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A robust fingerprint recognition algorithm should tolerate the rotation and translation of the fingerprint image. One popular
solution is to consistently detect a unique reference point and compute a unique reference orientation for translational and rota-
tional alignment. This paper develops an effective algorithm to locate a reference point and compute the corresponding reference
orientation consistently and accurately for all types of fingerprints. To compute the reliable orientation field, an improved ori-
entation smoothing method is proposed based on adaptive neighborhood. It shows better performance in filtering noise while
maintaining the orientation localization than the conventional averaging method. The reference-point localization is based on
multiscale analysis of the orientation consistency to search the local minimum. The unique reference orientation is computed
based on the analysis of the orientation differences between the radial directions from the reference point, which are the directions
of the radii emitted from the reference point with equivalent angle interval, and the local ridge orientations along these radii.
Experimental results demonstrate that our proposed algorithm can consistently locate a unique reference point and compute the
reference orientation with high accuracy for all types of fingerprints.

Keywords and phrases: fingerprint recognition, fingerprint alignment, reference point, orientation smoothing, orientation con-

sistency, reference orientation.

1. INTRODUCTION

Fingerprint iscomposed of parallel ridgesand furrows on the
tip of the finger. It is widely used for personal identification
because of its easier accessibility, uniqueness, reliability, and
low cost. Generally, there are two kinds of features for fin-
gerprint recognition: global features such as the special ridge
flow pattern and local features like minutia. Consistent ex-
traction of these features is crucial for fingerprint recogni-
tion. However, pose transformation, that is, translation and
rotation, usually exists in different fingerprint samples of the
same finger. One popular solution is to consistently locate a
unique reference point and compute a unique reference ori-
entation for translational and rotational alignment of differ-
ent samples. The singular points, that is, core and delta points
(see Figure la), are unique landmarks of fingerprint, where
the ridge curvature is higher than other areas and the ori-
entation changes rapidly. They are usually used as reference
points for fingerprint classification [1, 2]. However, some

fingerprints, especially the fingerprints captured with solid-
state sensor, contain only partial images with a part of singu-
lar points (usually the delta points) left outside the print. In
addition, the number of core and delta points differs in dif-
ferent types of fingerprints [1]. For example, the plain arch
fingerprint has no singular points while the whorl fingerprint
has two core points. To locate a unique reference point con-
sistently for all types of fingerprints and partial fingerprints,
we define the reference point as the point with maximum
curvature on the convex ridge, which is usually located in
the central area of fingerprint (see Figure 1b). Therefore, if
core points exist in a fingerprint, the core point on the convex
ridge is the reference point. As for the reference orientation,
it should be unique for all types of fingerprints and can be
consistently determined to reflect the rotation of fingerprint
image.

There are many approaches proposed for singular point
detection in the literatures and most of them operate on the
fingerprint orientation field. The Poincare index (PI) method
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FIGURE 1: (a) Core point and delta point. (b) Reference point with
maximum curvature on the convex ridge.

[1, 2] is one of the commonly used methods. In this method,
the PI of each block is computed by summing up the direc-
tion changes around a closed digital curve of the block. This
method is efficient, but it is sensitive to noise as the orienta-
tion deviation caused by noise will affect the computation of
PI, especially when the direction change is near 77/2 or —m/2.
In addition, this method cannot locate the corresponding
reference point in plain arch fingerprint because the point
with maximum curvature is not core point in a strict sense.
Koo and Kot [3] proposed a method of singular point detec-
tion based on searching the point with maximum curvature.
This method does not work well in poor-quality fingerprint
because the computed curvature is sensitive to noise. Jain et
al. [4] proposed a sine-map-based method which is to lo-
cate a reference point based on multi-resolution analysis of
the differences of sine component integration between two
defined regions of the orientation field. This method is ro-
bust to noise, but the two defined regions are sensitive to the
fingerprint rotation. In addition, this method is not effec-
tive for reference-point localization in plain arch fingerprint.
Park et al. [5] proposed an efficient algorithm of reference-
point detection based on orientation pattern labeling. This
method is also not consistent to fingerprint rotation and its
performance for plain arch fingerprint is inferior to that of
the method proposed by Jain et al. [4].

This paper proposes an effective approach to locate a
unique reference point consistently and accurately for all
types of fingerprints. The reference-point localization is
based on multiscale analysis of the orientation consistency
which indicates how well the orientations in a neighborhood
are consistent with the computed dominant direction. In
addition, we propose an improved method for orientation
smoothing with adaptive neighborhood, which has better
performance in attenuating noise while maintaining the ori-
entation localization than the traditional averaging method.
Since the noise-robust orientation field is continuous and
has small change except for the high-curvature areas, the ref-
erence point defined as the point with maximum curvature
of the convex ridge should have local minimum orientation
consistency. The curvature direction is employed to differ-
entiate the reference point from other singular points (delta
point and the core point in the concave ridge). Furthermore,
this paper proposes a method to compute the reference ori-
entation based on analysis of the orientation differences be-
tween the radial directions from the reference point and the
local ridge orientations along the corresponding radii.

In the following sections, we present in detail our pro-
posed algorithm of reference-point detection and reference-
orientation computation. An improved orientation smooth-
ing method is presented in Section 2. Sections 3 and 4 present
our proposed approaches of reference-point detection and
reference-orientation computation, respectively. The experi-
mental results on the FVC2000 fingerprint database DB2, set
A, are presented in Section 5. Finally, conclusions are given
in Section 6.

2. ORIENTATION FIELD COMPUTATION

Since the reliable orientation field plays a very important
role in our proposed algorithm of reference-point localiza-
tion and reference-orientation computation, it is necessary
to address the problem of noise attenuation in the fingerprint
orientation estimation.

2.1. Orientation estimation

Many methods are proposed for fingerprint orientation esti-
mation in the literatures such as the gradient-based method
[6, 7, 8, 9] and the pixel-alignment-based method [1, 10].
The pixel-alignment-based method is to estimate the local
ridge orientation of each pixel based on pixel alignments with
respect to a fixed number of reference orientations. The total
fluctuation of grey values is expected to be the smallest along
the local ridge orientation and the largest along its orthog-
onal orientation. The orientation averaging is employed to
estimate the orientation of each image block. The accuracy
of the estimated orientation in the pixel-alignment-based
method is limited because of the fixed number of reference
orientations. The least mean square method of orientation
estimation based on the gradients is most widely used to
compute the dominant orientation of an image block be-
cause of its high efficiency and resolution [6, 7, 8]. Since the
gradient phase angle is the orientation with maximum grey
value change, it is orthogonal to the local ridge orientation
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of each pixel. The orientation of an image block is estimated
by averaging the squared gradients to avoid the orientation
ambiguity. It was proven that this method is mathematically
equivalent to the principal component analysis of the auto-
covariance matrix of gradient vectors [9]. Therefore, the least
mean square method [7] is employed in this work to estimate
the orientation of each block. The processing steps are sum-
marized as follows.

(1) Divide the fingerprint image into nonoverlapping
blocks of size w X w pixels (w = 5 in our experiment).

(2) Compute the gradients G,(u,v) and G,(u,v) of each
pixel corresponding to the horizontal and vertical di-
rections. The gradient operator varies from the simple
Sobel operator to the complex Marr-Hildreth opera-
tor. The Sobel operator is employed in this work for
simplicity.

(3) Estimate the orientation of each block (i, j) by averag-
ing the squared gradients as follows:

A= Z ngc(ur V)) B = Z Gf,(u, V),
(u,v)ew (u,v)eW
(1)
C = Z Gx(u) V)G)/(u) V))
(u,v)eW
1 2C
0(i, j) = 3 arctan 7(14 “By (2)

where W is the block of size w X w pixels.

2.2. Orientation smoothing

After orientation estimation, the original grey level image of
size M X N pixels is transformed into the orientation field of
size int(M/w) X int(N/w) blocks. The orientation field may
still contain some unreliable elements resulting from heavy
noise such as scars, ridge breaks, and low grey value con-
trast. Orientation smoothing is expected to further attenuate
noise of the orientation field and compute a reliable orienta-
tion field. A statistical smoothing method [11] was proposed
that works well to attenuate impulsivelike noise. However,
the resolution of the estimated orientation is limited because
of the quantified orientation value. The orientation smooth-
ing method based on averaging the unit vectors of doubled
orientation over a neighborhood is widely used in orienta-
tion smoothing because of its high efficiency and resolution
[7]. Obviously, determination of the smoothing neighbor-
hood in this method has great influence on the effectiveness
and efficiency of orientation smoothing. If the smoothing
neighborhood is too small, heavy noise cannot be well at-
tenuated. Even when the smoothing neighborhood is large,
heavy corrupted orientations will still affect the final orien-
tation estimation. In addition, the orientation localization of
high-curvature area will be negatively blurred if the smooth-
ing neighborhood is too large. Thus, the orientation is not
reliable by using a uniform smoothing neighborhood. This
work proposes an improved method for fingerprint orienta-
tion smoothing with adaptive neighborhood, which not only
maintains the orientation localization of high-curvature area
but also has good performance in attenuating noise.

In principle, the determination of the neighborhood in
fingerprint orientation smoothing should be based on anal-
ysis of the reliability of orientation estimation. A larger
smoothing neighborhood is used only if the orientation es-
timation on small neighborhood is considered to be unre-
liable. Therefore, an effective measurement is necessary to
evaluate the reliability of the orientation estimation. The co-
herence of the squared gradients was introduced to give a
good measure of how well the gradients over a neighborhood
are pointing in the same direction [9]. It is computed as fol-
lows:

(A—B)2+4C?

Coh =
© A+B

b (3)
where A, B, and C are computed in (1). Obviously, the co-
herence computed by (3) is a good measurement of the re-
liability of the orientation estimation based on the gradients
with the least mean square method. However, in this method,
not only the gradient phase angle but also the modulus of
the gradient vector will affect the value of the coherence.
Although the coherence defined by (3) is normalized by the
average grey value contrast A + B, the inconsistent grey value
contrast in the window W may drastically change the value of
Coh. As a result, Coh is sensitive to the inconsistency of grey
value contrast and may not correctly reflect the orientation
consistency in the window W and the reliability of orienta-
tion estimation.

As we are purely concerned with the orientation, orien-
tation smoothing in this work is based on the preliminar-
ily estimated orientation vectors instead of on the gradient
vectors. Orientation consistency is introduced that describes
how well the orientations over a neighborhood are consistent
with the dominant orientation. In a smoothing neighbor-
hood Q(s) of each block, orientation consistency is defined
as

Cons(s)

V(6 jreas 05 (2600, 1)) +( S ear sin (260, 7))
M bl
(4)

where M is the number of orientations 6(i, j) in Q(s). If all
the orientations in Q(s) are exactly directed to one direc-
tion, the orientation consistency Cons(s) gives the highest
value of 1. If the orientations in Q)(s) are evenly distributed in
[—71/2,7/2), Cons(s) gets the lowest value of 0. Cons(s) varies
between these two extreme situations to provide a quanti-
tative measure of the orientation consistency and reliability.
A larger value of Cons(s) reflects more reliable orientation
estimation. If each gradient vector in (1) is converted to a
unit vector [Gx(u,v), G, (u, v)]/\/G,zc(u, v) + G3(u,v) to com-
pute A, B, and C, and the gradient phase angle of each pixel
is applied as 0 in (4), the coherence in (3) will be equal to
the orientation consistency in (4). This equivalence of (3)
and (4) does not hold in general. The suggested orientation
consistency with the normalized orientation vector of each
block is more robust to the inconsistency of contrast than
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FIGURE 2: The orientation fields of a poor-quality fingerprint smoothed in (a) the averaging method on 5x 5 neighborhood; (b) the averaging
method on 9 x 9 neighborhood; and (c) the proposed adaptive smoothing method. The significant orientation errors caused by the 5 x 5
and 9 x 9 neighborhoods are shown by the white rectangle in (a) and circle in (b), respectively.

the coherence of the squared gradients. Therefore, we use
(4) in this work to measure the curvature and the reliabil-
ity of the orientation estimation for orientation smoothing
and reference-point localization.

The basic idea of our proposed orientation smoothing
method is to adaptively change the size of smoothing neigh-
borhood based on analysis of the orientation consistency.
Fingerprint is composed of parallel ridge flows, and the re-
liable local ridge orientations change slowly except for some
high-curvature areas such as singular region. In practice, we
usually get smooth orientation field in most parts of the fin-
gerprint. Sharp orientation changes exist only in either high-
curvature or noisy areas. The difference between the high-
curvature and noisy area is that the orientation consistency
gets larger with increasing the smoothing neighborhood size
for the noisy area but is always small with variant neighbor-
hood size for the high-curvature area. Based on this observa-
tion, the orientation consistency analysis on varying neigh-
borhood size is used to differentiate the high-curvature area
from the noisy area. Only the orientations in the noisy area
are further smoothed with the larger neighborhood.

An improved smoothing method with adaptively varied
neighborhood is proposed based on analysis of the orien-
tation consistency in this work that works well to attenuate
noise while maintaining the orientation localization. Larger
smoothing neighborhood is employed to attenuate the heavy
noise, while small neighborhood is used in the areas with
light noise to maintain the localization. However, the cor-
rupted orientations still affect the final orientation estima-
tion if all the orientations in its neighborhood are included
in averaging. The proposed method tries to circumvent the
corrupted orientations and use the reliable orientations of its
neighborhood to modify the noisy orientations. If the ori-
entation consistency of a block on larger neighborhood is

better than that on small neighborhood, the orientations on
the outer blocks of the larger neighborhood are more reliable
than the orientations on small neighborhood. Therefore, we
compute Cons(s) and the orientation of each block based
on the outside surrounding blocks of its (2s + 1) X (2s + 1)
neighborhood consisting of 8s elements to circumvent the
corrupted orientations on small neighborhood. The process-
ing steps of the proposed orientation smoothing method for
each block are summarized as follows.

(1) Convert the doubled orientation of each block to a
unit vector [cos(20(i, j))sin(20(i, j))] and compute
Cons(1) (s = 1) in (4) with Q(1) being the outside
8 blocks of its 3 x 3 neighborhood.

(2) s = s+1. Compute Cons(s) with Q(s) being the outside
8s surrounding blocks of its (2s + 1) X (2s + 1) neigh-
borhood.

(3) If Cons(s) is smaller than a threshold (0.5 in our ex-
periment) or smaller than Cons(s — 1), go to step (2)
until s reaches its maximum (5 in our experiment).

(4) If s equals its maximum, Q(s) is reset to the neighbor-
hood of size 3 x 3 blocks.

(5) Compute the smoothed orientation by

0= 1 arctan ( (5)

2 j)eaes sin (200, j)) >
> .

> ij)eas) <os (200, j))

In the above processing steps, Cons(s) is larger than the
threshold and Cons(s — 1) indicates that the estimated ori-
entation based on Q(s) is reliable. If Cons(s) of all scales
(s = 1,2,3,4) is smaller than the threshold, Q(s) is most
likely a high-curvature area, we reduce the smoothing neigh-
borhood Q(s) to the minimal size Q(1). Figure 2 shows the
orientation fields with heavy noise smoothed on different
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(a)
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FIGURE 3: (a) A whorl fingerprint and its orientation consistency field. (b) A plain arch fingerprint and its orientation consistency field. The

white block denotes high orientation consistency.

neighborhoods. From Figure 2a, we can see that heavy noise
of the orientation field cannot be well attenuated with small
smoothing neighborhood although the orientation localiza-
tion is maintained. Figure 2b shows that heavy noise is well
attenuated with larger smoothing neighborhood, but the ori-
entation localization near the core point is blurred com-
pared with that of Figure 2a. Figure 2c¢ shows that heavy
noise is well attenuated while the orientation localization
near the core point is maintained by using our proposed
adaptive smoothing method. Therefore, our proposed adap-
tive smoothing method cannot only attenuate well the heavy
noise but also maintain the orientation localization of high-
curvature area.

3. REFERENCE-POINT LOCALIZATION

A good approach of reference-point localization should con-
sistently and accurately detect a unique reference point for
all types of fingerprints including plain arch fingerprint in
which no singular points exist. In addition, it should be ro-
bust to noise such as ridge cracks, scars and so forth. The
approach presented below solves these two problems by mul-
tiscale analysis of the orientation consistency.

3.1. Fingerprint segmentation

Almost all fingerprint images consist of not only the fore-
ground originated from the contact of fingertip with the sen-
sor but also the background, the noisy area on the borders of
image, which may produce spurious reference points. Finger-
print segmentation is to decide which part of the image be-
longs to the foreground and which part belongs to the back-
ground. The reference point will be located more accurately
if the localization operates only on the foreground of fin-
gerprint image. Thus, fingerprint segmentation plays an im-
portant role to reduce spurious reference points. Bazen and
Gerez [12] proposed a fingerprint segmentation algorithm
based on three pixel features: mean grey value, variance,
and coherence. An optimal linear classifier is trained for the

segmentation, and morphology is employed as postprocess-
ing to obtain compact clusters and reduce the segmentation
errors. This approach works well in fingerprint segmenta-
tion. It is applied in this work to segment the foreground
from the background of fingerprint image and the three fea-
tures are computed based on block size (5 x 5 pixels).

3.2. Reference-point localization

The reference point in this work is defined as the point with
maximum curvature on the convex ridge, which is usually
located in the central area of fingerprint. The core point on
the convex ridge is the reference point if core points exist in
the fingerprint. Although there is no core point in a strict
sense in plain arch fingerprint, the point with maximum cur-
vature is always unique and on the convex ridge. As ana-
lyzed in orientation smoothing, the orientation consistency
is smaller in the high-curvature area than in homogeneous
areas (see Figure 3). It can reflect the fingerprint ridge curva-
ture. Therefore, the reference point should have local mini-
mum value of the orientation consistency. However, the ori-
entation consistency in the noisy area is also small that may
produce spurious reference points. As previously analyzed
in orientation smoothing, to differentiate the high-curvature
area from the noisy area, the values of orientation consis-
tency computed on varying neighborhood sizes are analyzed.
The orientation consistency values of high-curvature area on
varying neighborhood sizes are always small while the orien-
tation consistency of noisy area on the large neighborhood
gets larger than that on the small neighborhood. A multiscale
analysis (see Figure 4) of orientation consistency is proposed
to search the local minimum orientation consistency from
large scale to fine scale. To circumvent the corrupted orienta-
tions, the orientation consistency of each block on all scales
is computed based on the outside surrounding blocks of its
neighborhood.

In the multiscale analysis of the orientation consistency,
we search the block of local minimum consistency from the
largest scale to the finest scale so that noisy areas that produce
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The finest scale

The largest scale

FIGURE 4: The multiscale analysis of the orientation consistency.

spurious reference points are eliminated. As a fingerprint
may contain more than one core point and delta points (see
Figure 3a) which also have minimum consistency, we deter-
mine the unique reference point according to the direction
of curvature.

In the (2s+1) X (2s+ 1) neighborhood of block (i, j), we
compute

dx(s) = i cos (20(i —s, 7)) — i cos (20(i+s,7)), (6)
j==s j=-s

dy(s) = Z sin (260(i,j —s)) — Z sin (20(i,j +5)).  (7)

i=—s i=—s

If both dx(s) and dy(s) of the block with local minimum con-
sistency are larger than 0, this block is the core point on the
convex ridge and located as a candidate reference point in
the next finer scale. Otherwise, it is not a concern. As a re-
sult, the block on the convex ridge with minimum orienta-
tion consistency from both large scale and fine scale is lo-
cated as the unique reference point. The processing steps of
the reference-point localization by multiscale analysis of the
orientation consistency are summarized as follows (the scale
s is initialized as 4 in our experiments).

(1) Compute the orientation consistency Cons(s) of each
block based on the outside 8s surrounding blocks of its
(2s+ 1) X (2s + 1) neighborhood.

(2) Find the minimum orientation consistency denoted as
Consmin(s). If Conspin(s) <= 0.5,let T = Consmin(s) +
0.15. Otherwise, T = Consmin(s) + 0.05.

(3) Select the blocks if their Cons(s) < T.

(4) Compute dx(s) in (6) and dy(s) in (7), respectively,
and select the blocks with both dx(s) and dy(s) larger
than 0 as the candidate blocks in the next finer scale.

(5) If no candidate blocks for the reference point are lo-
cated, let T = T +0.01, go to step (3).

(6) Repeat steps (1), (2), (3), (4), and (5) in the selected
candidate blocks with s = s — 1 until s = 1.

(7) Locate the block with minimum orientation consis-
tency Cons(1) from the selected finest scale blocks as
the unique reference point.

In the above processing steps, if Consyin(s) <= 0.5, the
fingerprint most likely contain singular points whose orien-
tation consistency is much smaller than those in other ar-
eas. Thus, the threshold T is set to Consmin(s) + 0.15 to lo-
cate the possible reference points. Otherwise, the difference
of the orientation consistencies between the reference point
and other areas could be small, like the case of plain arch
fingerprint. Therefore, the threshold T in this case is set to
Consmin(s) + 0.05, closer to Consmin(s).

4. REFERENCE-ORIENTATION COMPUTATION

There are few papers concerned with the computation of ref-
erence orientation. Bazen and Gerez [9] proposed a method
to compute an orientation associated with each detected sin-
gular point. In this method, the orientation field near the
detected singular point is compared with a standard orien-
tation field model of the same type of singular point. This
method performs well if the neighborhood of the detected
singular point is very similar to the standard reference model.
However, the neighborhood of the detected singular point
may have patterns different from the standard model. In
addition, this method cannot compute an orientation for
the plain arch fingerprints because this type of fingerprint
does not belong to any one of the two proposed reference
models.

A good reference orientation should be unique and con-
sistently computed for all types of fingerprints to reflect the
fingerprint rotation. This work defines 16 radial directions
from the reference point with 7/8 interval (see Figure 5a).
After analysis of the orientation field in the neighborhood
of reference point, the local ridge orientation, which is most
parallel to the corresponding radial direction, is unique for
the fingerprint whose reference point is core point and can
reflect the fingerprint rotation (see Figure 5b). Thus, this lo-
cal ridge orientation is defined as the unique reference orien-
tation of the core point. For the plain arch fingerprint whose
reference point is not core point in a strict sense, there ex-
ist two different such local ridge orientations, the average
of which is defined as the unique reference orientation (see
Figure 5c¢).

In order to consistently and reliably compute a unique
reference orientation, we propose a computing method
based on analysis of the orientation differences between the
radial directions from the reference point and the local ridge
orientations along the corresponding radial. The absolute
sine component of the orientation difference is employed to
approximate the orientation difference. The mean of the ab-
solute sine component of the difference between the radial
direction and the local ridge orientations along the corre-
sponding radial is computed as

Vartk) = = [ sin (6, j) - 04|

(i,) €
(8)
O = %, k=0,1,...,15,
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FIGURE 5: (a) The 16 radial directions from the reference point. (b) The reference orientation for the core point. (c) The reference orientation

for the plain arch fingerprint.
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FIGURE 6: Var(k) against k where the circle denotes the minimum: (a) one minimum and (b) two local minimums.

where Q) is a set of M local orientations (denoted by 6(i, 7))
along the radial with direction 6. It is a rectangle with its
length side parallel to the radial and it is symmetric with
the radial. Obviously, Var(k) with range [0, 1] equals 1 when
Ok is orthogonal to all the orientations in Qj and equals 0
when 0 is parallel to them. Therefore, the dominant lo-
cal ridge orientations of Q) with local minimum Var(k)
are considered to be most parallel to the radial direction
Ok. For the fingerprint whose reference point is core point,
only one minimum Var(k) exists (see Figure 6a). For the
plain arch fingerprint, however, two local minimums exist
in Var(k) (see Figure 6b). In order to effectively search the
minimum of Var(k), the size of the orientation set Qy is
adaptively changed in this work. The width of Q, the num-
ber of blocks along the side orthogonal to the radial, is set
to 5 blocks (of size 5 x 5 pixels) centered with the radial.

The length of Q) is initialized to 4 blocks (the minimum dis-
tance between two core points is assumed to be 4 blocks)
and adapted by analysis of Var(k). The processing steps to
compute the reference orientation are summarized as fol-
lows.

(1) The length and the width of Q) are initialized as 4 and
5 blocks, respectively.

(2) Compute Var(k) with respect to the 16 radial di-
rections in (8) and find the minimum of Var(k) as
Var(kmin)-

(3) Select the radial directions 6 with the Var(k) <
Var(kmin) + 0.1 as the candidate directions. If two or
more such radial directions are continuous with k, se-
lect the radial direction with minimum Var(k) among
them as one candidate direction.
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FiGure 7: The identification of partial fingerprint image: (a) the correct identification with the detected point on the boundary of the image;
(b) the false identification with the detected point in the internal region of the image.

(4) If more than two candidate directions exist and the
length of Q) does not reach the boundary of the im-
age or its maximum (15 in our experiment), add the
length of O and go to step (2).

(5) Compute the dominant orientation of  with re-
spect to the candidate radial directions using the least
mean square averaging method. The average of these
dominant orientations is the unique reference orienta-
tion.

5. EXPERIMENTAL RESULTS

The proposed algorithm has been tested on the FVC2000
DB2, set A, in which 800 fingerprint images from 100 fin-
gers (with 8 images from each finger) are captured using a
low-cost capacitive sensor. The image size is 364 X 256 pix-
els and the resolution is 500 dots per inch. This fingerprint
database contains many poor-quality fingerprints such as the
partial images with the reference point left outside and the
images with heavy noise like scars, ridge breaks, too wet or
dry fingerprints, and so forth. The desired position and ori-
entation of the reference point in each fingerprint are not de-
tected previously by experts. To evaluate the performance of
our proposed algorithm quantitatively, we manually locate
the desired reference point and the desired reference orienta-
tion of each fingerprint.

There are 13 partial fingerprint images in the test
database with the reference point left outside. For these im-
ages, no reference point should be detected. However, one
point with minimum orientation consistency is usually de-
tected in our experiments for each fingerprint. If the detected
point is on the boundary of the image (see Figure 7a), this
point is unreliable and considered as no reference point be-
ing detected. The image is identified as partial fingerprint im-
age. In this way, we correctly identify 11 partial fingerprint
images while two partial fingerprints fail being identified as

the detected reference points are not located on the image
boundary (see, e.g., Figure 7b).

5.1. Reference-point localization

In our experiments, the orientation field is computed in the
proposed adaptive smoothing method and 4 scales are ap-
plied in the multiscale analysis of orientation consistency to
locate the reference point. The orientation consistency com-
putation in each scale is based on the outside surrounding 8s
blocks of (2s + 1) X (2s + 1) neighborhood and s denotes the
corresponding scale of the multiscale analysis.

The reference points detected using different orientation
smoothing methods are shown in Figure 8. From Figure 8a,
we can see that the averaging method on small neighborhood
results in the false reference-point detection due to the heavy
noise. Figure 8b shows a significant location error of the de-
tected reference point caused by averaging method on large
neighborhood. Our proposed adaptive smoothing method,
however, leads to the accurate reference-point detection for
both of the fingerprint images.

The position of the reference point is the center pixel
of the finally located block. The Euclidean distance be-
tween the manually located position and the position lo-
cated by the algorithm is computed as the distance error of
the reference-point localization. Since the reference point de-
termined by human vision may have some deviation from
the true reference point, four coarse level measures of the
distance error are defined to effectively evaluate the accu-
racy of reference-point localization in this work. If the dis-
tance error of the reference-point localization is not larger
than 10 pixels (about 1 interridge), the localization is con-
sidered to be accurate as the error may be caused by hu-
man vision. If the distance error is larger than 10 pixels
but not larger than 20 pixels, it is considered as small er-
ror which may be caused by both human vision and algo-
rithm. If the distance error is larger than 20 pixels but not
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(®)

FiGURE 8: The reference points detected by different orientation smoothing methods where “x” denotes the manually detected reference
point, “A” and “¢” denote the reference point detected by the averaging method on small and large neighborhoods, respectively, and “IJ”
denotes the detected reference point by our proposed adaptive smoothing method.

larger than 40 pixels, it is considered as significant error
which may have negative effect on the subsequent process-
ing steps. If the distance error is larger than 40 pixels, most
likely a spurious or false reference point is detected that can-
not be used for subsequent processing steps. Table 1 shows
the accuracy analysis of the reference-point localization for
the nonpartial fingerprints of the test database according to
the four coarse level measures of the distance error. We can
see that the accuracy of the reference point reaches 95.18%
if small distance errors can be tolerated in the subsequent
processing steps. The experimental results can be further im-
proved by reducing the step size of overlapping blocks. Al-
most all the significant errors and false detections resulted
from the heavy noise of the very poor-quality fingerprints
(see Figure 9).

The sine-map-based approach proposed by Jain et al. [4]
is a good approach for reference-point localization, and its
definition of reference point is the same as that in this work.
Therefore, several examples of reference-point localization
in our proposed approach are compared with those in the
sine-map-based approach (see Figure 10). From Figure 10a,
we can see that the detected reference points using the sine-
map-based approach are not very consistent among the two
fingerprint samples from the same finger due to a slight ro-
tation between them. Figure 10a shows that the detected ref-
erence points of these two fingerprint samples by using our
proposed approach are more consistent than those using the
sine-map-based approach.

Furthermore, the standard deviations of the detected ref-
erence points by the two methods are computed to compare
their consistencies. Let Z, (i) and Z(i) be the positions of the
manually located reference point and the detected reference

TaBLE 1: The accuracy analysis of the reference-point localization
for nonpartial fingerprints.

Distance error

. The number of fingerprints The probability
(pixels)
<10 659 0.8374
>10and < 20 90 0.1144
> 20 and < 40 25 0.0318
> 40 13 0.0165

point of the sample image i from the same finger, the stan-
dard deviation o is computed as

2

>

1M
g = M;

dz(i) = Z(i) — Z,(i),

1 M
dz(i) - <~ > dz(i)
i=1

(9)

where M is the number of fingerprint samples (8 in our test
database) from the same finger. For the corresponding 8 fin-
gerprint samples from the same finger as shown in Figure 10,
the standard deviation o of the reference points detected by
the sine-map-based approach is 6.0228, while it is 2.4708
by our proposed approach. The average standard deviation
of the whole test database (800 fingerprint images in our
test database) by our proposed approach is 11.5109, which
is much smaller than that by the sine-map-based approach
(19.7800). Therefore, the consistency of the detected refer-
ence points by our proposed approach is much better than
that by the sine-map-based approach.
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(a) (®) (c)

Figure 9: Examples of false reference-point detection and the detection with significant error (“x” denotes the manually located reference
point and “CJ” denotes the reference point located by the algorithm).

(a)
(b)

FiGure 10: Examples of the reference-point localization by using (a) the sine-map-based approach and (b) our proposed approach (“x,” “A,”
and “0J” denote the reference points detected by human experts, the sine-map-based approach, and our proposed approach, respectively).
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TaBLE 2: The accuracy analysis of the reference-orientation compu-
tation.

Orientation error The number of fingerprints ~ The probability
<n/16 690 87.67%

> /16 and < 71/8 47 5.97%
> /8 50 6.35%

5.2. Reference-orientation computation

The difference between the manually detected reference ori-
entation and the reference orientation computed by the pro-
posed approach is computed as the orientation error of the
reference-orientation computation. Similarly, three coarse
level measures of the orientation error are defined to effec-
tively evaluate the accuracy of the reference-orientation com-
putation (see Table 2). The orientation error larger than 7/8
rads is considered a significant error while the orientation
error larger than 77/16 but not larger than 7/8 rads is con-
sidered a small error. The orientation error not larger than
71/16 rads is considered an accurate computation. To avoid
the ambiguity of the orientation difference computation, the
orientation error (OE) is computed as follows:

OE =min {|6, - 6,|,m— |6, — 6,|},
- - (10)
-— <0, 0,<—,
2 "2
where 6, and 8, are the computed and the manually detected
reference orientations, respectively.

From Table 2, we can see that the computation accuracy
is 93.65% if the reference orientation can tolerate error up
to 7/8. In addition, the accuracy can be further improved
if we can improve the accuracy of reference-point localiza-
tion.

6. CONCLUSIONS

This paper develops an effective algorithm to consistently
locate a unique reference point and compute a unique ref-
erence orientation associated with the reference point for
all types of fingerprints. The reference-point localization is
based on multiscale analysis of the orientation consistency,
while the reference orientation is computed by analysis of the
orientation differences between 16 radial directions from the
reference point and the local ridge orientations along these
radii. In addition, to compute the reliable orientation field,
we propose an improved orientation smoothing approach
which has better performance in attenuating noise while
maintaining the orientation localization of high-curvature
area than the conventional averaging method. Finally, exper-
imental results demonstrate that our developed algorithm
can consistently locate a unique reference point and com-
pute a unique reference orientation with high accuracy for
all types of fingerprints. The located reference point and

the computed reference orientation are useful for transla-
tional and rotational alignment in fingerprint classification
and matching.
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