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We present an efficient physical realization method of particle filters for real-time tracking applications. The methodology is based
on block-level pipelining where data transfer between processing blocks is effectively controlled by autonomous distributed con-
trollers. Block-level pipelining maintains inherent operational concurrency within the algorithm for high-throughput execution.
The proposed use of controllers, via parameters reconfiguration, greatly simplifies the overall controller structure, and alleviates
potential speed bottlenecks that may arise due to complexity of the controller. A Gaussian particle filter for bearings-only tracking
problem is realized based on the presented methodology. For demonstration, individual coarse grain processing blocks compris-
ing particle filters are synthesized using commercial FPGA. From the execution characteristics obtained from the implementation,
the overall controller structure is derived according to the methodology and its temporal correctness verified using Verilog and
SystemC.
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1. INTRODUCTION

Particle filter has been studied theoretically and its feasibility
has been demonstrated in the literature [1, 2, 3, 4, 5, 6, 7].
They perform extremely well in estimating unknown vari-
ables inmany statistical signal processing problems including
channel estimation in wireless communication and tracking
variables in bearings-only tracking applications [8, 9, 10, 11].
However, realizing particle filters in hardware is not trivial.
The algorithms consist of many complex processing blocks
that are executed in both parallel and sequential nature. Di-
rect one-to-one mapping from the operations of algorithm
to the processing blocks in hardware implementation may
result in complicated overall controller structure. Moreover,
an efficient controller generation may even become practi-
cally intractable, or tedious, mainly due to the shear com-
plexity of the algorithms. Hence, the main design issue in the
particle filters realization is the development of their overall
controller to completely maintain the concurrency of the fil-
tering operations. The objective of this paper is to present a

design methodology to simplify the overall physical design
process in the particle filter realization.

At algorithmic level, particle filters work on blocks of data
as frames. Such systems possess two unique execution char-
acteristics. First, they can be represented as coarse data-flow
graphs such that nodes (or blocks) can be executed concur-
rently [12].While the complexity of each node (or block) dif-
fers in granularity, the data-flow graph can be clearly repre-
sented as a function of data dependency. Second, each node
in the data-flow graph executes a set of data per every itera-
tion cycle. Depending on the specific application, the size of
data set can be large requiring significant amount of buffers.
Considering the data flow within these applications, a two-
level hierarchy is often obvious, where data frames are pro-
cessed as a unit in a sequence of logic blocks at global level,
and elements within a frame are processed in a loop fashion
within each block at local level. We take advantage of these
characteristics in the proposed design methodology.

Two approaches for controller design are possible, name-
ly centralized and distributed. According to the centralized
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approach, a single large controller is used to generate the
different control signals for all the units. While [13] takes
a centralized controller approach arguing on the grounds of
area overhead, [14, 15] take a distributed approach where the
control is localized to the units and they operate by transfer-
ring information between them. We follow a distributed ap-
proach in this paper. Ourmethodology differs from the other
distributed approaches in which our design is targeted for
coarse granularity of the processing blocks. This has a bene-
fit that the processing block can be core-designed by another
party. Moreover, we provide the flexibility in changing the
controller locally with minimum information and overhead
as long as the execution characteristic of the processing block
is known. Such benefit is not possible with the centralized
approach where a small change in logics translates to overall
redesign of the controller. A key benefit of themethodology is
that local controllers are reconfigurable with a set of basic pa-
rameters, and are completely independent from one another.
By a systematic method, it is possible to provide operation
predictability in the overall system designs.

In this paper, we demonstrate an efficient controller de-
sign methodology for temporal correctness, and we do not
consider finite precision effects inherent in the processing
block design. The finite precision issue can be easily incorpo-
rated into the design by allowing proper scaling and provid-
ing sufficient bits for the number representation within each
processing block. We note that such incorporation in the de-
sign does not alter the presented controller design method-
ology. We consider Gaussian particle filter (GPF) for design
study. The correctness of our designs is verified with Ver-
ilog and SystemC simulations. The method can be applied
to other systems possessing similar execution characteristics.

The remainder of this paper has five sections. Section 2
discusses background of particle filtering and there the GPF
algorithm is discussed in detail. Section 3 addresses the pro-
posed design methodology and design issues including the
two-level pipelining and controller synthesis. The design
study for GPF is presented in Section 4. The design is evalu-
ated in Section 5. Finally, our contributions are summarized
in Section 6.

2. PARTICLE FILTER FOR TRACKING

2.1. Background

Particle filters are used in problems which are represented us-
ing dynamic state-space (DSS) models. These models involve
a state equation which shows how the state evolves with time
and an observation equation that relates the noisy observa-
tions to the state. These equations have the following form:

xn = fn
(
xn−1,un

)
,

yn = gn
(
xn, vn

)
,

(1)

where n ∈ N is a discrete-time index, xn is a signal vector
of interest, and yn is a vector of observations. The symbols
un and vn are noise vectors, and fn and gn are a signal tran-
sition function and a measurement function, respectively,

which are assumed known. In a particle filtering frame-
work, the objective is to estimate recursively in time the sig-
nal xn, for all n, from the observations y1:n, where y1:n =
{y1, y2, . . . , yn}.

The particle filters base their operation on represent-
ing relevant densities by particles (samples) drawn inde-
pendently from a normalized importance function (IF)
π(xn|xn−1, y1:n) that has the same support as the posterior
density. Each sample has a weight associated with it. Accord-

ingly, if the samples {x(m)
0:n ; m = 1, 2, . . . ,M}1 are drawn from

the importance density π(x0:n|y1:n) and represent the mth
stream of particles of the unobserved state of the system, and
y1:n is the sequence of observed data, then an estimate of the
posterior expectation I(fn) of the function fn(x0:n) defined by

I
(
fn
) = ∫ fn

(
x0:n
)
p
(
x0:n|y1:n)dx0:n (2)

can be obtained by the following expression [16, 17]:

ÎM
(
fn
) = ΣM

m=1fn
(
x(m)
0:n

)
w(m)
n ,

w(m)
n = w̃(m)

n

ΣM
j=1w̃

( j)
n

,

w̃(m)
n =

p
(
y1:n
∣∣∣x(m)

0:n

)
p
(
x(m)
0:n

)
π
(
x(m)
0:n

∣∣∣y1:n) ,

(3)

where w̃(m) is the nonnormalized weight of themth particle.
Densities that play a critical role in sequential signal pro-

cessing are the filtering density, p(xn|y1:n), and the predictive
density, p(xn+l|y1:n), l ≥ 1. While sample importance resam-
pling filters (SIRFs) operate by propagating the desired den-
sities recursively in time, GPFs operate by approximating de-
sired densities as Gaussians. Hence, only the mean and the
variance of the densities are propagated recursively in time.
In brief, GPFs are a class of Gaussian filters in which Monte
Carlo (PF-based) methods are employed to obtain the esti-
mates of the mean and covariance of the relevant densities
and these estimates are recursively updated in time [18, 19].
Propagation of only the first two moments instead of the
whole particle set significantly simplifies the parallel imple-
mentation of the GPF. Even though this approximation of
the filtering and predictive densities using unimodal Gaus-
sian distributions restricts the application of GPFs, there is
still a broad class of models for which this approximation is
valid.

The GPF can be significantly simplified when the prior
density is used as IF. This means that π(xn|xn−1, y1:n) is given
by p(xn|xn−1). In this case, the GPF performs the steps pre-
sented in Algorithm 1.

In this paper, particle filters are applied to the bearings-
only tracking problem illustrated in Figure 1 where two po-
sitions of the object at time instants n and n + 1 are shown.

1The notation x(m)
0:n represents the set {x(m)

0 , x(m)
1 , . . . , x(m)

n }.
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Input: the observation yn and previous estimates µn−1 and
Σn−1.

Setup: mean µ0 and covariance Σ0 based on prior
information.

Method:
GPF—time update algorithm.

(1) Draw conditioning particles fromN (xn−1;µn−1,Σn−1)
to obtain {x(m)

n−1}Mm=1.
(2) Generate particles by drawing samples from

p(xn|xn = x(m)
n−1) to obtain {x(m)

n }Mm=1.
GPF—measurement update algorithm.

(3) (a)Calculate weights by w̃(m)
n = p(yn|x(m)

n ).

(b)Normalize the weights by w(m)
n = w̃(m)

n /
∑M

m=1 w̃
(m)
n .

(4) Estimate the mean and covariance of the filtering
distribution by
(a)µn =

∑M
m=1 w

(m)
n x(m)

n ,

(b)Σn =
∑M

m=1 w
(m)
n (x(m)

n − µn)(x
(m)
n − µn)

�.

Algorithm 1: GPF algorithm with the prior density as the IF.

y

yn
yn+1

Rn Rn+1 Trajectory

zn
zn+1

xn xn+1 x

Figure 1: Illustration of the tracking problem.

The measurements taken by the sensor to track the object
are the bearings or angles (zn) with respect to the sensor, at
fixed intervals. The range of the object, that is, the distance
from the sensor, is not measured. The unknown states of in-
terest are the position and velocity of the tracked object in
the Cartesian coordinate system (xn = [xn, x′n, yn, y′n]T).

2.2. Algorithm partition strategy for physical design

Particle filtering involves many complex arithmetic compu-
tations and data access. In order to provide high-speed parti-
cle filter realization, the overall algorithm is partitioned into
several modules. Each module is designed to maximize loop
fusion such that data storage is minimized between modules.
When DSPs are used, the loop fusion reduces memory re-
quirement during the execution of the algorithms. From a
concurrent physical realization point of view, such partition-
ing also minimizes the computational latency, which may be
caused by pipelining with registers.

To fully utilize locality of the proposed design method,
which is explained in Section 3, we follow two key strate-
gies in defining the modules. First, each module is derived
to eliminate control signal dependency between modules.
Only data transfer between the modules is allowed in the

(µx,µVx ,µy ,µVy ) = GPF(z,nx,ny)

(x̃, Ṽx , ỹ, Ṽy) = GPFDC(S,µx,µVx ,µy ,µVy ,n1,
n2,n3,n4)

(x,Vx , y,Vy) = BOTS(x̃, Ṽx, ỹ, Ṽy ,nx,ny)
(w, SM) = BOTI(x, y, w̃, z)
(x̂, V̂x , ŷ, V̂y) = BOTO(x,Vx, y,Vy ,w)

(Var) = GPFV (x,Vx, y,Vy ,w,µx ,µVx ,µy ,µVy )
(Var) = GPFCH(x,Vx, y,Vy ,w)

Algorithm 2: Processing one observation by a GPF.

(x̃, Ṽx , ỹ, Ṽy) = GPFDC(S,µx,µVx ,µy ,µVy ,n1,
n2,n3,n4)

form = 1–M
x̃(m) = µx + S11 · n1(m)
Ṽx(m) = µVx + S12 · n1(m) + S22 · n2(m)
ỹ(m) = µy + S13 · n1(m)

+S23 · n2(m) + S33·n3(m)
Ṽy(m) = µVy + S14 · n1(m) + S24 · n2(m)

+S34 · n3(m)+S44 · n4(m)
end

Algorithm 3: Algorithm for drawing conditioning particles for the
bearings-only tracking example.

algorithm. If there exists such control dependency, we com-
bine them into a single module. Thus, each module will be
designed as an independent processing block where control
dependency is eliminated. Second, we design each module so
that the numbers of data consuming and producing between
the modules are deterministic. With deterministic number
of data transfers between the modules, a set of simple dis-
tributed controllers can be derived.We describe a partitioned
GPF particle filter algorithm for tracking in the following sec-
tion and block-level pipelining in Section 3.

2.3. GPF particle filter algorithm for tracking

The details of the GPF algorithm are discussed in [18, 20].
In Algorithm 2, a GPF code for processing one observation
is presented. Drawing conditioning particles, particle gener-
ation, particle update, covariance calculation, mean calcula-
tion, and Cholesky decomposition operations are specific for
the GPF algorithm. Note that each element of the GPF is in
the critical path.

Drawing conditioning particles (x̃, Ṽx, ỹ, Ṽy) is presented
in Algorithm 3. Conditioning particles are drawn from a
Gaussian distribution with parameters (µ,Var), where µ is
4 × 1 matrix and Var is a 4 × 4 triangular matrix. In order
to draw Gaussian random numbers, a matrix S is necessary,
where Var = S · S�.

The generation of particles is performed by drawing
them from the importance density in the sampling step. In
Algorithm 4, the sampling step for the bearings-only track-
ing is presented. The input arguments are the states of the
particles obtained from the update state step from the previ-
ous time instant (X̃ = {x̃, Ṽx, ỹ, Ṽy}). For sake of simplicity
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(x,Vx, y,Vy) = GPFPG(x̃, Ṽx , ỹ, Ṽy ,nx ,ny)
form = 1–M

x(m) = x̃(m) + Ṽx(m) + 0.5nx(m)
Vx(m) = Ṽx(m) + nx(m)
y(m) = ỹ(m)+ Ṽy(m)+ 0.5ny(m)
Vy(m) = Ṽy(m) + ny(m)

end

Algorithm 4: Particle generation (sampling step).

(w, SM) = GPFPU(x, y, w̃, z)
(i) calculation of weights and their

sum
SM = 0
form = 1–M

w∗(m) = w̃(m)e−(2πσ
2
v )
−1·(z− at an

y(m)
x(m) )

2

SM = SM +w∗(m)
end
(ii) normalization
form = 1–M

w(m) = w∗(m)
SM

end

Algorithm 5: Particle update (importance step).

of implementation, the prior density of the state is selected as
the importance density. The output of the particle generation
(sampling step) is a new vector of states X = {x,Vx, y,Vy}.

One possible realization of the particle update (impor-
tance step) which is used for weight calculations is shown
in Algorithm 5. The particle update consists of two substeps:
weight calculation and normalization. First, the weights are
evaluated up to a proportionality constant and subsequently,
they are normalized. The input arguments are the observa-
tion z, the arrays of states x and y, and updated weights from
the previous time instant w̃.

The covariance calculation is shown in Algorithm 6. The
covariance coefficients are first updated in the loop and then
the final calculation is performed. Cholesky decomposition is
shown in Algorithm 7. The purpose of this step is to calculate
the square root of the covariance matrix so that Var = S · S�.
As opposed to the other steps, this step is not performed in
the loop and its complexity does not depend on the number
of particles.

The Computation of the output estimates is shown in
Algorithm 8.

3. REALIZATIONMETHODOLOGY

3.1. Block-level pipelining of loop-based algorithms

The basis of the particle filter design is regular data flow
with block-level pipelining. Block-level pipelining is a hard-
ware realization of the data-flow model. Block-level pipelin-
ing, which will be elaborated subsequently, guarantees high
throughput by maintaining operation concurrency among
the processing blocks. The design incorporates block-like op-
erations involved in particle filter by introducing two-level

(Var) = GPFV (x,Vx, y,Vy ,w,µx,µVx ,µy ,µVy )
form = 1–M

Var11 = Var11 +x(m) · x(m) ·w(m)
Var12 = Var12 +x(m) ·Vx(m) ·w(m)
Var13 = Var13 +x(m) · y(m) ·w(m)
Var14 = Var14 +x(m) ·Vy(m) ·w(m)
Var22 = Var22 +Vx(m) ·Vx(m) ·w(m)
Var23 = Var23 +y(m) ·Vx(m) ·w(m)
Var24 = Var24 +Vx(m) ·Vy(m) ·w(m)
Var33 = Var33 +y(m) · y(m) ·w(m)
Var34 = Var34 +y(m) ·Vy(m) ·w(m)
Var44 = Var44 +Vy(m) ·Vy(m) ·w(m)

end
Var11 = Var11−µx · µx
Var12 = Var12−µVx · µx
Var13 = Var13−µy · µx
Var14 = Var14−µVy · µx
Var22 = Var22−µVx · µVx

Var23 = Var23−µy · µVx

Var24 = Var24−µVy · µVx

Var33 = Var33−µy · µy

Var34 = Var34−µVy · µy

Var44 = Var44−µVx · µVy

Algorithm 6: Algorithm for covariance calculation for the
bearings-only tracking.

(S) = GPFCH(x,Vx , y,Vy ,w)
S11 = (Var11)1/2

S12 = Var12 /S11
S13 = Var13 /S11
S14 = Var14 /S11
S22 = (Var22−S12 · S12)1/2
S23 = (Var23−S12 · S13)/S22
S24 = (Var24−S12 · S14)/S22
S33 = (Var33−S13 · S13 − S23 · S23)1/2
S34 = (Var34−S13 · S14 − S23 · S24)/S33
S44 = (Var44−S14 ·S14−S24 ·S24−S34 ·S34)1/2

Algorithm 7: Algorithm for Cholesky decomposition.

(µx,µVx ,µy ,µVy ) =
GPFM(x,Vx , y,Vy ,w)

µx =∑M
m=1 w(m)x(m)

µVx =
∑M

m=1 w(m)Vx(m)
µy =∑M

m=1 w(m)y(m)
µVy =

∑M
m=1 w(m)Vy(m)

Algorithm 8: Calculation of mean (computation of estimates).

pipelining, that is, fine-grained (register-based) and block-
level (buffer-based) pipelining.

The main purpose of pipelining in block level is to in-
sert a buffer with associated controller in order to encapsu-
late any architectural parameters such as latency and rate dif-
ference between a pair of processing blocks. Through block-
level pipelining, we can achieve three key objectives. First, it
is possible to maintain concurrency of each processing block
while providing correct synchronization between processing
blocks for proper execution. Second, since the control sig-
nals, data, and clock become local, hardware implementa-
tion is much easier in terms of maintaining performance
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Block
1

L1

BUF/
control

M12, offset12

Block
2

L2

BUF/
control

M23, offset23

Block
3

L3

BUF/
control

M31, offset31

Figure 2: Illustration of the block-level pipelining structure of data
flow. A possible recursion is also illustrated with dotted connection
between the processing blocks 3 and 1.

by minimizing clock skews and data routing. Any change in
logic will only affect its buffer configuration and controller
so that reconfigurable design and/or core reuse is possible.
Third, since entire design is centered around the buffers, per-
formance mismatches between memory and logics are mini-
mized. These objectives are basis of the buffer-centric design
methodology that we are presenting in this paper.

Basically, data dependencies that may arise due to rate
difference are handled by inserting a buffer between any pair
of processing blocks as shown in Figure 2. To provide maxi-
mum flexibility of the controller, we simplify the design by
assuming that all the components are controlled and syn-
chronized by a single global clock. Buffers (BUF) are used as a
basic block-level pipelining elements. Data are transferred by
the read and write access of these buffers concurrently but at
different address locations. The amount of difference in write
and read address can be determined from the rate differences
of processing blocks as well as data dependency of functions.
Since the read and write operations are done using different
addresses, there will be no conflict of address and concur-
rency among processing blocks. Each BUFi can have different
offset as required by the logic operation writing to or read-
ing from it. The overall operation is logically viewed as just
buffer-to-buffer operations separated by latency of the pro-
cessing blocks introduced by the processing block logic im-
plementation. The data pathmay be recursive. One key bene-
fit of the block-level pipelining is that each block can execute
concurrently. Such systematic view of the buffers provides an
opportunity for us to create memory centric platform.

Consider a set of parameters, denoted by Li, Mij , and
offseti j , indicated in Figure 2. In the figure, three processing
blocks have different latencies and the same number of data
is specified in any pair of processing blocks. The values of la-
tency are obtained from the implementation of the process-
ing blocks, the buffer write-read offset is determined from
the operational data dependency of the pair of processing
blocks, and the data size Mij is obtained from the function
specification of the processing blocks. Each processing block
in Figure 2 produces and consumes data at the same rate. The
buffer size must be larger than the value of the corresponding
offseti j .

We illustrate the operation of block-level pipelining.
Consider the nonrecursion case where the input comes to
the processing block 1 and the output is generated by the
processing block 3. First, the data will be generated by the
processing block 1 after latency L1. Then,M12 data will be se-
rially written to the first buffer. After offset12, the processing
block 2 will start processing and generating data for the sec-

ond buffer after latency L2. A similar process takes place at the
other processing blocks and buffers. Note that for nonrecur-
sive block-level pipelining, the last buffer is not needed. As
long as data dependency is enforced, all the processing blocks
are concurrently processing data without any stoppage.

3.2. Parameter extraction for controller design

The operations in block-based processing are viewed as
buffer-to-buffer operations with coarse-grained processing
blocks operating in between them. The primary parameters
which decide the controller structure and overall physical re-
alization are as follows.

(1) Logic latency (Li). This is the latency of the process-
ing block that needs to be handled so that data valid-
ity is preserved. Fine grain pipelining introduces this
latency, where Li is the pipeline depth of the data pro-
ducing block.

(2) Write offset (nwij). This is the offset between read of
the previous buffer and write of the current buffer after
eliminating the logic latency. This is to support a pro-
ducing processing block with delay data generation.

(3) Read offset (nri j). This is the offset between write into
and read from buffer. This value actually represents the
data dependency between the producer and the con-
sumer. We consider a dual port buffer in which the
value of nri j represents the difference between write
and read of the buffer.

(4) Delay factor (Dij). This is a delay factor of read of the
current buffer and write of the current buffer in case
of rate mismatch or irregular data stream.

(5) Block size (Mij). This characterizes the size of data
produced and consumed by the processing blocks. It,
along with nri j , determines the maximum storage re-
quirement in each buffer.

(6) Consuming rate (Ci). This is the rate of data consump-
tion by the ith processing block.

(7) Producing rate (Pi). This is the rate of data produced
by the ith processing block.

(8) Processing rate (Fi). This is the processing speed of the
ith processing block.

The parameters (Mij , nri j , nwij) are derived from the
functional (algorithmic) data-flow description. The parame-
ters (Li, Ci, Pi, Fi, Dij) are derived from the implementation
of the processing blocks. From these two sets of parameters,
we can create two tables: node information table (NIT) and
edge information table (EIT). Figure 3 illustrates the usage of
such tables in the design. A buffer controller will be created
for each entry in the EIT. From these two tables, the buffer
controller and global controller are designed. The generation
of such tables will be discussed later.

3.3. Buffer controller design and synchronization

In the design methodology, the buffer controller is a key el-
ement. A block diagram of the buffer controller is shown in
Figure 4. The buffer controller consists of concurrent con-
troller and a dual-ported memory. The concurrent controller
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Loop based
algorithm

Data flow
construction

Processing
block design

Edge
information

table

Node
information

table
Physical
realization

Buffer
controller

Global
controller

Figure 3: Design flow of the controller and overall physical realiza-
tion.

Processing block

(Ci,Pi,Fi)

(Mi) Dual port
memory

Processing block

(Cj ,Pj ,Fj)

(Li,nwij) (Dij ,nri j)

Buffer
controller

Write section Read section

Figure 4: Block diagram of a buffer controller consisting of read
and write processes.

has two logic sections: read and write controls [21]. These
two controls may be driven by separate clocks and pro-
grammable so that the same buffer controller is used in the
design by varying the parameters. Basically, the write logic
section is configured by Li and nwij , and the read logic sec-
tion is configured byDij and nri j . Note that these parameters
are derived from the data-flow structure and the process-
ing blocks. Thus, interdependency between the buffer con-
trollers is not necessary to operate correctly and they are au-
tonomous and local.

Consider the buffer controller i. When this buffer con-
troller is activated, both the write and read logic sections are
concurrently executed. Initiation of the write section indi-
cates that data have arrived at the processing block that is
connected to this buffer as a producer. The actual data com-
puted by the producing processing block are valid at the
buffer controller after waiting for Li. The write logic sec-
tion will not write these Li invalid data from the producer.
This will guarantee correctly receiving the valid data stream
if the producer is purely pipelined hardware. However, it is
also possible that the processing block needs finite amount
of computation time regardless of the pipeline depth (i.e.,
delayed data generation by the processing block). To support
this type of processing block, we use one more parameter
nwij . After this wait period (Li + nwij), the data are written
to the buffer. Once correct data samples start to be written
to the buffer, the read process starts by the read logic sec-
tion. The parameter nri j represents offset between writing

Starti

max(Li,nwi)
Write starti

Write enable

Mi data
Data in

max(Di,nri) Read starti

Read enable

Mi data
Data out

Sync1 Sync2 Sync3

Figure 5: Illustration of buffer controller timing.

and reading the data from the buffer. This parameter sup-
ports data dependency. Even if there is no data dependency, it
is also possible that the generation data rate of the producer
is different from the consuming data rate of the consumer.
To support rate mismatch between two processing blocks
connected by the buffer controller, we use another param-
eter Dij . After this wait period (max[nri j ,Dij]), the data is
read from the buffer. Once all the data are read out from the
buffer, the buffer controller suspends itself until the buffer
controller gets a signal from the outside. Thus, the write logic
section is configured by (Li,nwij) and the read logic section
is configured by (nri j ,Dij). The same buffer controller is used
to support different data transfer characteristics by modify-
ing these parameters.

Figure 5 illustrates the timing relationship of a buffer
controller where the index i j represents a buffer controller
placed between the ith and jth processing blocks. Note
that there are three key synchronization points, among the
buffer controllers, indicated by sync1, sync2, sync3. These
three synchronization points correspond to start timei j ,
write starti j , and read starti j . The start of the write waiting
process is synchronized with the start read process of the pre-
vious buffer controller, indexed as ki. And the start of the
read process is synchronized with the start of the write wait-
ing process of the same buffer controller. These are the condi-
tions that must be satisfied in order to derive the parameters
of the NIT. They have the following relationships:

start timei j = read startki,

write starti j = start timei j + Li + nwij ,

read starti j = write starti j +max
[
nri j ,Dij

]
.

(4)

Thus, we can synchronize the processing blocks and vary
the execution time using these parameters. Moreover, we can
delay the entire operation by adjusting the appropriate value
of nri j .

3.4. Relationship between buffer controllers

However, since it is necessary to synchronize each buffer con-
troller, we illustrate the relationship between the global con-
troller and the buffer controllers. An overview of the overall
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Figure 7: Relative timing of the buffer controllers. All buffer con-
trollers are synchronized with a global clock.

control scheme illustrating interaction with the global con-
trol and buffer control is shown in Figure 6. The global con-
trol generates a single clock to synchronize all the buffer con-
trollers. In addition to the global clock, the global control
generates basic timing information for each buffer controller.

Figure 7 illustrates that each buffer controller is con-
trolled by periodic signals, indicated by start, generated from
the global controller. The global controller is a counter that
generates a set of start signals. This is illustrated in Figure 7.
The figure shows three such timing signals for three buffers
in Figure 6. For each buffer controller, the start timing sig-
nal indicates the start of one iteration process of the buffer
controller. Successive buffer controllers are separated by start
signals. The time durations between each start signal are con-
trolled by the parameters described in the previous section.

4. GAUSSIAN PARTICLE FILTER DESIGN

4.1. Processing blocks in GPF design

In the design, we first define the operation of each process-
ing block, and then the data-flow structure. Each process-
ing block may have its own local controller for its operation.
From the processing block design and the data-flow struc-
ture, we derive EIT and NIT. Finally, the buffer controllers
and global controller are derived and designed. Although
maintaining computation accuracy is very important, we do
not consider the finite precision effects of the filters. Instead,
we focus our study on the execution timing relationship be-
tween the processing blocks and controllers. The actual fi-
nite precision effects can be incorporated later into the design
without affecting the overall controller.

The GPF filter has 5 major computational units: condi-
tion particle generation, particle generate, particle update,
mean and covariance calculation, and central unit. Figure 8

Condition
particle

Particle
generate

Particle
update

Input

Mean
covar.

Central
unit

Output
generate

Figure 8: Data-flow graph of the GPF.

shows the actual data-flow graph of the GPF under consid-
eration. In [20], it is shown that the loops in the GPF can be
fused. So, all the steps except Cholesky decomposition and
variance calculation in the second part of Algorithm 8 can be
executed inside one loop ofM iterations. Cholesky decompo-
sition and final variance calculation are sequential and their
complexity is fixed and does not depend on the number of
particles.

Condition particle generation (CPG)

In the CPG processing block, the decomposed covariance
matrix S and the mean µ obtained from the CU processing
block are used for calculation of conditioning particles. The
matrix S is the triangular 4 × 4 matrix, so that the number
of data that is transferred from the CU processing block is 10
(not 16). All the multipliers are pipelined and they operate
concurrently producing M conditioning particles. Since the
outputs (x̃, Ṽx, ỹ, Ṽy) are computed using different number
of operators, we have to introduce additional delay which is
different for each state in order to get all the conditioning
particles at the same time instant at the output. The CPG re-
quires 4 random number generators [22].

In the CPG processing block, there are 2 input buffers for
(µ, S) from the CU processing block and 4 output buffers for
(x̃, Ṽx, ỹ, Ṽy) to the PG processing block. The data size of
mean µ is 4 and of the decomposed covariance S is 10. These
data are generated sequentially to save interconnect buses.
Internally, these data are used in parallel. The output data
size isM. Initially, the mean and the decomposed covariance
elements are obtained externally and not from the CU.

Particle generate (PG)

In the PG processing block, there are 4 buffers associated with
the input vectors (x̃, Ṽx, ỹ, Ṽy) and 4 buffers associated with
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the output vectors (x, Vx, y, Vy). The input vectors stored in
the input buffers are generated by the CPG processing block.
In addition, 2 more buffers are associated with (x, y) to be
used by the PU processing block. The data sizes of inputs and
outputs areM. Because they are vectors, the buffer controller
parameters will be identical.

The arithmetic operations of the particle generation are
described in Algorithm 3. The outputs are computed in par-
allel operations. In the PG processing block, there are 4 noise
generators. For the generation of noise samples, we use Box-
Muller approach for efficient FPGA implementation [22].
The noise generation is a combination of a lookup table and
arithmetic logic such that it eliminates large latency gener-
ated by the arithmetic logic unit.

Particle update (PU)

The arithmetic operations of the particle update are il-
lustrated in Algorithm 5. The main arithmetic operations
are multiplications, divisions, the trigonometric function
arctan (·), and the exponent function exp (·). Unrolled
CORDIC [23, 24] is used as the operator for arctan (·) and
exp (·) for its regular implementation structure. For each
arctan (·) operation, a constant value π/2 and a multiplexer
are used to correct the angle-fault problem in the algorithm
for arctan (·). The purpose of this correction is to resolve am-
biguity from (−x, y) and (x,−y) (i.e., arctan (·) value is iden-
tical even though their physical locations are different). Since
there is no data dependency between the PG and PU process-
ing blocks, the PU processing block will compute its outputs
as soon as the data are available in the input buffers.

The PU processing block also takes z(n) as an external
observation input. During the iteration n, the value of z(n)
does not change. The PU processing block computes the rest
of weight computation process as illustrated in Algorithm 4.
These weights are not normalized, and they are accumulated
to generate sum (SM notation is used in the algorithm) at
the end of weight calculation. The sum is used in the weight
normalization step in the MCC processing block.

It is very important to note that, even though we are cre-
ating buffers at the output of these processing blocks in the
figure, when the data are used by the successive processing
block right away, we can replace these buffers by pipeline reg-
isters in the actual implementation. In this case, the value of
latencies of blocks will be added to the last buffer controller.

Mean and covariance calculate (MCC)

In the MCC processing block, the partial covariance 4 × 4
matrix Var and 4×1 mean vector µ are calculated. The MCC
computes only the first part (loop) of Algorithm 6 and the
rest is computed in the CU processing block. The number of
multiplication operations during mean and covariance oper-
ation is equal to Ns + Ns(Ns + 1)/2 = (N2

s + 3Ns)/2 for the
GPF, where Ns represents the dimensionality of the model.
For the bearings-only tracking problem with Ns = 4, it is 14
multiplications. All 14 outputs are accumulated, so that 14
accumulators are necessary. All the blocks operate concur-
rently onM particles.

In the MCC processing block, there are 6 input buffers
for (x, Vx, y, Vy) from the PG processing block and (w, sum)
from the PU processing block. The mean vector µ is normal-
ized by the sum at the end of operation. This requires only 4
divisions for the mean vector. There are 2 output buffers for
µ and Var to the CU processing blocks. These outputs are se-
rialized. The µ from the MCC processing block is the output
of the GPF. Thus, the output generation block for the GPF is
to convert serially the received µ to a parallel format.

Central unit (CU)

The inputs and the outputs of the CU are produced once dur-
ing the sampling period. The CU processing block executes
Algorithm 7. In addition, the CU processes the second part
of Algorithm 6. Because of special functions such as division
and square root operations, we design for time-multiplexing
of operators. Since small number of data is to be computed,
the delay incurred by this unit is not significant. The outputs
are buffered within the processing block before being read
out to the buffer controller for synchronization purposes. In
the CU processing block, there are 2 input buffers for (µ,Var)
from theMCC processing block. There is 1 buffer for S to the
CPG processing block. These outputs are serialized.

Output generation (OG)

The OG processing block is a simple serial-to-parallel trans-
formation logic.

4.2. Concurrency and execution time of GPF

The timing diagram illustrating the major block operations
is shown in Figure 9. A value n shown in the box indicates
iteration index. As shown in the timing diagram, the execu-
tions of the CPG, PG, PU, MCC, and CU processing blocks
are overlapped. When the CPG processing block starts its
execution, the buffer will start to write after LCPG. As soon
as the first data is written, the buffer will start the read for
the PG processing block. The PU processing block can start
and the MCC processing block will follow. Since MCC has
to normalize the mean, the CU waits for M to wait for
the value sum. As soon as the CU generates the data, the
next iteration of the CPG can proceed. The external input
is synchronized with the start of PU. The output is generated
from the MCC processing block. Thus, the minimum iter-
ation period of the GPF is TGPF = (M + LGPF) · Tclk, where
LGPF = LCPG+LPG+LPU+LMCC+LCU, where LCU includes la-
tency due to hardware and delayed output generation result-
ing from time-multiplexing within the CU processing block.

5. PHYSICALMAPPING

5.1. GPF realization

The data-flow graph of GPF for bearings-only tracking prob-
lem is constructed as shown in Figure 10. The figure shows
both the processing blocks and the buffers.

Table 1 tabulates the primary parameters of each process-
ing block for the GPF. Similarly, the GPF speed is limited by
the speed of the CORDICs in the PU.
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Table 1: Node information table for GPF. 206 MHz is selected for the global clock fclock.

Node L C (MHz) P (MHz) F (MHz) FPGA (%)
N1 (CPG) 11 206 206 206 22.2
N2 (PG) 8 206 206 206 7.6
N3 (PU) 43 206 206 206 20.7
N4 (MCC) 8 206 206 206 31.7
N5 (CU) 1 206 206 206 17.8

Table 2 tabulates the data dependency between a pair
of processing blocks. In the table, the multiple appear-
ance of source and destination nodes indicates that there is
more than one data connection with different characteristics.

In the table, nrE3 = 47, which is the sum of nrE2 + LPU +
nwE4 + nrE4. This is because the buffer has already written
the data generated by the PG processing block but will de-
lay the read operation for the MCC processing block for data
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Table 2: Edge information table for GPF. Each edge requires a buffer.

Edge Data nrEi nwEi MEi DEi

E1 (CPG–PG) (x̃, Ṽx , ỹ, Ṽy) 1 1 M 1

E2 (PG–PU) (x, y) 1 1 M 1

E3 (PG–MCC) (x,Vx , y,Vy) 47 1 M 1

E4 (PU–MCC) (w) 1 2 M 1

E5 (PU–MCC) (sum) 1 M + 1 1 1

E6 (MCC–CU) (Var) 1 M 10 1

E7 (MCC–CU) µ 1 M 4 1

E8 (MCC–CPG) µ 78 M 4 1

E9 (MCC–OG) µ 1 M 4 1

E10 (CU–CPG) (S) 1 75 10 1

Table 3: Parameters for buffer controllers for the GPF. Each value in parenthesis represents the actual counting parameter for the buffer
controller.

Start Time instant Write start Read start

Start1 0
start1 + LCPG + nwE1 start1 + LCPG + nwE1 + nrE1

(12) (13)

Start2
start1 + LCPG + nwE1 + nrE1 start2 + LPG + nwE2 start2 + LPG + nwE2 + nrE2

(13) (22) (23)

Start3
start1 + LCPG + nwE1 + nrE1 start3 + LPG + nwE3 start3 + LPG + nwE3 + nrE3

(13) (22) (69)

Start4
start2 + LPG + nwE2 + nrE2 start4 + LPU + nwE4 start4 + LPU + nwE4 + nrE4

(23) (68) (69)

Start5
start2 + LPG + nwE2 + nrE2 start5 + LPU + nwE5 start5 + LPU + nwE5 + nrE5

(23) (M + 67) (M + 68)

Start6
start4 + LPU + nwE4 + nrE4 start6 + LMCC + nwE6 start6 + LMCC + nwE6 + nrE6

(69) (M + 77) (M + 78)

Start7
start4 + LPU + nwE4 + nrE4 start7 + LMCC + nwE7 start7 + LMCC + nwE7 + nrE7

(69) (M + 77) (M + 78)

Start8
start4 + LPU + nwE4 + nrE4 start8 + LMCC + nwE8 start8 + LMCC + nwE8 + nrE8

(69) (M + 77) (M + 155)

Start9
start4 + LPU + nwE4 + nrE4 start9 + LMCC + nwE9 start9 + LMCC + nwE9 + nrE9

(69) (M + 77) (M + 78)

Start10
start6 + LMCC + nwE6 + nrE6 start10 + LCU + nwE10 start10 + LCU + nwE10 + nrE10

(M + 78) (M + 154) (M + 155)
Reset M + 155 — —

synchronization. For E4 and E5, nwE4 and nwE5 are 2 and
M+1, respectively. At E8, the read operation for the CPGwill
be delayed by nrE8 which is nrE6 + LCU + nwE10 + nrE10 = 78.
This will synchronize both µ and S at the CPG processing
block. At E10, nwE10 = LCUt = 75, which corresponds to the
time taken by the CU processing block to generate the first
data. For E6, E7, E8, and E9, nwEi =M. The values ofDEi are
all 1 since there is no rate mismatch.

Table 3 summarizes the parameters of all buffer con-
trollers. These parameters are derived from the above two
tables. For each buffer, the start time of each buffer con-
troller and period of the buffer iteration are illustrated. The
parameters for the start time are computed with respect to
fclock. The external input is synchronized with the start of the
PU1.

Note that there are several key synchronization points.
First, the buffer controllers for E6 and E7 have identical read
beginning. Second, the buffer controllers for E8 and E10 also
have identical beginning of the read. Third, the buffer con-
trollers for E7, E8, and E9 have identical write beginning.
Fourth, the buffer controllers for E2 and E3 have identical
start time and write beginning. Fifth, the buffer controllers
for E3 and E4 have the same read beginning. The iteration
period is indicated by the reset time instant. From the previ-
ous discussion on timing diagram, the iteration period was
M + LGPF =M + 155 including the CU computation latency,
and the values of nrEi and nwEi in the critical path.

Table 4 illustrates buffer controller usages and configu-
ration parameters for the global controller. The buffer size
for each buffer controller is also indicated. The factor of 4
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Table 4: Synchronization parameters for the global controller. M = 1024 is assumed and the value of M changes the buffer controller 10
and the value of reset.

Buffer controller Buffer size Control parameter (msb, . . . , lsb)

1 4 (+4) 000000000000

2 2 (+2) 000000001101

3 4 (+4) 000000001101

4 1 (+1) 000000010111

5 1 (+1) 000000010111

6 1 (+1) 000001000101

7 1 (+1) 000001000101

8 4 (+1) 000001000101

9 1 (+1) 000001000101

10 1 (+1) 010001001111

Reset — 010010011001

Start1 Start2 Startn

AND AND · · · AND AND

Global clock
Counter

Global reset

Figure 11: Illustration of the global controller structure.

implies that the vector of data (i.e., (x, Vx, y, Vy)) is con-
trolled by one buffer controller. The maximum total amount
of buffer used for the synchronization is bounded by about
4M where M is the number of particles used in the filter-
ing. Note that the actual buffer size required by each buffer
controller is bounded by min(nrEi,MEi). Thus, E3 actually
used a much smaller buffer than the maximum size indi-
cated in the table. The global controller is a counter that gen-
erates start signals indicated by the time instants in Table 3.
The entire process of generating the start signal repeats with
periodicity indicated by the reset value. A block diagram
of the global controller is illustrated in Figure 11. The in-
put to each AND gate is a binary representation of the start
time instant of each buffer controller. If M = 1024, the
size of the counter is 11 bits. After each period, the global
controller is reset and starts the operation over again. The
control parameters are represented in binary number which
will be used as inputs of the AND gate to generate the
start signal at the correct time. Assuming that M=1024, we
need a 12-bit counter for the global controller. The value
of M changes the buffer controller 10 and the value of re-
set.

5.2. Design analysis

The execution performance of the particle filter, whose de-
sign is based on the proposed methodology, is kept at the
maximum by fully exploiting operational concurrency. As
discussed in the data-flow, most operations are fully fused
to minimize possible latency and data dependency. A sim-
ple data transfer is necessary within each processing block.
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Figure 12: Performance comparison of different realizations. FPGA
represents the design based on the proposed method and DSP rep-
resents the design based on DSP.

When concurrency is fully exploited, as illustrated in
the timing diagram, the sampling period increases al-
most linearly with the number of particles for M =
{500, 1000, 5000}. The sampling periods of the GPF are
3.14, 5.55, and 24.8 microseconds, respectively. The exe-
cution performance in terms of sampling period is eval-
uated for four different realizations. The comparison is
plotted in Figure 12. The GPF and sample importance fil-
ter (SIRF) particle filtering algorithms are considered [25].
The two sets of curves show the sampling period ver-
sus the number of executed particles. When it is com-
pared to DSP processors such as Analog Device Tiger-
Sharc DSP (similar performance is achieved with Texas
Instruments DSP processors), the GPF realization is about
100 times faster mainly due to its operational concurrency.
While the DSPs provide some degree of parallelism and
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concurrency, both parallelism and pipelining cannot be fully
exploited. When the performances of the GPF and the SIRF
are compared, the GPF is approximately twice faster than
that of SIRF when the number of particles is more than 1000.
This is because the performance of the SIRF, when the pro-
posed methodology is followed, is proportional to 2M where
the GPF is proportional to M. However, the SIRF and the
GPF are close in performance since latency of the GPF due
to pipelining is much larger than that of SIRF. When both
algorithms are executed on DSP, their performances are very
close. While the SIRF takes more time when concurrency is
exploited in the FPGA design, the GPF takes more cycles due
to complicated arithmetic computations.

The proposed block-level pipelining design maximizes
buffer controller usages and minimizes dynamic reconfigu-
ration efforts. The design does not suffer from the amount of
memory used for buffers since we can view those buffers as a
collection of pipeline registers (i.e., these registers are needed
in any design with standard design flow whether the design is
based on distributed or centralized schemes). These pipeline
registers cannot be eliminated if the maximum throughput
is of utmost concern. Since we are eliminating the use of in-
dividual pipeline register, lower overall clock loading can be
achieved.

Particle filter based on the proposed methodology sup-
ports parameter changes during run-time because the de-
sign methodology ensures flexibility. Moreover, the design
can be extended to support wide ranges of particle filtering
including the parallel operation. One biggest novelty of the
architecture is that the buffer controller guarantees correct
operation while maintaining maximum throughput. More-
over, because of very small information associated with each
structure (i.e., one set of data for each buffer controller and
global controller), the reconfiguration time is almost nonex-
istent (i.e., all the parameters for the controller and structural
switch can be loaded with a few clock cycles but as low as one
cycle simultaneously).

6. CONCLUSIONS

This paper introduces a simple design methodology of gen-
erating an overall controller for a particle filter realization.
We have demonstrated that the proposed method is very ef-
fective when the data-flow structure is well defined by tak-
ing into account their execution characteristics. The entire
design followed-block-level pipelining approach where con-
trollers can easily be derived from the data flow and the
parameters of processing blocks. We have considered GPF
for validating our design methodology. The overall tempo-
ral correctness has been verified by Verilog and SystemC. The
method is very important because the processing block exe-
cution characteristics can be changed with minimal change
in the controller structure.
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Miodrag Bolić received his B.S. and M.S.
degrees in electrical engineering from the
University of Belgrade, Yugoslavia, in 1996
and 2001, respectively, and received his
Ph.D. degree in electrical engineering from
Stony Brook University (SUNY), USA. He
is currently with the School of Information
Technology and Engineering, the Univer-
sity of Ottawa, Canada. From 1996 to 2000,
he was a Research Associate with the Insti-
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