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Speaker identification systems perform well under the neutral talking condition; however, they suffer sharp degradation under
the shouted talking condition. In this paper, the second-order hidden Markov models (HMM2s) have been used to improve the
recognition performance of isolated-word text-dependent speaker identification systems under the shouted talking condition.
Our results show that HMM2s significantly improve the speaker identification performance compared to the first-order hidden
Markov models (HMM1s). The average speaker identification performance under the shouted talking condition based on HMM1s
is 23%. On the other hand, the average speaker identification performance based on HMM2s is 59%.
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1. MOTIVATION

Stressful talking conditions are defined as talking conditions
that cause a speaker to vary his/her production of speech
from the neutral talking condition. The neutral talking con-
dition is defined as the talking condition in which speech is
produced assuming that the speaker is in a “quiet room” with
no task obligations.

Some talking conditions are designed to simulate speech
produced by different speakers under real stressful talking
conditions. Hansen, Cummings, and Clements used speech
under simulated and actual stress (SUSAS) database in which
eight talking styles are used to simulate the speech produced
under real stressful talking conditions and three real talk-
ing conditions [1, 2, 3]. The eight conditions are as follows:
neutral, loud, soft, angry, fast, slow, clear, and question. The
three conditions are 50% task, 70% task and Lombard. Chen
used six talking conditions to simulate speech under real
stressful talking conditions [4]. These conditions are as fol-
lows: neutral, fast, loud, Lombard, soft, and shouted.

Most published works in the areas of speech recognition
and speaker recognition focus on speech under the neutral
talking condition and few published works focus on speech
under stressful talking conditions. The vast majority of the
studies that focus on speech under stressful talking condi-
tions ignore the shouted talking condition [4, 5, 6]. The
shouted talking condition can be defined as follows: when
a speaker shouts, his/her object is to produce a very loud

acoustic signal to increase either its range (distance) of trans-
mission or its ratio to background noise.

2. INTRODUCTION

Hidden Markov model (HMM) is one of the most widely
used modeling techniques in the fields of speech recogni-
tion and speaker recognition [7]. HMMs use Markov chain
to model the changing statistical characteristics that exist in
the actual observations of speech signals. The Markov pro-
cess is a double stochastic process where there is an unob-
servable Markov chain defined by a state transition matrix.
Each state of the Markov chain is associated with either a dis-
crete output probability distribution (discrete HMMs) or a
continuous output probability density function (continuous
HMMs) [8].

HMMs are powerful models in optimizing the parame-
ters that are used in modeling speech signals. This optimiza-
tion decreases the computational complexity in the decoding
procedure and improves the recognition accuracy [8]. Most
of the work performed in the fields of speech recognition
and speaker recognition using HMMs has been done using
HMM1s [4, 7, 9, 10]. Despite the success of using HMM1s,
experimental evidence suggests that using HMM2s in the
training and testing phases of isolated-word text-dependent
speaker identification systems gives better speaker identifica-
tion performance than HMM1s under the shouted talking
condition.
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Despite the success of using HMM s, it is still worth in-
vestigating if some of the drawbacks of HMM1s can be over-
come by using higher-order Markov processes (like the pro-
posed HMM2s in this work). HMM Is suffer from the follow-
ing drawbacks [11].

(i) The frames for a particular state are assumed to be in-
dependent.

(ii) The dependencies of adjacent frames for a particular
state are not incorporated by the model.

In this paper, HMM2s are used in the training and testing
phases of isolated-word text-dependent speaker identifica-
tion systems under each of the neutral and shouted talking
conditions.

Our work differs from the work in [11, 12] is that our
work focuses on isolated-word text-dependent speaker iden-
tification systems under the shouted talking condition based
on HMM2s, while the work in [11, 12] focuses on describing
a connected word recognition system under the neutral talk-
ing condition based on HMM2s. The work in [11, 12] shows
that the recognition performance using HMM2s yields better
results than using HMM1s.

3. BRIEF OVERVIEW OF HIDDEN MARKOV MODELS

HMMs can be described as being in one of the N distinct
states, 1,2,3,...,N, at any discrete time instant t. The indi-
vidual states are denoted as

$ = {51,52,83,..., SN} (1)

HMMs are generators of a state sequence ¢, where at any
timet:q = {q1,92,93-..-qr}, T is the length or duration of
an observation sequence O and is equal to the total number
of frames.

At any discrete time ¢, the model is in a state g;. At the
discrete time ¢, the model makes a random transition to a
state q;. The state transition probability matrix A determines
the probability of the next transition between states:

A=laj], ij=12...,N, (2)
where a;; denotes the transition probability from a state i to
a state j.

The first state s; is selected randomly according to the

initial state probability:

7 = [m;] = Prob (q1 = s:). (3)

The states that are unobservable directly are observable via a
sequence of outputs or an observation sequence given as

O: {OI)OZ)O%'--’OT} (4)

which are taken from a finite discrete set of observation sym-
bols

VZ{VI)V2>V3)---)V]<}) OtEV (5)

When the model is in any state, say a state s;, the selection
of an output discrete symbol Vi is governed according to the
observation symbol probability given as

B = {b;(Vi)} = Prob (Vi emitted at t|q;—1 = s;), 6
Nz2j=21,Kzk=1 (

4. SECOND-ORDER HIDDEN MARKOV MODELS

In HMM1s, the underlying state sequence is a first-order
Markov chain where the stochastic process is specified by a
2D matrix of a priori transition probabilities (a;;) between
states s; and s; where a;; are given as

ajj = Prob (q; = sjlqi-1 = si). (7)

Many researchers have noticed that the transition probabil-
ities of HMM1s have a negligible impact on the recognition
performance of systems and can be ignored [12].

In HMM2s, the underlying state sequence is a second-
order Markov chain where the stochastic process is specified
by a 3D matrix (a;jx). Therefore, the transition probabilities
in HMM2s are given as [11]

ajjk = Prob (q; = sklqi-1 = sj, qi—2 = si) (8)

with the constraints

M=

ajk=1, N=i j=1. (9)

k

Il
—_

The probability of the state sequence, Q £ q1>q2>--->q1> 18
defined as

T

PI‘Ob(Q) = \Iquaqlqz 1_[ alb—zqr—lqt’ (10)
t=3

where ¥; is the probability of a state s; at time = 1, a;; is the
probability of the transition from a state s; to a state s; at time
t=2.

Each state s; is associated with a mixture of Gaussian dis-
tributions:

M M
Bi(0) £ 3 auN(Oupim Y )oY m=1, (D)
m=1 m=1

im

where the vector O is the input vector at time .
Given a sequence of observed vectors, O £ 0,,0,,...,
Or, the joint state-output probability is defined as

Prob (Q, O[1)

r (12)
= \qubql (Ol)aqlqz qu (02) H“qhzqtilqtbqt(ot)-

t=3
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TaBLE 1: Speech database under the neutral and shouted talking conditions.
Model Sessi Total number of utterances under Total number of utterances under
odels ession the neutral talking condition the shouted talking condition
. .. . 1000 male utterances 0 male utterance
First training session
HMMI 1000 female utterances 0 female utterance
s
. . 800 male utterances 1800 male utterances
Second testing session
800 female utterances 1800 female utterances
. .. . 1000 male utterances 0 male utterance
First training session
1000 female utterances 0 female utterance
HMM2s

800 male utterances

Second testing session

800 female utterances

1800 male utterances
1800 female utterances

5. EXTENDED VITERBI AND BAUM-WELCH
ALGORITHMS

The most likely state sequence can be found by using the
probability of the partial alignment ending at a transition
(sj, k) at times (t — 1,1):

8:(j, k) £ Prob (q1,...,qi-1 = Sjs 4t = Sk» O1,02,...,04A),
T=t=2,N=j, k=1
(13)

Recursive computation is given by

0:(j, k) = max {62135, ) - aiji} - bi(Oy), "
T 14
T=t=3, N=j, k=1

The forward function a,(j,k) defines the probability of the
partial observation sequence, Oy, O,..., Oy, and the transi-
tion (s}, sx) between times ¢ — 1 and ¢ is given by

a:(j,k) = Prob (Oy,..., 0y, q1-1 = S qr = sklA), 15)
T=2t=22,N=j, k=1

a:(j, k) can be computed from the two transitions (s;, s;) and
(s}, sk) between states s; and s as

N
a1 (j k) = > (i, j) - aijk - bi(Ope1), 6
i=1

The backward function f3,(7, j) can be expressed as

ﬁt(la]) = Prob (OtJrlJ- .. aOqut—l =Si 4t = Sj>A)y (17)
T-12t=2,N=i j=1,
where f3,(, j) is defined as the probability of the partial ob-

servation sequence from t+1 to T, given the model A and the
transition (s;, s;) between times ¢ — 1 and ¢.

6. SPEECH DATABASE

In this work, our speech database consists of 40 different
speakers (20 adult males and 20 adult females). Each speaker
utters the same 10 different isolated words under each of the
neutral and shouted talking conditions. These words are al-
phabet, eat, fix, meat, nine, order, processing, school, six, ya-
hoo. The length of these words ranges from 1 to 3 seconds.

In the first session (training session), each speaker utters
each word 5 times (5 utterances per word) under the neutral
talking condition. In this session, one reference model per
speaker per word is derived using the 5 utterances per the
same speaker per the same word. Training of models in this
session has been done based on HMM s.

In another different session (testing or recognition ses-
sion), each one of the 40 speakers utters the same word (text-
dependent) 4 times under the neutral talking condition and
9 times under the shouted talking condition. The recognition
phase in this session has been done based on HMM .

The second training session has been done like the first
training session but based on HMM2s. The second testing
session has been done like the first testing session but based
on HMM2s.

Training of models in the two sessions uses the forward-
backward algorithm, whereas recognition in the two sessions
uses the Viterbi decoding algorithm. Our speech database is
summarized in Table 1.

Our speech database was captured by a speech acquisi-
tion board using a 10-bit linear coding A/D converter (we
believe that a 10-bit linear coding A/D converter is sufficient
to convert an analog speech signal to a digital speech signal)
and sampled at a sampling rate of 8 kHz. Our database con-
sists of a 10-bit per sample linear data. A high emphasis filter,
H(z) = 1 —0.95z7!, was applied to the speech signals, and
a 30 milliseconds Hamming window was applied to the em-
phasized speech signals every 10 milliseconds. Twelfth-order
linear prediction (LP) coefficients were extracted from each
frame by the autocorrelation method. The 12 LP coefficients
were transformed into 12 LP cepstral coefficients (LPCCs).

In each of HMM1s and HMM2s, LPCC feature analy-
sis was used to form the observation vectors. The number
of states, N, was 5. The number of mixture components, M,
was 5 per state, with a continuous mixture observation den-
sity selected for each of HMM1s and HMM2s.
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TaBLE 2: Speaker identification performance for 20 male speakers,
20 female speakers, and their averages under each of the neutral and
shouted talking conditions based on each of HMM2s and HMM s.

TaBLE 3: Speaker identification performance based on each of
HMM2s and HMM1s for 9 male speakers under each of the neu-
tral and angry talking conditions using SUSAS database.

Models Gender Neutral Shouted Models Neutral Angry
Males 92% 57% HMM2s 93% 58%
HMM2s Females 96% 61% HMM1s 91% 25%
Average 94% 59%
Males 89% 21%
HMMl1s Females 91% 25% The stochastic process that is specified by a 3D matrix gives
Average 90% 23% more accurate recognition performance than that specified
by a 2D matrix.
7. RESULTS (2) HMM2s eliminate singular alignments given by the

Based on the probability of generating an utterance, the
model with the highest probability was chosen as the output
of the speaker identification system.

Table 2 summarizes the results of the speaker identifi-
cation performance for 20 male speakers, 20 female speak-
ers, and their averages of 10 different isolated words under
each of the neutral and shouted talking conditions based on
each of HMM2s and HMMl1s. Our results show that us-
ing HMM?2s in the training and testing phases of isolated-
word text-dependent speaker identification systems under
the shouted talking condition significantly improves the
identification performance compared to that using HMM1s.

8. DISCUSSION AND CONCLUSIONS

This work is based on an isolated-word text-dependent
HMM?2 speaker identifier trained by speech uttered under
the neutral talking condition and tested by speech uttered
under each of the neutral and shouted talking conditions.
This is the first known investigation into HMM2s evaluated
under the shouted talking condition for speaker identifica-
tion systems.

This work shows that HMM2s significantly improve the
recognition performance of isolated-word text-dependent
speaker identification systems under the shouted talking con-
dition. The average speaker identification performance un-
der the shouted talking condition has been improved from
23% based on HMM 1s to 59% based on HMM2s. The exper-
imental evidence suggests that HMM2s outperform HMM1s
under such a condition. This may be attributed to a number
of considerations.

(1) In HMM2s, the state-transition probability at time ¢ +
1 depends on the states of the Markov chain at times
t and t — 1. Therefore, the underlying state sequence
in HMM2s is a second-order Markov chain where the
stochastic process is specified by a 3D matrix. On the
other hand, in HMM s, it is assumed that the state-
transition probability at time ¢ + 1 depends only on
the state of the Markov chain at time t. Therefore, in
HMM s, the underlying state sequence is a first-order
Markov chain where the stochastic process is specified
by a 2D matrix.

Viterbi algorithm in the recognition process when a
state captures just one frame and all other frames fall
into the neighboring states. Thus, the trajectory of
speech under the shouted talking condition, in terms
of a state sequence, is better modeled by HMM2s than
that by HMM1s.

In this work, the average speaker identification perfor-
mance under the neutral talking condition has been im-
proved slightly based on HMM2s compared to that based on
HMM1s. Our results show that the average speaker identifi-
cation performance under the neutral talking condition has
been improved from 90% based on HMM1s to 94% based
on HMM2s. In another work, the average speaker identifica-
tion performance under the same talking condition was 90%
based on HMM1s and 98% based on HMM2s [13].

Table 2 shows that the average speaker identification
performance under the neutral talking condition based on
HMMIs is 90%. On the other hand, the average speaker
identification performance under the shouted talking con-
dition based on HMM s is 23%. Therefore, HMM1s are not
powerful models under the shouted talking condition.

More extensive experiments have been conducted to
show that HMM2s work better than HMM1s under the
shouted talking condition. The following two experiments
have been conducted in this work.

(1) Since the shouted talking condition can not be en-
tirely separated from the angry talking condition in
real life, HMM2s have been used to train and test
speaker identification systems under the angry talking
condition. SUSAS database has been used in the train-
ing and testing phases of isolated-word text-dependent
speaker identification systems under the neutral and
angry talking conditions (part of this database con-
sists of 9 male speakers uttering words under these
two talking conditions). Table 3 summarizes the re-
sults of the speaker identification performance based
on each of HMM2s and HMM1s under each of the
neutral and angry talking conditions using SUSAS
database. Our results show that using HMM2s under
the angry talking condition significantly improves the
speaker identification performance compared to that
using HMM 1s.
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TaBLE 4: Speaker identification performance for 20 male speakers,
20 female speakers, and their averages under each of the neutral
and shouted talking conditions based on HMM 1s using the cepstral
mean subtraction technique.

Gender Neutral Shouted
Males 89% 39%

Females 91% 41%

Average 90% 40%

A comparison between Table2 and Table3 shows that
HMM2s dramatically improve the speaker identification per-
formance under the shouted and angry talking conditions.

(2) An experiment has been conducted to compare the
speaker identification performance based on HMM2s
with that based on HMM1s using the stress compen-
sation technique. It is well known that spectral tilt ex-
hibits a large variation when a speaker utters a word
under the shouted talking condition [4]. Such a vari-
ation usually contaminates the distance measure and
is one of the most significant causes of degradation
in the speaker identification performance. One of the
stress compensation techniques that removes the spec-
tral tilt and improves the speaker identification perfor-
mance is the cepstral mean subtraction technique [14].
Table 4 summarizes the results of the speaker identifi-
cation performance for the 20 male speakers, 20 female
speakers, and their averages under each of the neutral
and shouted talking conditions based on HMM s us-
ing the cepstral mean subtraction technique.

Comparing Table 2 with Table 4, it is clear that HMM2s yield
better speaker identification performance than HMMIs us-
ing the cepstral mean subtraction technique.
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