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We present an artificial neural-network- (NN-) based smart interface framework for sensors operating in harsh environments. The
NN-based sensor can automatically compensate for the nonlinear response characteristics and its nonlinear dependency on the
environmental parameters, with high accuracy. To show the potential of the proposed NN-based framework, we provide results of
a smart capacitive pressure sensor (CPS) operating in a wide temperature range of 0 to 250◦C. Through simulated experiments,
we have shown that the NN-based CPS model is capable of providing pressure readout with a maximum full-scale (FS) error of
only ±1.0% over this temperature range. A novel scheme for estimating the ambient temperature from the sensor characteristics
itself is proposed. For this purpose, a second NN is utilized to estimate the ambient temperature accurately from the knowledge
of the offset capacitance of the CPS. A microcontroller-unit- (MCU-) based implementation scheme is also provided.
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1. INTRODUCTION

In many practical application areas of avionics, automobiles,
robotics, missile guidance, oil drilling, and industrial mea-
surements, sensors operate in harsh environments such as
extreme ambient temperature, pressure, humidity, and so
forth. In such situations, the response of the sensors de-
pends not only on the measurand but also on the environ-
mental parameters in a nonlinear manner. Usually, an exact
mathematical model of a sensor showing the relationship be-
tween the measurand and its response, and its dependency
on the environmental parameters, is not available. Further,
since most of the sensors exhibit some amount of nonlinear
response characteristics, and the environmental parameters
influence the sensor behavior nonlinearly, the problem of ob-
taining an accurate readout and its calibration becomesmore
complex.

Some of the ideal properties of a sensor include linear re-
sponse characteristics, autocorrection of the adverse effects
of nonlinear environmental parameters, high sensitivity and
accuracy, and low power consumption. However, in practical
situations, it is not easy to achieve ideal sensor characteris-
tics, especially when the sensor is operating in a harsh envi-
ronment. In order to compensate for some of the nonideali-
ties and to obtain accurate readout, several digital and analog
interface circuits have been proposed in the past with some
success [1, 2, 3, 4, 5, 6, 7]. These techniques include both iter-
ative and noniterative algorithms, and involve complex ana-
log and/or digital signal processing to model the sensor char-
acteristics. They provide a limited solution to the complex
problem under the assumptions that the range of variation
of environmental parameters is small and that the influence
of the environmental parameters on the sensor characteris-
tics is linear.
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Recently, artificial neural networks (NNs) have emerged
as a powerful learning technique to perform complex tasks
in dynamic environments. These networks are endowed with
certain unique characteristics such as the capability of uni-
versal approximation, generalization, and fault tolerance. Be-
cause of these characteristics, there have been numerous suc-
cessful applications of NNs in various fields of science, en-
gineering, and industry [8, 9, 10]. It has been shown that
the NN-based approximations tomeasurement data perform
better than those of the classical methods of data interpo-
lation and least mean square regression [11]. Application
of NNs with superior performance for several instrumen-
tation and measurement applications have been reported
[12, 13, 14, 15, 16, 17, 18].

The main objective of this paper is to demonstrate the
potential of NNs in the development of smart sensors ca-
pable of mitigating adverse effects of environmental param-
eters on the response characteristics of any type of sensor.
For this purpose, we propose amultilayer perceptron (MLP)-
based scheme to provide linear response characteristics with
accurate pressure readout, and to compensate for the non-
linear temperature dependency of a capacitive pressure sen-
sor (CPS) operating in a harsh environment with tempera-
ture variations from 0 to 250◦C. We have assumed that the
temperature influences the sensors’s response characteris-
tics nonlinearly and have performed simulation studies with
three types of nonlinear dependencies.

An inverse model of the CPS is obtained by training a
small-sized MLP using the popular backpropagation (BP)
learning algorithm [8]. A small-sized MLP is preferable as
the training time, computational complexity, and memory
requirements decrease with the size of the MLP. To obtain
ambient temperature information, a separate temperature
sensor is usually embedded with the pressure sensor. An
important contribution of this paper is that we have pro-
posed a novel scheme to estimate the ambient temperature
from the sensor characteristics itself, using a second MLP,
thus eliminating the need of a separate temperature sensor.
The performance of the NN-based scheme is compared with
a polynomial-based interpolation scheme, and it is shown
that the NN-based scheme outperforms the interpolation
scheme.

The rest of the paper is arranged as follows. Section 2
presents a brief theoretical background of the CPS and the
switched-capacitor interface (SCI). Section 3 provides details
of the proposed MLP-based sensor modeling scheme. The
simulated experiments are detailed in Section 4. Section 5
provides performance evaluation and discussions on results
of these experiments. The performance comparison with
a polynomial-based interpolation scheme is presented in
Section 6. Amicrocontroller-unit-(MCU-) based implemen-
tation scheme is provided in Section 7, and finally, conclu-
sions of the present study are drawn in Section 8.

2. CPS AND SCI

A CPS senses the applied pressure in the form of elastic de-
flection of its diaphragm. The capacitance of a CPS resulting

from the applied pressure P at the ambient temperature T is
given by

C(P,T) = C0(T) + ∆C(P,T), (1)

where ∆C(P,T) is the change in capacitance and C0(T) is
the offset capacitance, that is, the zero-pressure capacitance,
both at the ambient temperature T . The above capacitance
may be expressed in terms of capacitances at the reference
temperature T0 as

C(P,T) = C0 f1(T) + ∆C
(
P,T0

)
f2(T), (2)

whereC0 is the offset capacitance and∆C(P,T0) is the change
in capacitance, both at the reference temperature T0. The
nonlinear functions f1(T) and f2(T) determine the effect of
the ambient temperature on the sensor characteristics [3].
This model provides sufficient accuracy in determining the
influence of temperature on the sensor’s response character-
istics.

When pressure is applied to the CPS, its change in capac-
itance at the reference temperature T0 is given by

∆C
(
P,T0

) = C0PN
1− τ

1− PN
, (3)

where τ is the desensitivity parameter, PN is the normalized
applied pressure given by PN = P/Pmax, and Pmax is the max-
imum permissible applied pressure. The parameters τ and
Pmax depend on the geometrical structure and physical di-
mensions of the CPS.

In this study, in conformance with practical conditions,
we have considered that the ambient temperature influences
the CPS characteristics nonlinearly. The nonlinear functions
involved are given by

fi(T) = 1 + gi(T), (4)

gi(T) = κi1Tn + κi2T
2
n + κi3T

3
n , (5)

where Tn = (T − T0)/Tmax. The coefficients κi j , i = 1, 2,
j = 1, 2, 3, determine the extent of nonlinear influence of the
temperature on the sensor characteristics. Note that when
κi j = 0 for j = 2 and 3, the influence of the temperature
on the CPS response characteristics is linear. The maximum
permissible temperature at which the sensor may be oper-
ated is denoted by Tmax. Let the normalized temperature TN

be given by TN = T/Tmax. The normalized capacitance CN

may be expressed as

CN = C(P,T)
C0

. (6)

Using (2) and (3), this may be rewritten as

CN = f1(T) + γ f2(T), (7)

where γ = PN (1−τ)/(1−PN ). Because of the requirement of
the NN modeling, CN in (7) is divided by a scale factor (SF)
of 2, so as to keep its maximum value within 1. If the applied
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Figure 1: The switched-capacitor interface circuit.

pressure is zero, then γ becomes zero. Therefore, the normal-
ized zero-pressure capacitance, that is, the normalized offset
capacitance is given by

CN0 = f1(T) = 1 + g1(T). (8)

SCI for the CPS is shown in Figure 1, where the CPS is
represented by C(P). The SCI output provides a voltage sig-
nal proportional to the capacitance change in the CPS due
to the applied pressure. The SCI operation can be controled
by a reset signal θ. When θ̄ = 1 (logic 1), C(P) charges to
the reference voltage VR while the capacitor CS is discharged
to ground. On the other hand, when θ = 1, the total charge
C(P)VR stored in C(P) is transferred to CS producing an out-
put voltage given by

VO = K · C(P), (9)

where K = VR/CS. By choosing proper values of CS and VR,
the normalized SCI output VN may be obtained in such a
way that

VN = CN. (10)

The unnormalized and normalized SCI outputs at zero-
applied pressure are denoted by V00 and VN0, respectively.
Therefore, if PN = 0, then VN0 = CN0.

3. THEMLP-BASED CPSMODEL

We propose an NN-based technique to obtain an inverse
model of a CPS to provide accurate pressure readout un-
der the nonlinear influence of the ambient temperature. The
proposed scheme of theNN-based CPSmodel for the estima-
tion of the applied pressure is shown in Figure 2. This scheme
is analogous to the channel equalization scheme used in a
digital communication receiver to cancel the adverse effects
of the channel on the data being transmitted [8]. To obtain
an accurate digital readout of the applied pressure, an MLP-
based inverse model of the CPS is used to compensate for the
adverse effects of the nonlinear characteristics and its varia-
tions due to the influence of the ambient temperature.

In this NN-based CPS model, all the signals used for
training and testing are scaled by appropriate SFs to keep
their range between 0 and 1. The model operates in two
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Figure 2: The scheme of NN-based modeling of a CPS. (a) Training
phase: pressure. (b) Training phase: temperature. (c) Test phase: the
complete model.

phases: the training phase and the test phase. In the training
phase, the NNs used in themodel are trained to learn the sen-
sor characteristics and the environmental dependency. The
pressure-NN (P-NN) is used to learn the sensor’s response
characteristics and its nonlinear dependency on the ambient
temperature, whereas the temperature-NN (T-NN) is used
to learn the nonlinear function representing variations in the
ambient temperature.

We have used MLPs for both the P-NN and the T-NN.
Several datasets are needed to train the NNs. An input pat-
tern and its corresponding desired, or target pattern consti-
tute one pair of data in the dataset. The available datasets are
segregated into two parts. The first part, called training set, is
used for training of the NNs, and the other part, called test
set, is used to verify the effectiveness of the model.

3.1. Training phase: pressure

An MLP (P-NN) is used to learn the CPS response charac-
teristics. The scheme for this is shown in Figure 2a. The in-
puts to the P-NN consist of the normalized temperature (TN )
and the normalized SCI output (VN ). The desired output
is the normalized applied pressure (PN ). One dataset for a
specific temperature is obtained by recording the SCI out-
put (VN ) for different values of applied pressure, covering
the operating range of the sensor. Next, at different tempera-
ture values, covering the full operating range, several datasets
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are generated. The P-NN is trained by taking the patterns
from the training set, and its weights are updated by using
the popular BP algorithm [8]. After training, the weights of
the NN are frozen and stored in an electrically erasable pro-
grammable read-only memory (EEPROM). In what follows,
the final weights are denoted byWP .

3.2. Training phase: temperature

A scheme to estimate the ambient temperature, by using an-
other MLP (T-NN), only from the knowledge of the sensor
characteristics is shown in Figure 2b. From (8), it may be
seen that CN0 contains temperature information. However,
since the influence of the temperature on the CPS charac-
teristics is considered to be nonlinear, the temperature infor-
mation cannot be obtained correctly from the knowledge of
CN0, using (8). The T-NN is trained by inputting the values
of VN0 (the normalized SCI output corresponding to CN0,
that is, the SCI output at zero-applied pressure). The desired
output is the normalized temperature TN . Using the BP algo-
rithm, the weights of the T-NN are updated. After the train-
ing is completed, the final weights are stored in an EEPROM.
In what follows, the final weights are denoted byWT .

3.3. Test phase: completemodel

The complete scheme of the MLP-based model is shown in
Figure 2c. In spite of the variation of the environmental tem-
perature and its nonlinear influence on the CPS characteris-
tics, this model can estimate the applied pressure accurately.
During the test phase and actual use of the sensor, the weights
WP and WT , stored in the EEPROM, are loaded into the P-
NN and T-NN, respectively. The P-NN has learned the in-
verse characteristics of the CPS at different values of tem-
perature, while the T-NN has learned the nonlinear func-
tion representing variations of the ambient temperature. The
temperature information needed for the P-NN is obtained
from the T-NN. The T-NN gets its input from the value of
VN0. Next, the input patterns from the test set are applied,
and the model output (P̂N ) is computed. If the model output
matches closely with the actual applied pressure (PN ), then it
may be said that the NN has learned the CPS characteristics
correctly. Thereafter, the model can be used along with the
CPS to estimate the pressure and to obtain its readout.

4. SIMULATION STUDIES

We carried out extensive simulation studies to evaluate per-
formance of the proposed NN-based CPS model. In the fol-
lowing, we describe the details of the simulated experiments.

4.1. Preparation of datasets

All parameters of the CPS, such as, ambient temperature,
applied pressure, and the SCI output voltage, used in the
simulation study were suitably normalized to keep their val-
ues between 0 and 1. The datasets needed for training and
testing of the NN were generated as follows. The SCI out-
put voltage (VN ) was recorded at the reference tempera-
ture (25◦C) at different known values of normalized pres-
sure (PN ) chosen between 0.0 and 0.6 at an interval of 0.05.

Table 1: The values of κi j for linear and nonlinear forms of temper-
ature dependencies.

NL form κ11 κ12 κ13 κ21 κ22 κ23

NL0 −0.20 0.00 0.00 0.70 0.00 0.00
NL1 −0.20 0.20 −0.10 0.70 −0.30 0.40
NL2 −0.20 0.05 −0.20 0.70 −0.10 −0.50
NL3 −0.20 −0.10 −0.07 0.70 0.10 −0.30

Thus, these 13 pairs of data (PN versus VN ) constitute one
dataset at the reference temperature. To study the influence
of temperature on the CPS characteristics, we have consid-
ered three forms of nonlinear functions denoted by NL1,
NL2, andNL3, and a linear form denoted byNL0. These were
simulated by choosing proper values of κi j in (5). The corre-
sponding values of κi j are provided in Table 1.

Next, with the knowledge of the dataset at the reference
temperature, and the chosen values of κi j , the response char-
acteristics of the CPS for a specific ambient temperature were
generated using (7). The response characteristics consist of
13 pairs of data (PN versus VN ), and correspond to a dataset
at that temperature. For a temperature range from 0◦C to
250◦C, at an increment of 10◦C, twenty-six such datasets,
each containing 13 data pairs, were generated. Next, these
datasets were divided into two groups: the training set and
the test set. The training set, used for training the NNs, con-
sists of only five datasets corresponding to 0, 60, 120, 180,
and 240◦C, and the remaining twenty one datasets were used
as the test set. Let the number of the datasets used for train-
ing and the number of data points in a dataset be denoted by
Ntrgset and Ndatpts, respectively. In the following experiments,
Ntrgset = 5 and Ndatpts = 13, and thus, the total number of
training data points is 65 (13× 5).

The response characteristics of the CPS for different val-
ues of temperature (0, 25, 80, 150, and 250◦C) are shown
in Figure 3. It may be observed that wide variation in the
sensor characteristics occurs when the ambient temperature
changes from 0◦C to 250◦C. Further, the sensor’s response
characteristics change differently for the linear form (NL0)
and the three nonlinear forms (NL1–NL3) of temperature
dependencies.

4.2. Training and testing of the P-NN

A 2-layerMLPwith {2−4−1} architecture was chosen in this
modeling problem (see Figure 2a). Initially, all the weights of
the P-NN were set to some random values within ±1.0. Dur-
ing training, a dataset was randomly selected from the five
datasets, and a pattern from the selected dataset was also se-
lected randomly. The initial values of the learning parameter
α and the momentum factor β of the BP algorithm were cho-
sen as 0.3 and 0.5, respectively. The MLP architecture and
the values of α and β were selected after several experiments
to provide optimum results.

Completion of weight adaptation of the 13 data pairs
of all the five training sets constitute one iteration. For ef-
fective learning, 100 000 iterations were made to train the
MLP model. To improve the learning, a variable learning
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Figure 3: The response characteristics of the CPS operating at different temperatures (0, 25, 80, 150, and 250◦C) with linear and three forms
of nonlinear dependencies. (a) NL0. (b) NL1. (c) NL2. (d) NL3.

parameter was used in the BP algorithm. The learning pa-
rameter was varied as

αni = αni−1
(
1− ni

NITR

)
, (11)

where ni is the current iteration number, and NITR is
the total number of iterations used (in this case, NITR =
100 000). Using a Pentium 4, 2.8GHz machine, it took only
13 seconds to train the MLP with 100 000 iterations. Finally,
the weights of the P-NN (WP) were stored for later use.
This procedure was repeated for the linear (NL0) and the
three nonlinear forms of temperature influences (NL1–NL3).

The four sets of the final weights (WP) of the P-NNmodel are
provided in Table 2.

Performance evaluation of the model was carried out by
loading the final stored weights into the MLP. It is impor-
tant to note that during the testing and actual use of the
CPS model, updating of the weights does not take place. The
NN estimates the applied pressure from the knowledge of the
stored weights when the inputs are applied to the model. For
the testing purpose, the SCI output voltage was varied from
0.35 to 0.90 with an increment of 0.001, and then applied to
the model along with the temperature information. To eval-
uate the effectiveness of the model, the NN output (P̂N ) was
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Table 2: Final weights (WP) of the P-NN ({2−4−1} architecture).
First layer: wij , i = 1, 2, 3, 4, and j = 0, 1, 2. Second layer: vk , k =
0, 1, . . . , 4.

Weights NL0 NL1 NL2 NL3
w10 1.087 0.195 0.081 0.446

w11 0.644 0.399 0.845 1.355

w12 −0.938 −3.595 −0.697 −0.837
w20 −1.912 −1.889 −1.965 −1.905
w21 1.015 1.117 1.021 1.173

w22 6.034 5.742 5.811 5.634

w30 1.137 1.241 1.902 1.042

w31 −0.548 −0.637 −1.511 −0.922
w32 −1.497 −1.475 −0.262 −0.857
w40 0.171 0.024 1.048 0.546

w41 0.228 0.889 −0.486 0.659

w42 −1.863 −0.567 −1.438 −2.110
v0 −1.591 −2.184 −0.873 −1.026
v1 −0.591 −0.945 −0.678 −0.483
v2 2.094 1.813 1.776 1.723

v3 −0.369 −0.543 −0.533 −0.667
v4 −0.498 −0.550 −0.514 −0.227
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Figure 4: Variation of normalized offset capacitance (CN0) of the
pressure sensor with temperature for different forms of temperature
dependencies.

computed and then compared with the true value of the ap-
plied pressure (PN ).

4.3. Training and testing of the T-NN

The T-NN was used to estimate the ambient temperature
from the knowledge of CN0 at different temperatures. For the
chosen values of κi j (see Table 1), the variation of CN0 with
the change in temperature for the linear (NL0) and the three
forms of nonlinear dependencies (NL1–NL3) are shown in
Figure 4. The T-NN was employed to learn these nonlinear
functions for estimating the ambient temperature.

Table 3: Final weights (WT) of the T-NN ({1−4−1} architecture).
First layer: wij , i = 1, 2, 3, 4, and j = 0 and 1. Second layer: vk ,
k = 0, 1, . . . , 4.

Weights NL0 NL1 NL2 NL3

w10 −2.277 0.347 −1.328 −0.439
w11 4.070 −0.712 2.765 0.905

w20 2.850 −12.661 0.048 −0.745
w21 −4.611 30.122 −0.099 1.535

w30 −3.558 −6.627 −1.594 −1.891
w31 5.640 12.023 5.446 7.200

w40 −4.577 −5.397 −4.005 −4.997
w41 13.670 11.686 7.333 8.423

v0 2.193 4.525 0.647 0.672

v1 −0.137 0.004 −0.248 −0.021
v2 0.490 −5.263 0.010 −0.027
v3 −1.208 −0.952 −1.041 −1.607
v4 −3.213 0.517 −0.911 −1.403

AnMLP with {1−4−1} architecture was chosen for this
purpose. During training, the values of VN0 corresponding
to 0, 60, 120, 180, and 250◦C were chosen as the training set
(the same temperature values were also used for training the
P-NN). The input and desired output of the T-NN were the
values of VN0 and TN , respectively (see Figure 2b).

The initial values of both α and β were chosen as 0.7. The
updating of the weights was carried out using the BP algo-
rithm with a variable learning parameter over 200 000 iter-
ations. Using a Pentium 4, 2.8GHz machine, it took only 2
seconds to train the MLP with 200 000 iterations. The four
sets of the final weights (WT) corresponding to the linear
and the three nonlinear forms of interaction are tabulated
in Table 3.

Testing of the T-NN was carried out after loading the
stored weights into the network. The VN0 was varied from
0.35 to 0.55 with an increment of 0.001 and then fed to the
MLP. The output of the T-NN and the true value of the nor-
malized temperature were compared to verify effectiveness of
the model.

5. RESULTS ANDDISCUSSIONS

Here, we provide the performance results of the simulation
study for the estimation of the applied pressure and the am-
bient temperature.

5.1. Estimation of pressure

The true pressure and the pressure estimated by the MLP
model at different values of temperature taken from the test
set for the linear (NL0) and the three nonlinear forms (NL1–
NL3) are plotted in Figure 5. Here, different symbols repre-
sent the true normalized pressure, while the dotted lines de-
note the estimated pressure. It may be noted that the P-NN
has not seen the sensor characteristics for the temperature
values of the test set. From this figure, it may be observed
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Figure 5: True response characteristics and the pressure estimated by the P-NNmodel of the CPS operating at different temperatures (0, 25,
80, 150, and 250◦C) with linear and three forms of nonlinear dependencies. (a) NL0. (b) NL1. (c) NL2. (d) NL3.

that the MLP is capable of estimating the applied pressure
accurately for the full range of applied pressure from 0.0 to
0.6. It is also capable of predicting the applied pressure for
the range beyond 0.6, although the network was not trained
for this range of PN .

The full-scale (FS) percent error was computed as one
hundred times the difference between the true pressure and
the estimated pressure. The FS error at 0◦C, 80◦C, 150◦C,
and 250◦C with the applied pressure varying from 0.0 to 0.6
for the four forms of temperature dependencies are plot-
ted in Figure 6. Next, in Figure 7, we plotted the FS error
for the whole temperature range from 0◦C to 250◦C, at spe-
cific values of applied pressure (i.e., PN = 0.1, 0.4, and 0.6),

for NL0 and NL1–NL3. The maximum FS error for the lin-
ear form NL0 remains within ±0.75%, whereas, in the case
of the three nonlinear forms, the maximum FS error remains
within ±1.0%.

5.2. Estimation of temperature

Plots of true temperature and the estimated temperature as
a function of VN0 for the linear (NL0) and the three nonlin-
ear forms (NL1–NL3) are shown in Figure 8. Here, the “dark
dots” represent the true temperature and the dotted lines
represent the temperature estimated by the T-NN model.
Close agreement between the two values is evident from these
plots.
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Figure 6: Full-scale percent error between the true and the estimated pressures at specific temperatures (0, 80, 150, and 250◦C) with linear
and three forms of nonlinear dependencies. (a) NL0. (b) NL1. (c) NL2. (d) NL3.

The FS percent error in estimation of the temperature for
the four cases are plotted in Figure 9. For the whole range
of temperature variation from 0◦C to 250◦C, the maximum
FS error remains within ±1% for NL0, NL2, and NL3, and
within ±2% for NL1. From these observations, effective per-
formance of the T-NN is evident. Even though CN0 varies
nonlinearly with temperature in different forms of nonlin-
ear dependencies, the T-NN is able to estimate the ambient
temperature accurately.

From the above findings, it may be concluded that the
performance of the MLP model for the estimation of the ap-
plied pressure is excellent for the linear form of influence,
and satisfactory for the three forms of nonlinear influences
of temperature. In a similar application reported by Arpaia et
al. [18], an MLP with 43 hidden layer nodes was used and a

maximum error of±2.4%was obtained. In the present study,
we have achieved a maximum error of only ±1.0% with a
small-sized MLP of {2 − 4 − 1} architecture (with only 17
weights). This is possible due to careful training of the MLP
with the following strategies: (i) proper selection of initial
learning rate and the momentum factor, (ii) use of a variable
learning parameter (11), and (iii) application of randomly
selected patterns from the training set.

The novelty of the proposed scheme is that even though
the MLP was trained with patterns taken from only five tem-
perature values (0, 60, 120, 180, and 240◦C), it is capable of
estimating the applied pressure accurately when the ambi-
ent temperature varies from 0◦C to 250◦C. Thus, the model
is capable of effectively nullifying the nonlinear influence of
the temperature on the CPS characteristics.
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Figure 7: Full-scale percent error between the true and estimated pressures at specific normalized pressures (PN = 0.1, 0.4, and 0.6) for the
full range of variation of the ambient temperature. (a) NL0. (b) NL1. (c) NL2. (d) NL3.

6. AN INTERPOLATION SCHEME

Pereira et al. [11] have made extensive study on the rel-
ative performance of different methods in fitting a curve
to sensor’s dataset. Their dataset is one dimensional, that
is, the sensor output (pressure readout) is a function of
the SCI output. Using different interpolation methods, for
example, Newton’s, splines, polynomial, and NNs, they
showed that the NN-based interpolation scheme outper-
forms other methods. When the data set is highly non-
linear, the NN-based scheme usually performs much bet-
ter than the other methods. The main advantage of the
NN-based curve fitting is its excellent extrapolation capa-

bility due to nonlinear processing of multivariate data. Af-
ter successful training of the NN, it provides lower er-
rors outside the calibration range of the sensor than the
polynomial extrapolation. Relative performance of differ-
ent methods of curve-fitting techniques are provided in
Table 4 (taken from [11]). Here, the “Poly. Degree” values
for the NN row correspond to the number of hidden layer
nodes.

We present a polynomial-based interpolation scheme of
data fitting of 2D sensor data, and compare its performance
with the NN-based model. Here, the sensor data has two in-
dependent variables: ambient temperature (x1) and normal-
ized SCI output (x2), and the output variable is the estimated
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Figure 8: The true temperature and the estimated temperature by the T-NN model with linear and three forms of nonlinear dependencies.
(a) NL0. (b) NL1. (c) NL2. (d) NL3.

pressure (y). Let the polynomial model of the sensor be given
by

y = a0 +
J∑
j=1

ajx
j
1 +

J∑
j=1

bjx
j
2 +

J−1∑
j=1, k=1, j+k≤J

c jkx
j
1x

k
2 , (12)

where J is the polynomial degree, and aj , bj , and cjk are
the coefficients of the model to be determined. The dataset
consists of 13 × 5 measurement points corresponding to
13 measurements for each of the five temperature values of
0, 60, 120, 180, and 240◦C. Using Gauss-Newton method,
the training data was fitted with the polynomial model.
The coefficients of the model are estimated by least squares
method.

The average mean square error (MES) between the true
and estimated pressures is defined as

MSEavg = 1
Ntd

Ntrgset∑
j=1

Ndatpts∑
k=1

(
Ptru( j, k)− Pest( j, k)

)2
, (13)

where Ntd = Ntrgset × Ndatpts, Ntrgset = 5 for the five tem-
perature values, Ndatpts = 13 for the thirteen measurements,
Ptru is the true pressure, and Pest is the estimated pressure by
the model. The MSEavg in dB for different degrees of polyno-
mial model and the P-NN model (using Table 2) were com-
puted and are tabulated in Table 5. The values in the last row
of this table indicate the number of coefficients/weights in
the model. It can be seen that the MSEavg improves as the
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Figure 9: Full-scale percent error in estimation of temperature by the T-NN model with linear and three forms of nonlinear dependencies.
(a) NL0 and NL1. (b) NL2 and NL3.

Table 4: Relative performances of different methods in fitting a curve to a dataset. The “Poly. deg.” values for the NN row correspond to the
number of hidden layer nodes (taken from [11]).

Methods No. of points Max. rel. error(%) Poly. deg. σ ×10−2

Newton’s
10 11.5 9 1.7

15 31.2 14 5.6

Splines
10 14.2 3 2.3

15 11.6 3 1.7

Polynomial
10 11.5 9 1.8

15 9.6 9 1.3

NN
10 4.8 6 0.96

15 4.5 5 1.0

Table 5: The MSEavg for different degrees of the polynomial model
and the NN model with Ntrgset = 5. The last-row values indicate the
number of coefficients/weights in the model.

NL form J = 3 J = 4 J = 5 NN model
NL0 −43.40 −45.35 −46.99 −51.83
NL1 −41.92 −44.75 −46.77 −49.67
NL2 −46.87 −46.72 −46.51 −50.42
NL3 −45.17 −46.07 −46.55 −49.73

10 15 21 17

degree of the polynomial model is increased. However, for
J > 5, there is no substantial improvement in the MSEavg
of the polynomial model. The MSEavg for the P-NN model
is found to be less than that of the polynomial model for the
linear (NL0) and the three nonlinear temperature dependen-
cies (NL1–NL3).

The estimated coefficients for the linear (NL0) and the
three nonlinear temperature dependencies (NL1–NL3) for
the polynomial model of degree of five (J = 5 with 21 coeffi-
cients) are provided in Table 6. All subsequent comparisons
are made based on this polynomial model.

The FS percent error for the polynomial model (J = 5) at
specific normalized pressure values covering the entire tem-
perature range are plotted in Figure 10. Similar plots for the
P-NN model are shown in Figure 7. Comparing these two
figures, one can see that the FS percent error for the P-NN
model is less than that of the polynomial model for the linear
(NL0) and the three nonlinear dependencies (NL1–NL3).

As stated earlier, the prime advantage of the NNmodel is
its superior extrapolation capability compared to other mod-
els. To study the extrapolation capability, we carried out sev-
eral experiments with the NN model and the polynomial
interpolation model using the linear (NL0) and nonlinear
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Table 6: The estimated coefficients of the polynomial model
(Ntrgset = 5 and J = 5) for linear (NL0) and three nonlinear temper-
ature dependencies (NL1–NL3).

Coefficients NL0 NL1 NL2 NL3
a0 −6.769 −7.169 −6.115 −6.264
a1 6.131 6.128 3.762 5.280
a2 −1.048 −2.124 −0.905 −0.271
a3 −0.065 0.750 0.458 −0.238
a4 0.371 1.197 0.619 0.006
a5 −0.158 −0.547 −0.322 −0.085
b1 21.018 22.918 18.131 18.659
b2 −11.521 −14.165 −8.085 −8.437
b3 −10.327 −10.570 −9.516 −9.837
b4 3.417 6.349 0.109 0.225
b5 5.699 4.168 6.886 7.092
c11 −16.218 −16.023 −7.766 −13.322
c21 −0.480 1.124 1.411 −0.658
c12 5.169 4.642 −0.509 3.443
c31 −0.471 −4.175 −2.052 0.637
c22 7.691 9.150 0.494 3.641
c13 13.921 14.949 6.551 10.717
c41 0.036 0.122 0.111 0.338
c32 0.152 2.385 1.475 −0.747
c23 −6.580 −8.381 −0.843 −2.712
c14 −9.029 −9.982 −1.621 −5.865

(NL1–NL3) temperature dependencies. From the original
training dataset, the 13 data points corresponding to 240◦C
were removed. Thus, the training data consists of 13× 4 data
points corresponding to 13 data points from each of 0, 60,
120, and 180◦C (Ntrgset = 4).

The NN model, P-NN, was trained with these datasets
and a set of weights were obtained for each of the linear
(NL0) and nonlinear dependencies (NL1–NL3). Similarly,
with a polynomial degree of 5 (J = 5), a set of coefficients
of the polynomial model were estimated by using Gauss-
Newton method with least squares (for NL0–NL3). The ap-
plied pressure was estimated by the P-NN model and the
polynomial model using P-NN weights and polynomial co-
efficients, respectively. The FS error between the true and
the estimated pressures at specific temperature values of
210, 220, 230, and 240◦C for the linear (NL0) and non-
linear temperature dependencies (NL1–NL3) are plotted in
Figure 11. In this figure, the top row corresponds to the NN
model and the bottom row corresponds to the polynomial
model.

It may be noted that both the P-NN model and the poly-
nomial model have seen data covering only temperatures
from 0◦C to 180◦C. From Figure 11, superior performance
of the P-NN model over the polynomial model for temper-
ature range of 210◦C–240◦C is evident. In particular, for the
linear dependency (NL0), the FS error of the P-NN model
remains within ±1% (similar to that of the previous case).
However, for nonlinear dependencies (NL1–NL3), the maxi-
mum FS error remains between +5% and−2%. On the other
hand, in the case of the polynomial model, as the tempera-

ture increases from 210◦C to 240◦C, the FS error increases
from −3% to −10% for the linear dependency (NL0). The
performance for NL1 is the worst for the polynomial model.
As the temperature increases from 210◦C to 230◦C, the FS er-
ror increases from −5% to −12%, and it becomes more than
−15% at 240◦C. For NL2 and NL3, the maximum FS error
remains within −13% and −8%, respectively.

Performance comparison between the P-NN model and
the polynomial model for the entire range of tempera-
ture at specific values of normalized pressure are plotted in
Figure 12. In this figure, the top row corresponds to the P-NN
model while the bottom row corresponds to the polynomial
model. Superior extrapolation capability of the P-NN model
is evident in this figure. For the entire range of temperature
(0◦C− 250◦C), the FS error for linear dependency (NL0) re-
mains within±1% for the P-NNmodel. For the temperature
range from 0◦C to 200◦C, the FS error is larger in the poly-
nomial model compared to that in the P-NN model. Beyond
200◦C, the performance of the polynomial model is much
worse than the P-NN model for the linear and nonlinear de-
pendencies (NL0–NL3).

The average MSE, MSEavg, in dB was computed for the P-
NNmodel and the polynomial interpolationmodel (Ntrgset =
4 and J = 5) and are provided in Table 7. For the temperature
range from 0◦C−250◦C, in comparison to Table 5 (Ntrgset = 5
and J = 5), a substantial degradation of MSEavg can be seen
for the polynomial model. On the other hand, although there
is a degradation for the NN model, it is not severe. In partic-
ular, in the case of the P-NNmodel there is not much change
in the MSEavg for the linear dependency (NL0) compared
with the previous case (Table 5).

For the temperature range from 0◦C−200◦C, the MSEavg
is comparable to that of Table 5 for both the P-NN and poly-
nomial models. This fact indicates that the performance of
the polynomial model is satisfactory for interpolation, but
its performance severely deteriorates in the case of extrapo-
lation, whereas the performance of the NN model is found
to be superior than the polynomial model for both interpo-
lation and extrapolation of the sensor data.

7. AN IMPLEMENTATION SCHEME

Due to the rapid decrease in unit cost and fast increase in on-
chip capabilities, MCUs have been used in various intelligent
embedded systems. An implementation scheme of the MLP-
based CPS model using an MCU is depicted in Figure 13.
The SCI converts the change in capacitance of the CPS due
to the applied pressure into an equivalent voltage level. This
analog SCI output voltage is passed through an analog-to-
digital converter (ADC). The digital temperature informa-
tion is similarly obtained from the knowledge of VN0 (i.e.,
the SCI output when the applied pressure is zero). During
the training phase, the CPS is operated at a controled tem-
perature and the data pairs are collected for the training set
data. These training data are fed to a personal computer (PC)
connected to the MCU for the training of the MLP-based
model. After completion of the training, the weights of the
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Figure 10: Full-scale percent error between the true and estimated pressures for the polynomial model (J = 5) at specific normalized
pressures (PN = 0.1, 0.4, and 0.6) with full range of variation of the ambient temperature. (a) NL0. (b) NL1. (c) NL2. (d) NL3.

MLP are stored in the EEPROM of the MCU. With the avail-
able hardware, such as adders and multipliers of the MCU,
the MLP-based model can be implemented and the digital
readout of the applied pressure can be displayed through the
bus interface circuit.

To estimate the ambient temperature from the sensor
characteristics itself, we propose the following scheme. In
practical use of a CPS, there is only one output signal (the
SCI output VN ) corresponding to the measurand (applied
pressure). Therefore, appropriate provisions are to be made
to obtain the signals separately for estimation of the temper-
ature and the pressure. The online estimation of pressure us-
ing the NN-based scheme can be carried out in a measure-

ment phase which consists of one t est and one p est cy-
cle. In the t est cycle, the ambient temperature is estimated,
whereas in the p est cycle the applied pressure is estimated.

During t est cycle, provision is made to separate the CPS
from the applied pressure, and the SCI output VN0 corre-
sponding to the zero pressure is then recorded. From the
knowledge ofVN0, the ambient temperature can be estimated
using the T-NN. Next, during the p est cycle, the pressure
is applied to the CPS, and the SCI output VN is recorded.
Now, using the recorded values of VN0 and VN , the applied
pressure can be estimated using the NN models as shown in
Figure 2c. Appropriate control and logic circuits are to be
incorporated with the MCU for this measurement scheme.
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Figure 11: Full-scale percent error between the true and estimated pressures at specific temperatures (210, 220, 230, and 240◦C) with
different forms of nonlinear dependencies. (a) and (e) NL0; (b) and (f) NL1; (c) and (g) NL2; and (d) and (h) NL3. The top row corresponds
to the NN model and the bottom row corresponds to the polynomial model (J = 5). Both models were trained with Ntrgset = 4.

However, if the environmental temperature variation is not
frequent, then the t est cycle need not be carried out in each
measurement phase, but only at regular intervals. The esti-
mated temperature of the preceding t est cycle (saved in the
RAM of the MCU) can be used to estimate the applied pres-
sure in the current measurement phase.

8. CONCLUSIONS

Smart sensors operating in harsh environments should be
capable of providing accurate readout and autocompensa-
tion of the nonlinear influence of the environmental pa-
rameters on its response characteristics. For this purpose,
we have proposed a novel NN-based technique for mod-

eling a CPS operating in a harsh environment in which
the temperature can vary from 0 to 250◦C. Using a vari-
able learning rate BP algorithm and taking random sam-
ples during training, a highly effective NN-based CPS model
was obtained. A compact MLP of {2 − 4 − 1} architec-
ture (with only 17 weights) is capable of providing accu-
rate pressure readout. Using a second MLP, we presented
a novel scheme to estimate the ambient temperature from
the knowledge of the sensor characteristics itself, thus, elim-
inating the need for a separate temperature sensor. We have
shown the effectiveness of the model in different forms of
nonlinear influence of the ambient temperature on the pres-
sure sensor characteristics with computer-simulated experi-
ments.
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Figure 12: Full-scale percent error between the true and the estimated pressures at specific normalized pressures (PN = 0.1, 0.4, and 0.6) for
the full range of variation of the ambient temperature. (a) and (e) NL0; (b) and (f) NL1; (c) and (g) NL2; and (d) and (h) NL3. The top row
corresponds to the NNmodel and the bottom row corresponds to the polynomial model (J = 5). Both models were trained with Ntrgset = 4.

Table 7: The MSEavg for the polynomial model (Ntrgset = 4 and J = 5) and the NN model with linear (NL0) and the three nonlinear
temperature dependencies (NL1–NL3).

NL form
Temperature 0–250◦C Temperature 0–200◦C

Poly. model NN model Poly. model NN model

NL0 −30.01 −50.17 −45.33 −51.48
NL1 −25.02 −42.66 −42.97 −49.67
NL2 −28.11 −38.07 −44.87 −50.93
NL3 −34.70 −46.12 −46.19 −50.45

The performance of the NN model was compared with
that of a polynomial interpolation scheme with a poly-

nomial degree of five (21 coefficients). It is shown that
the NN-based model outperforms the polynomial model,
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Figure 13: A scheme of a MCU-based implementation of the pres-
sure sensor NN model.

especially for extrapolation of data. A scheme for an MCU-
based implementation of the proposed NN-based models is
also provided. Such NN-based models may be applied to
other types of sensors to incorporate intelligence in terms of
mitigating the nonlinear dependency of their response char-
acteristics on the environmental parameters.
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