EURASIP Journal on Applied Signal Processing 2005:4, 510-524
(© 2005 Hindawi Publishing Corporation

Joint Source-Channel Coding Based on
Cosine-Modulated Filter Banks for
Erasure-Resilient Signal Transmission

Slavica Marinkovic

IRISA-INRIA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

Email: slavica.marinkovic@irisa.fr

Christine Guillemot

IRISA-INRIA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

Email: christine.guillemot@irisa.fr

Received 2 April 2004; Revised 18 August 2004; Recommended for Publication by Helmut Boelcskei

This paper examines erasure resilience of oversampled filter bank (OFB) codes, focusing on two families of codes based on cosine-
modulated filter banks (CMFB). We first revisit OFBs in light of filter bank and frame theory. The analogy with channel codes is
then shown. In particular, for paraunitary filter banks, we show that the signal reconstruction methods derived from the filter bank
theory and from coding theory are equivalent, even in the presence of quantization noise. We further discuss frame properties of
the considered OFB structures. Perfect reconstruction (PR) for the CMFB-based OFBs with erasures is proven for the case of
erasure patterns for which PR depends only on the general structure of the code and not on the prototype filters. For some of
these erasure patterns, the expression of the mean-square reconstruction error is also independent of the filter coefficients. It can
be expressed in terms of the number of erasures, and of parameters such as the number of channels and the oversampling ratio.
The various structures are compared by simulation for the example of an image transmission system.
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1. INTRODUCTION

The advent of multimedia communication over packet-
switched (IP) networks is creating challenging problems in
the area of coding. Due to the real-time nature of data
streams, multimedia delivery usually makes use of unrespon-
sive transport protocols, that is, User Datagram Protocol
(UDP) and/or Real-Time Transport Protocol (RTP) [1]. In
contrast with Transport Control Protocol (TCP), these pro-
tocols offer no control mechanism that would guarantee a
level of QoS. The packets may be sent via different routes and
may arrive at destination with a large delay or not arrive at all.

Traditional approaches to fight against erasures consist
in sending redundant information along with the original
information so that the lost data (or at least part of it) can
be recovered from the redundant information. The design
principles that have prevailed so far stem from Shannon’s
source and channel separation theorem which states that the
source and channel optimum performance bounds can be
approached as closely as desired by independently design-
ing the source and channel coding strategies. However, this
holds only under asymptotic conditions where both codes

are allowed infinite length and complexity. If the design of the
system is heavily constrained in terms of complexity or de-
lay, the separate (also called tandem) approach can be largely
suboptimal. This observation has motivated the considera-
tion of joint source and channel coding (JSCC) design in
practical systems (e.g., [2, 3]).

Among various JSCC techniques, JSCC based on over-
sampled transform codes (OTCs) has recently gained a lot
of attention [2, 4, 5, 6, 7]. This is a fundamentally different
approach whereby the error control coding and the signal de-
composition are integrated in a single block by using an over-
sampled filter bank (OFB). The error protection in this ap-
proach is introduced before the quantization allowing in ad-
dition to suppress some quantization noise effects (which is
not the case of traditional tandem approaches). So far, the re-
search in this area has mostly focused on the investigation of
(OTC) which are filter banks (FB) codes with polyphase filter
orders equal to zero. The error-correcting capability of vari-
ous OTCs has been studied in [6, 7, 8]. As in the case of the
error-correcting codes over the finite field, it is desirable that
the generator matrix of the OTC codes possesses a structure
which facilitates the derivation of the decoding algorithms as


mailto:slavica.marinkovic@irisa.fr
mailto:christine.guillemot@irisa.fr

Joint Source-Channel Coding Based on CMFB

511

well as the performance evaluation. For example, the genera-
tor matrices of OTC in [6, 7, 8] are constructed from the dis-
crete Fourier transform (DFT) and direct cosine transform
(DCT) matrices. In [8, 9], it has been shown that DFT codes
have a Bose-Chaudhuri-Hocquenghem (BCH) code prop-
erty and that the algorithms derived for BCH codes over the
finite field can be used for decoding DFT codes in the absence
of quantization noise. A performance analysis of erasure re-
covery with quantized DFT codes is presented in [8]. Con-
sidering the similar—but more general—problem of inter-
polation, the author in [10, 11, 12, 13] analyzes the stability
of reconstruction using the eigenanalysis of the interpolation
matrix operator. The approach applies to similar problems
in various other fields as well (e.g., spectrum analysis, fault-
tolerant computing).

Increasing the generator’s polyphase matrix order of the
OTC gives extra freedom in the transform design. The PR
synthesis FB for a given analysis OFB [14, 15, 16, 17, 18] is
indeed not unique and can thus be optimized for different
application-related criteria. OFB have in particular received
attention for noise reduction in subband coding applications
[19]. A signal decomposition with an OFB is actually a frame
expansion in £2(Z) [4, 15, 16, 20]. Frames are generalizations
of a basis for an overcomplete system, or in other words,
frames represent sets of vectors that span a Hilbert space
but contain more numbers of vectors than a basis. Therefore
signal representations using frames are known as overcom-
plete frame expansions. Because of their inbuilt redundan-
cies, such representations can be useful for providing robust-
ness to signal transmission over error-prone communication
media.

The use of quantized OFB-based frame expansions to
achieve resilience to erasures of compressed signals has also
been considered in [4, 16, 21, 22]. The authors show in par-
ticular that, if the frame is uniform and tight, the mean-
square reconstruction error is minimized. However, when
used as joint source-channel codes, the frame property may
be verified only for some erasure patterns. The performance
analysis as well as the derivation of the reconstruction filters,
which are dependent on the erasure patterns, are in addi-
tion rendered difficult in the general case of OFB due to the
increased order of the generator-polyphase matrix. To pro-
ceed with the performance analysis for various types of era-
sure patterns and with the design of a practical system, we
consider OFB codes with generator-polyphase matrices con-
structed from polyphase matrices of critically sampled co-
sine modulated filter banks (CMFB) [14, 23]. CMFBs have a
simple structure. Hence, constructing the OFB code genera-
tor matrix from the polyphase matrices of the CMFB simpli-
fies the code design as well as the performance analysis. We
consider two OFB codes: codes, referred to as OCMEFB, ob-
tained from critically sampled CMFB by reducing the down-
sampling factors and codes, referred to as CMFB-OFB, which
have a structure similar to that of DFT codes [8]. The study
of OCMFB codes is motivated by the fact that it can be eas-
ily integrated in compression systems and is therefore of po-
tential practical interest. The CMFB-OFB codes are consid-
ered in order to improve the performance of DFT codes [8].

That is, since CMFB-OFB codes have a similar structure as
DFT codes but higher-order polyphase filters, we expect that
it has a better performance than a DFT code.

The rest of the paper is organized as follows. In Section 3,
OFB are reviewed in light of the frame, FB, and channel cod-
ing theory. In particular, the results on the equivalence be-
tween the projection receiver and the syndrome decoding de-
rived for DFT codes in [5] are extended to the case of OFB
codes. That is, for paraunitary FBs, it is shown that the sig-
nal reconstruction methods derived from the FB theory and
from the coding theory are equivalent even in presence of
quantization noise. The structures of OFB based on CMFBs
that are considered in the sequel are described in Section 4,
together with the corresponding frame properties and pack-
etization schemes. In Section 5, the PR and the erasure re-
covery properties of the two families of codes considered are
analyzed. Even though OFBs based on CMFB have simple
structures, it is difficult to analytically verify the PR prop-
erty for all erasure patterns. For some particular erasure pat-
terns, we show that PR depends only on the structure of the
code and not on the filter coefficients. Section 6 considers the
problem of reconstruction in presence of quantization noise.
The mean square error (MSE) performance bounds under
particular quantization noise distribution assumptions are
provided. It is shown that, in presence of quantization noise,
the MSE for some erasure patterns does not depend on the
filter coefficients. Section 7 provides performance results in
terms of mean-square reconstruction error obtained with the
codes studied here in comparison with a DFT code.

2. NOTATIONS

In the following, bold letters denote matrices. The expres-
sions X*, X7, XH, and X = XH(1/z*) denote the conjugate,
the transpose, the transpose conjugate, and the paraconju-
gate of X, respectively. The matrices Iy and Jy stand for the
[N x N] identity and reverse identity matrices, respectively.

3. OFB AS CHANNEL CODES: FRAMEWORK
AND BACKGROUND

Critically sampled FBs have been widely used in compres-
sions systems based on subband signal decomposition. Over-
sampling has been considered mainly for reasons related to
easier filter design (higher number of degrees of freedom)
and/or for noise suppression [23, 24]. In this paper, we con-
sider using oversampling for protection against signal degra-
dation due to both quantization and transmission errors. In
particular, we consider scenarios where channel errors occur
due to packet losses in a transmission over packet-switched
networks. The loss of a packet is referred to as an erasure.

3.1. General framework and problem statement

Consider an FB as shown in Figure 1. In this FB, an input
signal x(n) is split into N signals yx(n), k = 0,...,N — 1.
The sequence yx(n) is obtained by downsampling the output
of the filter k with a factor K, where K < N. The sequences
yi(n) are then quantized. A single or a group of signals yi(n)
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FiGure 1: Block diagram of an N-channel FB with downsampling
factors K.

is placed in one packet. Due to network congestion, some of
the packets do not arrive at destination. The task of the re-
ceiver is to combine the received signals into a single signal
X(n) which, in absence of quantization, is identical to the sig-
nal x(n), and which, in presence of quantization, is as close
as possible to x(n) in the MSE sense. Due to redundant sig-
nal representation (K < N), PR is possible even if some of
the signals yx(n) are lost. The packets in this model can be
viewed as multiple descriptions of the signal [16]. Reception
of a certain number of packets allows signal reconstruction
with a certain MSE, while reception of additional packets im-
proves the reconstructed signal quality in the MSE sense. The
frame theory offers a general way of analyzing signal expan-
sions [16, 17], while signal resilience to channel impairments
is a field of study of coding theory. Here, we revise some con-
cepts of OFB in light of the frame theory and give the anal-
ogy between OFB and channel codes. Since we consider using
OFB for erasure recovery, we also refer to OFB as oversam-
pled filter bank codes (OFBCs).

3.2. Frame-theoretic analysis

3.2.1. Definitions

A set of vectors ® = {¢,};cz in a Hilbert space H of square
summable sequences ¢2(Z) is a frame if for any x € £2(Z),

Alx1P< > [(x¢)]° <BlxI? (1)

ieZ

where (x,y) denotes the inner product of x and y, and A >
0 and B < oo are constants called frame bounds. If ® is a
frame, there exists another frame I' = {y,};cz such that any
signal x € H can be represented in a numerically stable way
asx = 2.cz{x, ¢,)y; [17]. For an OFB with N channels and a
downsampling factor K, the vectors constituting a frame are
given by the translated versions of N elementary waveforms
(17]

o = {¢i,j : (/),‘,j(n) = gb,‘(l’l - ]K) i=0,1,...,N—1, ] S Z},
(2)

where ¢;;(n) is related to the filter impulse response as
hi(n) = ¢ (-=n),i =0,...,N — 1 [17, 24]. The inner prod-
ucts of the input signal x with vectors in a frame ® are thus
obtained at the output of an N-channel FB as

)’N—l(‘”_l)
)’0(71.—1)
)’N—l(”)
)/0&71)
0 Ho Hy - Hi, 0
.~ 0 Hy H --- H, 0
0 Ho H, --- H, 0
L . |
x((n—z‘)K—l)
x((n—.l)K)
X x(n-1DK-1) |’
*(nK)

(3)
where x(n) denotes the nth element of the input sequence
x and y;(n) denotes the nth element of the sequence at the
output of the ith filter. The quantity Ly is given by [ Lp/K -1,
where Lp denotes the largest filter length. The matrix H; is
given by

ho((Ly+1)K—iK—1) ho((Ly+1)K —(i+1)K)
e hN_l((Lv+l)K—(i+l)K)
(4)

The infinite matrix H is the frame operator associated with
the FB frame. It assigns to each input sequence x a sequence
of products (x, ¢, ;). PRis possible if and only if there exists
a matrix F such that FH = I.,. For an OFB, the solution for
synthesis filters is not unique and it can be expressed as [24]

hN_l((Lv+l)K—iK—1)

F = F+P[IL, — HF], (5)

where P is an arbitrary matrix and F is the pseudoinverse of
H given by F = (H"H) 'H".
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FIGURE 2: Polyphase implementation of the analysis FB of an N x K
OFB code.

3.2.2. Polyphase representation

The FB structure of the frame allows to represent operations
performed by an FB in a more compact way by using the con-
cepts of polyphase signal decomposition. An FB output sig-
nal Y(z) = [Yo(z) - - - Yn-1(2)]T can indeed be represented
as

Y(z) = E(2)X(2), (6)

where X(z) is the decomposed input signal X(z) into K type-
I polyphase components as

K-1
X(z) = > z7*X(9),
k=0 (7)

X(2) = [Xo(2) - - - Xk 1(2)]",

and E(z) is an [N X K] type-I polyphase analysis matrix with
elements

Ly
Eij(z) = > hi(Kk+ j)z 7%,
k=0 (8)
i=0,..,N-1, j=0,...,K-L

The polyphase implementation is depicted in Figure 2.

3.2.3. Review of the main properties

The properties of OFB-based frame expansions depend on
the properties of the frame operator which is an infinite ma-
trix. They can be defined in terms of the properties of the
[N x K] polyphase matrix E(z) [17].

Proposition 1 (see [17, Theorem 1 and Corollary 1]). An
analysis polyphase matrix E(z) implements a frame expansion
if and only if E(z) is of full rank on the unit circle, or equiv-
alently, if and only if there exists a matrix of stable rational
functions which is a left inverse of E(z).

Therefore, if an FB implements a frame, PR is possible
and the synthesis polyphase matrix R(z) is given by the left
inverse of the analysis polyphase matrix E(z). For an OFB,
the solution for the synthesis polyphase matrix is not unique.
The general solution can be written as [15, 24]

R(z) = cz ™ {R(z) + U(z)[1 - E(2)R(2)]}, (9

where U(z) is an arbitrary [N x K] matrix with [U; j(e/*)| <
c0. The matrix R(z) is the parapseudoinverse of E(z) given
by R(z) = [E(2)E(z)]'E(z). However, it has been shown in
[16] that, if the output of an OFB is corrupted by quanti-
zation error which can be modeled by additive white noise,
and if the noise sequences in different channels are pairwise
uncorrelated, then the parapseudoinverse is the best linear
reconstruction operator in the MSE sense. We therefore con-
sider only the parapseudoinverse receiver.

An FB implements a tight-frame expansion if and only
if its polyphase analysis matrix E(z) is paraunitary, that is,
E(2)E(z) = cI, where ¢ is a constant (¢ # 0) [17, 24]. Tight
OFBs have the nice property that the parapseudoinverse is
given by R(z) = (1/¢)E(z). A frame implemented by an OFB
is uniform if [|h;(n)|l = 1,i=1,...,N [16].

3.3. Analogy with channel codes

The [N x K] polyphase matrix E(z) can be considered as the
generator filter matrix of an (N, K) OFB code. Similarly, an
[N — K, N] parity check filter P(z) can be defined as

P(z)E(z) = 0. (10)

For example, a parity check filter matrix can be obtained
from the Smith McMillan decomposition of the analysis
polyphase matrix [25].

It was shown in [16] that when encoding with an FB im-
plementing a uniform frame and decoding with the pseu-
doinverse receiver for the additive white noise model with the
pairwise uncorrelated noise sequences in two different chan-
nels, the MSE is minimum if and only if the frame is tight. In
the rest of the paper, we consider OFBs for which the original
frame (without erasures) is tight.

It was shown in [17, 26] that paraunitary FBs can be fac-
torized as

E(z) = Vp(2)Vp-1(2) - - - Vi(2) Vo, (11)

where the paraunitary elementary building blocks V;(z) are
given by

Vi=1-vvil+z vyl (12)

The vector v; is an [N X 1] unit norm vector and Vj is an
[N x K] matrix of scalars with VIV, = const xI.

The polyphase analysis matrix E(z) can be further repre-
sented as

E(z) = U(z) [1(}] w, (13)

where U(z) = Vp(2)Vp-1(2) - - - V1(2)A, A = B, W(z) = C
and A, B, and C are matrices obtained by singular value
decomposition of Vy. In this representation, the matrices
U(z) and W are square matrices with U(z)U(z) = Iy and
WHW = Ik, and A is a [K X K] nonsingular diagonal ma-
trix.
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Now, the parity check matrix P(z) can be found as

P(z) = [On-kxx In-x]U(z)7!

N N (14)
= [Uxn-k(2) Un-xn-k(2)].
We can observe that filtering any sequence Y(z) which was
generated by a generator filter matrix E(z) yields zero syn-
dromes. On the other hand, if the encoded signal is corrupted
by quantization noise N(z), we have

S(z) = P(2)(Y(2) + N(2)) = P(2)Y(2) = P(z)N(z), (15)

where Y(z) denotes a quantized version of Y(z).

We consider system conditions where the received signal
differs from an encoded signal Y(z) due to both quantization
noise and erasures. Here, we assume without loss of gener-
ality that the packet i contains a single quantized sequence
y;(n). In this case, the received signal is denoted by Yz (z) and
can be written as

?R(Z) = [Yil (Z)+Ni| (Z) T YiR(Z)+NiR(Z):|T (16)
=Yg +Nr(2) = Epx(2)X(2) + Nr(2),
where i}, ..., are the indices of R received packets. Eg ()

is an [R X K] submatrix of E(z) corresponding to the received
components Yr(z) and X(z) is the z transform of a blocked
input signal. Similarly, the vector of erased components is
expressed as

Ye(z) = [Y;(2) +Nj,(z) -+ Y;,(2) + Nj,(2)]"
= Yg(2z) + Ng(z) = Egx(2)X(2) + Ng(2),

(17)

where ji,..., jg are the indices of E erased packets.

If we assume (without loss of generality) that the first R
packets are received, the syndromes S(z) are given by

Yi(2)
Yi(2) — Yi(2)

= —P(2)n-k,eYE(2) + P(2)N—k &NRr(2),

S(z) = P(2)n-kN [ } = P(2)n_krYr(2)
(18

where P(z)N_k,r and P(z)n_k g are matrices consisting of the
first R and the last E columns of P(z)y_k n-

There are two ways to reconstruct a signal from the re-
ceived samples. We can either estimate X(z) from (16) or first
estimate the erased signals Yg(z) from (18), and then recon-
struct the signal as if there were no erasures. We refer to the
first approach as reconstruction by projection on the signal
space, in short as projection decoding, and the second ap-
proach is referred to as syndrome decoding.

3.4. Equivalence between projection decoding
and syndrome decoding

The reconstruction methods based on the parapseudoinverse
of the analysis matrix after erasures and the methods based

on syndromes are equivalent even in presence of quantiza-
tion noise. That is, we can write

= -l ?R(Z)
(E(2)E(z)) E(z) |:YE ( Z)] )

= (Brk(2)Erk(2)) ' Erx(2)¥r(2),

where Yx(z) denotes a vector with received quantized signal
components, and Yg(z) represents a vector of erased com-
ponents estimated from the syndrome equations. Assuming
that the matrix Py_g(z) is of rank E on the unit circle,
the erased components are estimated from (18) by using the
parapseudoinverse of Py_k g(z). That is,

Ye(2)= By xp(2)Py k£(2) By _k£(2)S(2)
— (Py_k£(2)Py_k£(2) Py k()P kr(2)¥R(2),

Ye(2)= —Uen -« (2)Uen k(2)) " Upn_k(2)Urn_k (2)YR(2),

(20)
where U(z) is partitioned as
_ | Urk(2) Urn-k(2)
U@ = [UE,K(Z) UE,NK(Z)]' @1)

We first note that, whenever (in the absence of quantization
noise) PR based on the parapseudoinverse of Eg x(z) is pos-
sible, it is also possible to reconstruct Yg(z) from the syn-
dromes in (18). This can be shown by observing that [27]

det Uk k(2) Ugn-k(2) Ukk(z)  Ugn-k(2) B
0 In -k Un-kx(2) Un-xn-k(2)
“af [0 0 o))
Ukn-k(z) Un_kn-k(2)])"

From the above equation, it follows that

(22)

det {Ug x(2)} X const = det {INJN_K,N_K(z)}, (23)

assuming that the first K components have been received and
that the last N — K components have been erased. The same
can be shown for any other selection of lost and received
samples. Therefore, whenever it is possible to perfectly re-
construct X(z) from (16), it is also possible to perfectly re-
construct Yg(z) from the syndrome equations in (18). We
further show that (19) is valid even in presence of quantiza-
tion noise. From the signal decomposition given in (13), the
parapseudoinverse can be calculated as [28]

(E(2)E(z)) 'E(z) = WH[A™! 0]U(2). (24)
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By combining (14), (24), and (19), we get

‘/VHA_1 [[NJR)K(Z) INJE,K (Z)]

% |: IR(Z) j|?
—(Upn -k (2)Unk(2)) Uy k(2)Urn -k (2) .

= WHA (Upk (2)Uri(2)) Uri(2)¥r(2).
(25)

From the paraunitary condition U(z)INJ(z) = INJ(z)U(z) = Iy,
we have the following equalities:

(Urk(2)Uri(2) "

= (Ix — Upx(2)Upk(2)) '

= Ix + Uk (2) (I — Upx(2)Ugk(2)) " Ugk(2), (26)
Upn-k(2)Urn-k(2) = ~Ugpk (2)Urk (2),
(Upn—k(2)Upn—k(2)) " = (It - Upk (2)Upk (2) .

By substituting these equalities in (25), we see that the ma-
trices multiplying Yz(z) at both sides of (25) are equal. This
proves that, in presence of both erasures and quantization
noise, the reconstruction method based on the syndrome fil-
ters and the reconstruction method based on the parapseu-
doinverse are equivalent. As both methods are equivalent,
in the sequel, we consider only reconstruction based on the
parapseudoinverse of the analysis matrix after erasures.

4. STRUCTURES BASED ON CMFBS

Oversampling increases both the design and implementation
computational cost. For this reason, we consider OFBs based
on CMFBs which have low design and implementation com-
plexity. In particular, we consider OCMFBs with an integer
oversampling ratio, and OFBs with the analysis polyphase
matrix composed of two critically sampled CMEB polyphase
matrices.

4.1. Critically sampled CMFB

In an N-channel CMFB, the analysis filters hi(n) are ob-
tained by cosine modulation of the prototype p(n) as [26]

hi(n) = 2p(n) cos (%(k+0.5)<n - %) +</>k>,
n=01,...,L,—1,

(27)

where D denotes the overall delay of the analysis-synthesis
system and ¢y = (—1)*7n/4. The 2N polyphase components
of a prototype p(n) with length L, = 2mN are given by

m—1

Pi(z) = > pQIN + j)z ™. (28)

1=0
The analysis polyphase matrix for the critically sampled case,
that is, for the oversampling ratio L = N/K = 1, is given by

2
EV(z) = T, [z—Pl(i)(lz(Z)z)] = T,P(2), (29)

where

im0 560 - 2) 0]

k=0,...,N—1,j=0,..,2N -1,
Py(z) = diag [Po( — 2%),Pi (= 2%),...,Pn_1( = 2%)],

Pi(z) = diag [Px( — 2%), Pn+1( — 2%),..., Pan—1 (= 2%) ].
(30)

We consider paraunitary CMFBs with finite impulse re-
sponse (FIR), linear phase prototype filters of length L, =
2mN, where m is an even integer. When L, = 2mN and m is
an even integer, the T, matrix can be written as

T, = VNAC[(Iy - Jy) — (Iy +IN) ], (31)

where Cis a (type 4) DCT matrix given by

2 s
[Clgn = \/;cos N(k+0.5)(n+0.5) (32)

and A, is a diagonal matrix with [A.]xx = cos(m(k + 0.5)m).
The analysis polyphase matrix is given by

EV(2) = VNAC[(Iy—Iv) — (Iy+Jn)] [Z—I:(iflz(zz)z)] . (33)

The synthesis polyphase matrix can be written as

R (z) = Z*(mel)ﬁ(l)(z)

(34)
= [z7'InP1(22)In InPo(22)IN]TL.

4.2. Oversampled CMFB code

As current signal compression systems already use critically
sampled FBs for signal decomposition, the most straightfor-
ward way to introduce redundancy at this point in the sys-
tem is to use a subsampling factor which is smaller than
the number of channels. Classification of the oversampled
CMFBs with PR and paraunitary conditions for OCMFBs
have been considered in [14]. The same authors studied
OCMEBs frame properties and the design and implemen-
tation issues. OCMFB with integer oversampling ratio have
been considered in [23], essentially for obtaining less restric-
tive constraints for the analysis and synthesis prototypes. In
this paper, we are interested in using the redundancy for
erasure recovery. The prototype filters are optimized for the
N-channel critically sampled CMFB. Redundant signal rep-
resentation is obtained by replacing subsampling factors N
with subsampling factors K = N/L, where L is an integer. An
[N x K] analysis polyphase matrix of this OFB can be ex-
pressed as [23]
ED(z) = EV () [Ik 27 -+ 27 DI]" (35)
5
= EV(2")sk(2),
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where E(z) is given in (33). The synthesis polyphase filters
are given by

RE() = [ T2 ISR (),

where R is given in (34). It has been shown in [23] that
if the critically sampled FB is paraunitary, the OFB is also
paraunitary. That is,

(36)

ED(2)ED (2) = SL(2)EW (1) ED (21)SE(2)
o N (37)
=Sk(z)SM(2) = EIK'

4.2.1. Packetization

To carry out the performance analysis of these codes in pres-
ence of erasures, one has first to design the transport or pack-
etization structure of the different code samples. The most
natural choice for the packetization scheme in the system
with an OCMFB code is to put consecutive samples at the
output of each filter in a different packet. This is because ev-
ery Lth sample at the output of each filter is an output of
a critically sampled FB and therefore, we can expect that PR

will be possible even after loosing some packets. Another rea-
son for packetizing the samples in this way is that we avoid
the possibility of loosing a signal in an entire subband, which
is not desirable in source coding applications where vari-
ous subbands have different importance. We have therefore
adopted the following packetization scheme. There are Np
packets per image. Each of the Np consecutive coefficients
in a subband is placed in a different packet. Packetization for
the ith filter in an OCMFB is shown in Figure 3. For example,
loosing the packet k means that every Npth subband coeffi-
cient starting from the kth is lost in all subbands.

4.2.2. Polyphase representation and analysis
of an OCMFB code

In order to facilitate the analysis of an OFB code perfor-
mance in presence of erasures, it is convenient to represent
a polyphase matrix of an OFB code in such a way that an
erasure corresponds to loosing samples generated by a single
or a group of rows in this matrix. For this reason, we rep-
resent an [N x K] analysis polyphase matrix in (35) by a
[NpN X NpK] = [N’ x K’] polyphase matrix which is ob-
tained as follows. The filters of the N-channel FB are repre-
sented in an expanded form as

[ ho(0) ho(Lp — 1) 01x(Np-2)K 01xx
hn-1(0) Ay (Lp = 1) Oixvp-2)k 01k
E
:g 015k ho(0) ho(Lp = 1) Oxnp-2)K
hE — ‘1 — : > (38)
. Oixx  hn-1(0) hya(Lp=1)  Oixvp-2)k
hNNp*l . : . :
01xx  O1xvp—-2)K ho(0) ho(Lp — 1)
| Oixx  Oixvp-22k hn-1(0) hn-1(Lp — 1) |
|
where h;(j) is a jth element in the ith filter impulse response. where E;(z) = ES(2)T; (2),
The elements of the polyphase matrix are given by
d-1 Ok -xixki Ix-ki
o= S s et g [ DKL Ti(z)=[ - ]
E,,](Z) = g') h,- (K l+])Z , d= [ NoK s z g, Oxix (k' -Ki)
j=0,..,K' —=1,i=0,...,N' — L. Tiij(2) = Ti(2)T)(2), i+ j<Np,
(39) ES(2) = [Ay A - Agm ] (41)
The polyphase matrix can be written as .
X P[INPK ZﬁllNPK e Zf(dfl)INPK]
E(2) = [Ef(2) El(2) -+ EL,(2)]"
seonT (ms T s 74T =[By By -+ By
= [(E5(2))" (B5(2)Ti(2))" --- (BS(2)Tn,-1(2))" ] .
(40) X [Ingk 27 Uk - -+ 279 DI,k
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Hiz) ,\LTpl Packet 0

Packet Np — 1

F1GURE 3: Packetization scheme for the ith subband in an OCMFB
system.

with
Ay = (-1)'WNA.C(Iy - Jn), i=0,1,...,m—1, (42)
Avip1 = —(-1)WNALC(Iy +Jy), i=0,1,...,m—1,
(43)

P = [diag {p(0), p(1),..., p(Lp — 1)} Oppx(anpk—1)], (44)
B; = A;[diag {p(jN),..., p(jN + N — D}], (45)
ji=0,1,....2m -1,

Boy = ONx(dNpK—Ls)- (46)

An erasure k corresponds to a loss of coefficients generated by
the rows of E¢(z). The term consecutive erasures or a burst of
erasures denotes a loss of coefficients corresponding to rows
of [Ef (z) El.,(z) --- EZJrLB(Z)]T, where Lp is referred to
as a burst length. A burst of Lp erasures denotes a periodic
erasure pattern where, out of Np consecutive samples, Lg
consecutive samples are lost in all subbands and Np — Lp con-
secutive samples are received in all subbands.

Proposition 2. For NpK = iN, where i is an integer, the
polyphase matrix E(z) defined by (40)—(46) implements a
strongly uniform tight-frame signal expansion.

Proof. We first note that the matrix E(z)E(z) has the matri-
ces ES(z)ES(2) along the main diagonal. For NpK = N, ES(2)
represents a polyphase matrix of an N channel critically-
sampled CMFB with a polyphase matrix as in (33). That is,

F(z)
= ES(2)E%(2)
=Bo+z 'By+---+2z @ VB, )
X (Bf +zBT + - - - +z%m-VBI )
=z @m VB, \Bl+---+(BoBl+---+By,_1BL, ;)
+z 1 (B B+ -+By, B, ,)+- - -+22"1ByBY,

=z M DE_ ot -+ Fgte o422 VR,
(47)

where all the terms F; for i # 0 are equal to zero and Fy = Iy.

For NpK = iN where i is an integer, we have

F(z) = ([BO s B,;l] +Zﬁl[Bi e B2i71]

ootz @D[Byy - - 'B(Zm—l)ONX(N(di—Zm))])

X ([Bo- . -Bifl]T'i‘Z[Bi' : 'B2i71]T

_ T
4o+ Z9 DBt Blam—1) ONx(N(di-2m)) ] )

= Zf(dfl)F,(dfl),‘ +- 4z 'R

+Fo+2Fi+ - - +29 " VF ) = Iy,
(48)

where d = [2m/i]. It is shown in [16] that strongly uniform
frames are implemented by an [N X K] polyphase matrix
E(w) with the following property:

K-1
S | Bu(@)]|* =1 (49)
k=0

forn = 1,...,N and w € [—m,7]. This is equivalent to the
property that all diagonal elements of E(w)E" (w) are equal
to 1 [16]. Hence, for NpK = iN, Np = iL, the polyphase
matrix E(z) defined by (40)—(46) implements a strongly uni-
form tight-frame signal expansion. O

Note that for NpbK = iN, that is, Np = iL, where i is
integer, every matrix (E)*(z) consisting of the following rows
of E(2):

(EY<(2) = [E{(2) B[, (2) --- Elz+(i—1)L(z)]T> (50)
where 0 < k < L—1, is a square paraunitary polyphase matrix
of the critically sampled CMFB. That is, we have

(B (2)(E)*(2) = (EY (2)(B)*(2) = Ik, (51)

L-1
SUE(2)(B)*(2) = Lly,k. (52)
k=0

4.3. OFB codes composed of two CMFB
polyphase matrices

The optimal design of an OFB in the rate-distortion sense
and for an erasure channel is a difficult task [18] and re-
quires radical changes of the system. Oversampling the out-
puts of an FB already used for subband decomposition is a
simple way to add erasure resilience to the transmitted signal.
However, in order to allow more freedom for the way the re-
dundancy is introduced to the system, and possibly facilitate
and/or improve the decoding performance, we also consider
providing erasure resilience by adding an additional OFB af-
ter subband decomposition by a critically sampled FB.

For example, it was shown in [8] thatan (N, K) DFT code
with K even is robust to N — K — 1 erasures.

Here, we consider codes which are similarly structured
as DFT [8] codes, but have higher-order polyphase matrices.
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Ci(z) Packet 0
Ho(z) i K
Packet 1
Hi(2) LK
Packet Np — 1
Hy-1(2) l K

FIGURE 4: Packetization scheme for subband i in a CMFB-OFB sys-
tem.

The polyphase matrix of such codes is given by

E(z) = \/gC(z)BA(z), (53)

where C(z) is a synthesis polyphase matrix for an N chan-
nel critically sampled CMFB, A(z) is an analysis polyphase
matrix of a K channel critically sampled CMFB, and B is an
[N x K] matrix given by B = [Ix 0]”. Since matrices C(z)
and A(z) are paraunitary, the polyphase matrix of this code
is paraunitary as well. Indeed,

E(2)E(2) = %K(Z)BTE(Z)C(Z)BA(Z) _ %IK. (54)

The system using this code is referred to as CMFB with an
OFB code (CMFB-OFB).

Packetization

For the systems with a DFT code or a CMFB-OFB code, we
assume that an input signal subband decomposition is ob-
tained by a critically sampled FB. Each subband signal is ar-
ranged in a one-dimensional array and encoded by an (N, K)
CMFB-OFB or a CMFB-DFT code. In these structures, the
simultaneous outputs of the oversampled filters are placed in
different packets. The packetization scheme for the ith sub-
band signal C;(z) is shown in Figure 4. Loosing the packet k
means that the kth CMFB-OFB output is completely lost in
every subband.

5. CODING AND FRAME-THEORETIC PROPERTIES
OF CMFB-BASED OFB CODES

As it was shown in [16, 17], PR after E erasures and no quan-
tization noise is possible if and only if the analysis polyphase
matrix after erasures, denoted by Er(z), is of full rank on
the unit circle. This is a quite general statement which does
not give much insight into the erasure resilience of an OFB
code. It is of interest to characterize an erasure-correcting
code more precisely based on its structure and parameters
such as filter lengths, number of channels, and decimation

factors. Although OFB codes based on CMFB have a simple
structure, it is difficult to analytically examine the rank of the
analysis polyphase matrix after erasures for all erasure pat-
terns. However, for some erasure patterns, the structure of
the code guarantees PR in absence of quantization noise. In
this section, we theoretically study PR properties of CMFB-
based codes for erasure patterns for which we can show that
PR is guaranteed by the general structure of the code and
does not depend on particular prototype filters. The remarks
on the correctability of some other erasure patterns are made
based on experimentation results.

5.1. Properties of OCMFB codes

For the OCMEFB code, we discuss bursty erasures and erasure
patterns for which PR property is the straightforward conse-
quence of the code structure.

5.1.1. Bursty erasures

The analysis matrix after E consecutive erasures with erasure

indices {0,...,E — 1} is given by

Ex(2) = [Ef(2) BL,(2) - EL_(2)]"

\ (55)
E£—1(Z)] Te(2),

= [Ei(2) E{(2) ---

where E;(z) and T;(z) are defined in (40). The total number
of packets is given by Np = E + R. PR is possible if and only
if Er(2z) is of full rank on the unit circle.

Proposition 3. Any erasure pattern consisting of E consecutive
or circularly consecutive erasures is correctable if and only if the
matrix Eg(z) in (55) is of full rank on the unit circle.

Proof. Consider an erasure burst with erasure indices
{k,...,k+E—1}. We denote the analysis matrix after erasures
for this erasure pattern by Ef. This matrix can be written as

EA(z)=[Ef(2) -+ B[ ,(2) -+ Elz(2) -+ B}, (2)]".
(56)

Then, we have
ER(2)ER(2)
= L1 - Ex(2)Ex(2)
= LI - Ex(2)Ex(2) — - - - — Bep-1(2)Eirp1(2)
= Ti(2) (L1 - Eo(2)Bo(2) — - - - — Bp_1(2)Bp-1(2)) Th(2)
= T4(2) (Be(2)E(2) + - - - + Eny-1(2)Enyp1(2)) Ti(2)

= Ti(2)Er(2)Er(2)Ti(2),
(57)

where T(z) is a paraunitary matrix defined in (40) and
Er(z) is as in (55). Since T;(z) is paraunitary, it follows that
E2(z) is of full rank on the unit circle if and only if Ex(z)
is of full rank. A similar case can be shown for an erasure
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burst consisting of circularly consecutive erasures with in- Since BTA = 0, we have
dices {0,...,k—1,k+R,...,Np — 1}. O
range{A} N range{B} = {0} = rank {[A B]}
From Proposition 3, it follows that in the analysis of (62)

bursty erasures it is sufficient to consider the erasure burst
with erasure indices {0,...,E — 1}. Note that this proof does
not depend on the fact that an FB is cosine modulated. It is
therefore valid for any paraunitary FB.

Remark 1. The maximum number of consecutive erasures
which can be corrected is limited by E < Ly, where Ly =
Lp/K — 1 = 2mN/K — 1 and Lp is the prototype filter
length. For more than Ly erasures, the polyphase matrix
E(z) in (40) and the encoding matrix H in (3) after re-
moval of the rows corresponding to the erasure pattern con-
tain all zero columns. The input samples corresponding to
these columns cannot be recovered. Similarly, we can con-
clude that for an erasure pattern with exactly E = Ly consec-
utive erasures, the necessary condition for PR is the reception
of R>[((Ly + 1)K — K)/(N —K)] = [Ly/(L — 1)] packets.
This follows from the fact that the analysis polyphase matrix
after erasures has to have a sufficient number of rows in order
to be of full rank.

Proposition 4. Consider an L = 2-times oversampled N chan-
nel OCMEFB with the polyphase matrix E(z) defined in (40)—
(46). Reception of R = Ly packets is a sufficient condition for
PR of E = Ly consecutive erasures, if and only if none of the
first K coefficients of the prototype filter is zero.

Proof. The analysis polyphase matrix after erasures with in-
dices {Ly,...,2Ly — 1} is given by

Er(z) = [A B], (58)

where A and B are matrices of scalars given by

Hy, H; - Hp,—2 Hpp
0 Ho --- Hy,-1 Hpp2
ANLyxKLy = | . . . . ,
o o0 --- 0 H,
(59)
H,, 0 --- 0
H,. H,, -+ 0 0
BniyxkL, = . : . : .
H, 0 . HLV—I HLV

PR is possible if and only if this matrix is of full rank.
The analysis polyphase matrix of the OCMFB (without
erasures) can be written as

A B
E(Z) = |:ZlB A:| . (60)
From the paraunitary condition ]NE(z)E(z) = LIk, we have

BTA =0, ATB =0

61
BB+ ATA = LIk. (61)

= rank{A} + rank{B}.

Therefore the analysis matrix after erasures in (58) is
invertible if and only if rank{A} = rank{B} = KLy.
That is, the matrices A and B have to be of full column
rank. We further show that this is the case if and only if
det([diag{p(0),..., p(K — 1)}]) # 0, where p(j) is the jth
prototype filter coefficient.

The matrices H; can be written as

T
Hi-nrsg-1) = BilOkxk-nx Ik Oxxa-nx]
i=1,....2m k=1,...,L,

(63)

where B; is defined in (46). For example, the matrices Hy and
H;, are given by

I p(0)
H()Z\/NACC[ K:l ,
=Jx
p(K-1)
. p(K-1)
H., = _(_I)M71\/NACC |:]§:| >
p(0)

(64)

where A, and C were specified in Section 4.1.

From the structure of H; it can be easily concluded that,
for N = 2K, the rank of this matrix is equal to the number of
nonzero terms in [diag{p(jK),..., p(jK+K —1)}].

Let det(diag{p(0),...,p(K — 1)}) # 0. Then, we have
rank{Ho} = rank{H;,} = K and from the block triangu-
lar structure of matrices A and B, it follows that rank{A} =
rank{B} = KLy. That is, rank{[A B]} = 2LyK =
Ly N, which proves that the analysis matrix after erasures is
invertible.

Let p(i) = 0, for some 0 < i < K — 1. Then the matrices
Hy and Hy, do not have full column rank. As the columns of
H, (Hy, ) define the first K columns of A (the last K columns
of B), it follows that rank(A) < LyK and rank(B) < Ly K.
Consequently, rank{[A B]} < 2LyK. Hence, the analysis
matrix is, in this case, not invertible. O

Remark forN = 2

For a 2-channel OFB with analysis filters lengths Lp, the suf-
ficient condition for the PR of Lp — 1 consecutive erasures is a
successful reception of Lp — 1 packets [20]. The proof is quite
general and relies only on the fact that polynomials Hy(z)
and H,(z) representing the z transform of the 2-channel FB
filter responses are relatively prime.

Remark for Np #+ 2Ly

The experimental results show that reconstruction filters in
the case of bursty erasures are, in general, of infinite impulse
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response (IIR). As the burst length increases, the zeros of the
invariant factors in the Smith form of the analysis polyphase
matrix after erasures move closer to the unit circle. For ex-
ample, in a two-time oversampled 4-channel CMFB, with
Np = 8, the maximum number of consecutive erasures that
can be corrected is 3. For this example and 4 consecutive era-
sures, the analysis polyphase matrix has 2 zeros on the unit
circle.

Remark for L > 2

For L > 2, it is difficult to analytically prove PR for E = Ly
andR = [((Ly + DK — K)/(N = K)] = [Ly/(L = 1)]. The
experimental results with an N = 4-channel OFB with filter
length Lp = 16 and oversampling L = 4 show that E = Ly =
15 consecutive erasures can be recovered, provided that the
number of the received packetsis R = ((Ly + 1)K — K)/(N —
K) = 5.

5.1.2. Some other correctable erasure patterns

We now list some properties of an OCMFB which are the
straightforward consequence of the fact that the OFB is ob-
tained from a critically sampled FB by reducing the down-
sampling factors. We assume that Np = iL and that i is an
integer.

Proposition 5. PR is possible for any set of erasures for which
the analysis matrix after erasures Er(z) contains rows of E(z)
given by (E)¥(2) in (50).

Proof. This proposition follows from the fact that (EYk(z)isa
polyphase matrix of a critically sampled paraunitary N chan-
nel CMFB. If a finite set of channels has a subset that is a
frame, then the original set of channels is also a frame [16].
Therefore, any larger set of received packets containing pack-
ets corresponding to (E)*(z) allows PR. O

Corollary 1. For the considered packetization scheme, with
NpK = iN, one erasure can always be recovered.

Proof. For L > 1, the analysis matrix after one erasure always
contains rows of E(z) given by (E)¥(z). Therefore, a single
erasure is always correctable. O

Proposition 6. For a single erasure, the reconstruction filters
are FIR.

Proof. For the erasure at position k, the analysis matrix after
erasures is given by

EI(Ipfl(z)]T)

det {Eg(2)Er(z)} = det {LIy,x — Ex(2)Eg(z)}

Er(z) = [Ef(z) -+ B ,(2) Bl (2) ---

= det {LIy - Ex(2)Ex(2)},
(65)

where Ei(z) is as in (40).

Since the rows in Ei(z) are pairwise orthogonal (51), we
have

det {Ex(2)Er(z)} = det {(L — 1)Iy} = const. (66)

That is, the analysis matrix after erasures is paraunitary. It has
been shown in [17] that, for a frame associated with an FIR
FB with the polyphase analysis matrix E(z), its dual frame
(frame corresponding to the parapseudoinverse of E(z)) con-
sists of finite-length vectors if and only if E(2)E(z) is unimod-
ular. Hence, the reconstruction filters are FIR. O

Let Sk be a set of the erasure indices given by Sx =
{k,k+L,....,k+({i—-1)L}, k = 0,...,L — 1. The rows of
the analysis polyphase matrix E(z) corresponding to the era-
sure pattern with erasure indices given by S, C Sy are pair-
wise orthogonal. This can be seen from (51). That is, for j
orthogonal erasures, we have

Ex(2) = [Blyi1(2) Bl (2) - - E£+ijL(Z)]T:

~ (67)
Er(2)Ee(2) = Ijn,

where 0 < i, < i.

Similarly, from (52), we can observe that for the rows of
E(z) corresponding to the erasure pattern with erasure in-
dices given by aset §; = S;, U S, U - - - USi,0<ix<L-1,
we have

Ex(z) = [(B)1(2)T (B)2(2)T --- (BYi(2)T]",

o , (68)
Ex(2)Eg(2) = jIn,k»
where (E)*(z) is as in (50). That is, the rows of E(z) corre-
sponding to the erasure pattern with erasure indices given by
a set S; form a tight frame.

Proposition 7. For the erasure patterns having erasure indices
given by the sets So, St, and S;p = S;; U S;, U - -+ U S, US,,
0 < j < L — 2, the reconstruction filters are FIR.

This can be shown by following the same procedure as in
the proof of Proposition 2, and by using (67) and (68).

5.2. Properties of the code composed of
two CMFB polyphase matrices

Since the encoding by a CMFB-OFB consists of similar op-
erations as in the case of DFT codes, we may expect that
this code has similar performance in terms of PR and an im-
proved performance in terms of mean-square reconstruction
error due to the higher order of the polyphase filters.

Here, we define symmetric erasures as erasure patterns
with one or more pairs of erasures with indices of the form
{k, Np — 1 — k}. That is, symmetric erasure patterns with two
erasures are given by the set of erasure indices {k, Np —1 -k},
where 0 < k < [(N - K)/2] +1.

Proposition 8. For an (N,K) OFB code composed of two
CMEB polyphase matrices as in (40), any set of E < (N — K)
symmetric erasures is correctable, and the parapseudoinverse
reconstruction filters are FIR.
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Proof. For symmetric erasure patterns, Ez(z)Eg(z) is given by

(00 0 O --- 0 07
01 0 O - 00
00 1 O - 00

N N~ . . .

Er(2)Er(z) = EA(Z)[IK ojct|: : D 10
00 -0 1 00
00 0 O - 10
00 0 0 --- 00

D

x C [Ig] A(z)\/g,

where D is a diagonal matrix with R nonzero elements in po-
sitions corresponding to the indices of the R received chan-
nels. That is we, can write

(69)

B()En(2) = 2 AOICEaCrakAz).  (70)

Since A(z) is paraunitary, for R = K, we have
det{Er(2)Er(2)} = det{(N/K)CF, xCrxx} = const. This
proves both PR for E symmetric erasures, and that recon-
struction filters are FIR. O

Corollary 2. Any erasure pattern with E < | (N — K)/2] +1is
correctable.

Remark 2. In general, except for the symmetric erasures, the
synthesis filters are of IIR and noncausal. In contrast with
OCMEB codes, the reconstruction filters may be IIR even for
the case of one erasure. It has been observed from the exper-
iments that, as the number of erasures increases, the poles of
the IIR synthesis filters approach the unit circle.

6. RECONSTRUCTION IN PRESENCE
OF QUANTIZATION NOISE

Apart from verifying PR in presence of erasures, it is neces-
sary to evaluate the performance of the OFB codes in pres-
ence of quantization error. The mean-square reconstruc-
tion error is the main performance criteria for source cod-
ing systems. For the N-dimensional quantization noise pro-
cess [qo[n] - - - qn-1[n]]T of [N X N] power spectral matrix

o2

MSE, =
° " 27NpK

Jj trace { (Eg(w)ER(w))_l}dw

0.2

27TNPK

Sy(2) = X2 Co(Dz7!, where Cy(l) = E{q(n)q(n — )"}
and E{-} is the expectation operator, the MSE is given by
[19]

MSE =

0-2 b
27K Lﬂ trace {R(0)Sy(w)R" (0)}dw,  (71)

where R(w) is the synthesis polyphase matrix. For the uncor-
related white quantization noise model with the same vari-
ances 0> = E{|qx(n)|?}, the power spectral matrix is given
by S,(z) = o*Iy. For this noise model and the parapseudoin-
verse receiver, the MSE due to quantization is given by [16]

2 T
MSE = Z;‘T—K J_ﬂ trace{[Eg(w)ER(w)]fl}dw, (72)

where Er(w) is the analysis polyphase matrix after erasures.
Since all considered OFB codes implement tight-frame signal
expansion and the MSE in absence of erasures is equal to

0.2 T B
K 7ﬂtrace{[EH(w)E(a))] l}da)

ot (" N, \! K
= —1 = —o%
oK Jﬂtrace{(K K) }dw NU

Remark 3. For L > 1, the assumption of uncorrelated white
noise is not justified [19]. For correlated noise, the expres-
sion for the MSE depends on the noise power spectral ma-
trix S;(w) [19]. However, if one assumes simple additive
white noise model, and that the noise sequences generated
by two different channels are pairwise uncorrelated, one can
derive simple expressions for the MSE for certain erasure pat-
terns.

MSE =
(73)

6.1. MSE in the system with an OCMFB code

In general, the MSE depends on the filter coefficients and has
to be calculated as in (72). However, for the pairwise orthog-
onal erasures or erasures for which erased rows of the analysis
polyphase matrix form a tight frame, the MSE is indepen-
dent of the filter coefficients. In addition to this, it has been
proven in [16] that, if the original frame is strongly uniform,
the MSE is minimum for these erasure patterns.

We assume uncorrelated white noise model with
E{lqk(n)|> = 0%}, Np = iL, and i integer.

For erasure patterns corresponding to j, 0 < j < i, pair-
wise orthogonal erasures, the MSE is given by

(74)

- f trace{(LINpK - [B () - 'EkH+ijL(w)] X [ (Brrin) (@) - - - (Ek+i]‘L)T((U)]T)’1}d(U~
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Using the matrix inversion lemma, the fact that the rows
corresponding to the erasures are pairwise orthogonal and
that the original frame is uniform, we get

MSE,

0-2 b 1 1
i) race (o G5 B (@) B )]
L T . .

X (L_l) [Ek+i1L(w)' ' .Ek+ijL(w)] dw

o2 (1 1. K jK
= ——(-NpK+——=jN| = 2—<1+7).
NpK<L L TN ) NUTIN K
(75)
Further, for erasure patterns with erasure indices given by
Ss=8,US,U--- US,-j,0<j < L — 1, the MSE is given by

o? m
MSE; = 2ANIK _ntrace{(LINFK
. L
By (@) (B () o
= 27NpK J,ntrace{((L—J)INPK) }dw
_ o _ oK 1
“L-j Y N1-jKN

(76)

where (E)" " (w) = [[{E)" (@)]T - - - [{E)" (w)]T]".

Similarly, for erasure patterns with erasure indices given
by Sto = S, US, U---US;, US,, 0 < j» <L~—2,and
So = {k+mLk+mL,...,k+mjL},0< j <ithe MSE s
given by MSE, = (02/(L — j1))(1 + jo/(L — j1 — 1)i).

6.2. MSE in a system with a code composed of
two CMFB polyphase matrices

For symmetric erasures, the MSE is dependent on the po-
sitions of the erasures. However, it does not depend on the
prototype filter coefficients. The MSE in this case is given by

o’ -
MSEgym = N trace {(ngKCRXK) 1}, (77)

where Cryx is a matrix obtained from Cyxx by removing the
rows which correspond to the erasure positions.

7. SIMULATION RESULTS

In this section, we evaluate the performance of the described
OFB codes by simulation for the example of an image trans-
mission system. The parameters of the simulated codes are as
follows. A CMFB used for signal decomposition isan N = 4-
channel FB formed from a prototype filter of length 16. The
image subband decomposition is obtained by applying fil-
tering first on the columns and then on the rows of the im-
age. The oversampling ratio is L = 2. In the OCMFB sys-
tem, the redundancy is introduced in the horizontal filter-
ing stage. The polyphase matrix of the CMFB-OFB code is
built from the polyphase matrices of the 8- and the 4-channel
CMFBs with prototype filter lengths 32 and 16, respectively.

The DFT code is the (8,4) DFT code from [8]. There are
Np = 8 packets per image. The packets are formed as ex-
plained in Section 4. We consider uniform scalar quantiza-
tion with a following mapping of subband coefficients y'[#]
to quantized symbols y'[n] : y[n] = & round(y'[n]/d"),
where &' is the quantization step size in subband i. The quan-
tizers in the different subbands are different in the sense that
they employ different quantization step sizes. The set of op-
timal quantizers step size is chosen from the set of admissible
quantizers step sizes by optimizing the rate-distortion per-
formance [29]. In this optimization, we have assumed first-
order Markov model for the subband coefficients. The pa-
rameters of the Markov model are estimated by simulation.
The rate has been estimated based on the entropy per sym-
bol for the two-symbol block [30]. The optimization is per-
formed for the system with no erasures.

For the considered system parameters, PR is verified nu-
merically. It has been found that the considered codes can
correct any erasure pattern with three erasures, or less. For
more than three erasures, there are erasure patterns for which
the analysis matrix after erasures is either singular or very
close to singular on the unit circle. The synthesis filters are
calculated based on the parapseudoinverse of the analysis
matrix after erasures. The impulse responses of the recon-
struction filters which are infinite are truncated. The results
are obtained for the gray-scale [512 x 512] Lena image. The
MSE for the system with CMFB and no error protection is
26.6417. The overall rate is equal to 0.448 bits/sample. The
rate in the systems with OCMFB, CMFB-OFB, and CMFB-
DFT is 0.446, 0.444, and 0.448 bits/sample, respectively.

Table 1 shows the MSE averaged over all erasure patterns,
consecutive and circularly consecutive erasures, and over
non-consecutive erasures, for the various JSCC approaches.
From Table 1, we can observe that in the case of no erasures
or one erasure the MSE in the systems with OFB codes is
lower than that in an uncoded system. That is, in the sys-
tems with OFB codes, a part of the quantization noise is cor-
rected. For two erasures, the average MSE in the systems with
OFBs is comparable to that of an uncoded system. However,
as the number of erasures increases, the differences between
the MSE for various erasure patterns increase. As in the case
of DFT codes [8], the largest MSE is obtained in the case of
consecutive and circularly consecutive erasures in all struc-
tures. For these erasure patterns, a degradation can be visu-
ally observed in the reconstructed images. The visual degra-
dation is less pronounced in the case of two than in the case
of three erasures. Up to two erasures, the average MSE is min-
imum for the OCMEFB. For three erasures, the CMFB-OFB
outperforms the OCMFB code. Both OFB codes outperform
the DFT code. Figures 5 and 6 illustrate the visual impact
of erasures in the OCMFB and CMFB-OFB systems, respec-
tively. These figures show the reconstructed images for which
the erasure patterns yield worst MSE.

The above results give a flavor of how the performance
of various JSCC schemes compares with the performance of
the classical tandem JSCC. That is, We consider the system
where the packets are protected by an (N, K) Reed-Solomon
code. Then the perfect recovery of the quantized coefficients
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TasLE 1: MSE in a system with a subband decomposition by a CMFB and various FB codes.

OFB structure No. erasures MSE MSE cons. MSE noncons.
OCMFB 0 16.2643 16.2643 16.2643
CMFB-DFT 0 22.6748 22.6748 22.6748
CMFB-OFBC 0 21.7332 21.7332 21.7332
OCMFB 1 18.1042 18.1042 18.1042
CMEFB-DFT 1 24.6557 24.6557 24.6557
CMFB-OFBC 1 23.8859 23.8859 23.8859
OCMFB 2 25.1636 37.8657 20.0828
CMEFB-DFT 2 28.2648 31.1946 27.0929
CMFB-OFBC 2 28.1666 32.9071 26.2704
OCMFB 3 49.7256 96.3684 41.9518
CMEB-DFT 3 53.3442 169.7165 33.9488
CMFB-OFBC 3 43.6894 99.0508 34.4625

FIGURE 5: Reconstructed image for the erasure pattern (1,2,8) and
OCMFB code, MSE = 99.3577.

is possible for any N — K erasures. For all erasure patterns, the
MSE is the same and equal to the MSE after reconstruction
by the synthesis filters of the critically sampled CMFB in the
absence of erasures. It can be concluded that the JSCC ap-
proaches with OFBs can be of interest when the number of
erasures is not high with respect to the erasure-correcting ca-
pability of the code. This is due to the fact that OFBC and
OTC reduce the MSE in case of few erasures.

8. CONCLUSIONS

In this paper, we have studied erasure resilience of OFBs
in the context of multiple description coding. We have dis-
cussed the analogies between OFBs and channel codes and
showed that signal reconstruction methods derived from the
FB theory and coding theory are equivalent even in presence
of quantization error. We have further presented a semiana-
lytical analysis of the two OFB structures based on CMFBs.
That is, we have pointed out the erasure patterns for which
PR is guaranteed by the general structure of OFB code and
does not depend on particular prototype filters. It has been
shown that, with a suitable choice of the parameter Np = iL,
where i is an integer, the polyphase matrix of an L-times over-
sampled CMFB implements a strongly uniform frame and
is robust to one erasure. With this choice of the parameter
Np = iL, there is a set of erasure patterns for which the con-
ditions for PR by an OCMFB code are automatically fulfilled

FIGURE 6: Reconstructed image for the erasure pattern (2, 3,4) and
CMFB-OFB code, MSE = 143.2362.

since the received packets contain coefficients generated by
the critically sampled CMFB. It is also shown that Ly con-
secutive erasures can be recovered by a two-times OFB, with
Np > 2Ly. For (N,K) OFB code composed of two CMFB
polyphase matrices, we have shown that all erasure patterns
with up to [ (N — K)/2| + 1 erasures and symmetric era-
sure patterns with up to N — K erasures can be corrected. As
PR could not be verified analytically for all erasure patterns,
we have examined it numerically. We have further discussed
the properties of CMFB-based OFBs in terms of the mean-
square reconstruction error, which is the main criterion for
JSCC applications. We have given expressions for the MSE
for particular erasure patterns for which the MSE is inde-
pendent of the prototype filter coefficients. The comparison
of the performance of various OFB codes is verified by simu-
lation for the example of an image transmission system. The
results indicate that the system with OFB codes performs bet-
ter than a classical system in terms of MSE when the number
of erasures is not high with respect to the erasure-correcting
capability of the code. For further work, it would be inter-
esting to look at the reconstruction methods when PR is not
possible. When PR is possible, the uniqueness of the para-
pseudoinverse may be a disadvantage, since there is less flex-
ibility for adjustment of the synthesis filters parameters such
as filter lengths and delays. Therefore, examining the trade-
offs for using some other possible synthesis filters may also
be an interesting issue to look at.
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