

Figure 6 illustrates verification performance with a min-
imal amount of speaker specific data (3 seconds). Figure 6a
shows that segments of 1 and 3 give very similar scores for
model sizes of 64 and 128, with the profile for S3 being
marginally below that for S1 for these two cases. Further-
more, the model size of 64 gives a minimum for each of
the three segment sizes. Figure 6b gives an alternative view
with the EER plotted against segment size showing more
clearly any performance improvements as the segment size
increases. In this case, with just 3 seconds of training data,
only for model sizes of 64 and 128 is there any merit of the
SMM over the GMM (S1 corresponds to a segment size of 1,
i.e., the standard GMM; S3 and S5 indicate segment sizes of
3 and 5, resp.). There is thus insufficient data to reliably train
models with greater than 64 components or more complex
models (i.e., that capturemore TSI) than the standard GMM.

Verification performance with 10 seconds of speaker spe-
cific training data is illustrated in Figure 7. The fall in EER
is immediately apparent. Figure 7a shows that the best per-
formance is obtained with models of between 64 and 256
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Figure 5: Speaker verification EERs (%) for the GMM (solid pro-
file) and SMM (dashed profile) of Figures 3 and 4 against an amount
of speaker training data in seconds. The profiles illustrate that the
GMM outperforms the SMM given a small amount of speaker spe-
cific training data. Given sufficient data, though, the SMM outper-
forms the GMM.

components and a segment size of 3 (S3). The lowest EER
is now 6.1% compared with 8.8% for 3 seconds of training
data. It is now possible to reliably train slightly more com-
plex models (more TSI) with more components.

Moving to Figure 8, where there is now 30 seconds of
training data, again the EER drops to a minimum of 4.3%
for S3 and model size 256. S3 now has the lowest profile for
model sizes 64 and beyond. From Figure 8b it is clear that
all model sizes beyond 32 show benefits of the SMM over
the standard GMM with S3 being the best. Again, more data
meansmore complex, largermodels give better performance.

Finally, Figure 9 shows equivalent profiles for 40 seconds
of speaker specific training data. Again, all but the smallest
models benefit from the SMM structure. The lowest point on
the profiles now corresponds to S5 and a model size of 512
with an EER of 3.5%. The trend implies that as more speaker
specific data becomes available, the merits of the SMM in-
crease as predicted by our earlier hypothesis. From (a) the
S3 and S5 SMMs outperform the standard GMM (S1) for all
model sizes greater than 32 components.

In terms of the data-model relationship it is noticed that,
for 3 seconds of training data (Figure 6), the optimummodel
size is 64 with a distinct trough for a segment size of 3. As
more data becomes available the troughs broaden and the
benefits of the SMM become more apparent. This trend is
evident for all three segment sizes.

The SMM profiles are steeper in all cases for the smallest
and largest model sizes. Clearly this sensitivity to model size
is a disadvantage in practice. However, for relatively larger
amounts of training data over a few minutes or more, the
trend of the curves suggest that the SMM would be superior
over a reasonable model size range (model sizes over 32).
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Figure 6: Speaker verification EER with 3 seconds of speaker specific training data. (a) EER against model size. The three profiles correspond
to the SMM with 1, 3, and 5 segments. (b) EER against segment size. The eight profiles then correspond to different model sizes. With 3
seconds of training data, the S1 profile gives the best or as good performance as S3 and S5. The optimummodel size is 64 components which
corresponds to an EER of 8.8%.
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Figure 7: Speaker verification EER with 10 seconds of speaker specific training data. The extra data is now sufficient to train a slightly more
complex model, S3, which gives the best performance for models with 64 to 256 components corresponding to an EER of 6.1%.

Perhaps the surprising characteristics of the SMM perfor-
mance is at the low model sizes where the accuracy is worse
than that for the standard GMM in cases below 32 compo-
nents. This conflicts with our earlier hypothesis depicted in
Figure 1 and is not easily explained. Of course at the higher
level of information where n-grams and word frequencies are
used, the model size must be sufficient to represent the per-
sons under test. So in this case, very small model sizes would
not work.

5. CONCLUSIONS

Over the last decade, the GMM has become established as
the standard classifier for text-independent speaker recog-
nition. It operates on atomic levels of speech and can be
effective with very small amounts of speaker specific train-
ing data. It is clear from recent developments that when
very large amounts of this data are available, higher-level
information, utilising speech units well above the atomic
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Figure 8: Speaker verification EER with 30 seconds of speaker specific training data. Even with 30 seconds of data, the S3 SMM still gives
the best performance, but the amount of data is now sufficient to train a model with 256 components which gives a reduced EER of 4.4%.
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Figure 9: Speaker verification EER with 40 seconds of speaker specific training data. Now, with 40 seconds of data, the S5 SMM gives the
best performance with a model size of 512 components and an EER of 3.5%.

level and at the so-called cognitive rather than formative
level, can contribute significantly to speaker recognition ac-
curacy.

This paper has presented a case for a continuum between
these extreme levels, arguing that as the amount of speaker
specific data grows, different model complexities and clas-
sification units (those units on which a similarity score is
determined) are likely to improve performance. In support

of this hypothesis the segmental mixture model (SMM) is
compared to the GMM with different quantities of data. The
SMM offers a variable step above the atomic level of clas-
sification units. The greater the step the more complex the
model becomes. The additional complexity, which is infor-
mation gained along the time course, increasingly requires
larger amounts of speaker specific data so that models may
be reliably trained.
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In conclusion, the experimental results reported in this
paper demonstrate the potential benefits of TSI at the seg-
mental level, with units just beyond the atomic level, in text-
independent speaker recognition. Further work could in-
clude a quantitative comparison of SMMs to HMMs, vari-
able or multiple length segments and perhaps multiple mod-
els with much larger speaker specific training data as is now
available with the NIST evaluations. There is a continuum
between the atomic, formative level and the higher cognitive
level as depicted in Figure 1. The SMM provides a vehicle for
progressing along this path highlighting the data-model re-
lationship.
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