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Moments are widely used in pattern recognition, image processing, and computer vision and multiresolution analysis. In this
paper, we first point out some properties of the orthogonal Gaussian-Hermite moments, and propose a new method to detect the
moving objects by using the orthogonal Gaussian-Hermite moments. The experiment results are reported, which show the good
performance of our method.
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1. INTRODUCTION

Moments are widely used in pattern recognition, image pro-
cessing, and computer vision and multiresolution analysis
[1, 2, 3, 4, 5, 6, 7, 8, 9]. We present in this paper a study on or-
thogonal Gaussian-Hermite moments (OGHMs), their cal-
culation, properties, application and so forth. We at first an-
alyze their properties in spatial domain. Our analysis shows
orthogonal moment’s base functions of different orders hav-
ing different number of zero crossings and very different
shapes, therefore they can better separate image features
based on different modes, which is very interesting for pat-
tern analysis, shape classification, and detection of the mov-
ing objects. Moreover, the base functions of OGHMs are
much more smoothed; are thus less sensitive to noise and
avoid the artefacts introduced by window function’s discon-
tinuity [1, 5, 10].

Since the Gaussian-Hermite moments are much
smoother than other moments [5], and much less sensitive
to noise, OGHMs could facilitate the detection of moving
objects in noisy image sequences. Compared with other
differential methods (DMs), experiments show that much
better results can be obtained by using the OGHMs for the
moving objects detection.

Traffic management and information systems rely on
some sensors for estimating traffic parameters. Vision-based
video monitoring systems offer a number of advantages. The
first task for automatic surveillance is to detect the moving

objects in a visible range of the video camera [2, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22]. The objects can be persons,
vehicles, animals, etc. [2, 12, 13, 15, 21, 23, 24].

In general, we can classify the methods of detecting the
moving objects in an image sequence into three principal
categories: methods based on the background subtraction
(BS) [2, 12, 13, 18], methods based on the temporal varia-
tion in the successive images [1, 2, 25], and methods based
on stochastic estimation of activities [11].

To extract the background image, one simple method is
to take the temporal average of the image sequence; another
is to take the median of the image sequence [2]. However,
these methods are likely to be ineffective to solve the prob-
lems of the lighting condition change between the frames
and the slow moving objects. For example, the mean method
leaves the trail of the slow moving object in the background
image, which may lead to the wrong detecting results.

In order to obtain the background image almost on real
time, the adaptive background subtraction (ABS) method,
proposed by Stauffer and Grimson [12, 13], can be adopted.
In this method, a mixture of K Gaussian distributions
adaptively models each pixel of intensity. The distributions
are evaluated to determine which are more likely to re-
sult from a background process. This method can deal
with the long-term change in lighting conditions and scene
changes. However, it cannot deal with sudden movements
of the uninteresting objects, such as the flag waving or
winds blowing through trees for a short burst of time [11].
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A sudden lighting change will then cause the complete frame
to be regarded as foreground, if such a condition arises. The
algorithm needs to be reinitialized [11, 12, 13]. It again de-
mands a certain quantity of accumulated images.

Our paper is organized as follows. Section 2 presents
OGHMs and their properties; Section 3 presents the detec-
tion of the moving objects by using OGHMs; Section 4 gives
the experimental results and the performance comparison
with other methods of detecting the moving objects; some
conclusions and discussions are presented in Section 5.

2. OGHMS AND THEIR PROPERTIES

2.1. Hermitemoments [5, 6]

Hermite polynomial is one family of the orthogonal polyno-
mials as follows:

Pn = Hn

(
t

σ

)
, (1)

whereHn(t) = (−1)n exp(t2)(dn/dtn) exp(−t2), σ is the stan-
dard deviation of the Gaussian function.

The 1D nth-order Hermite momentMn(x, s(x)) of a sig-
nal s(s) can therefore be defined as follows:

Mn
(
x, s(x)

) =
∫∝
−∝

s(x + t)Pn(t)dt

= 〈Pn(t), s(x + t)
〉

(n = 0, 1, 2, . . . ).

(2)

In the 2D case, the 2D (p, q)-order Hermite moment is
defined as

Mp,q
(
x, y, I(x, y)

)

=
∫∝
−∝

∫∝
∝
I(x + u, y + v)Hp,q

(
u

σ
,
v

σ

)
dudv,

(3)

where I(x, y) is an image and Hp,q(u/σ , v/δ) = Hp(u/σ) ×
Hq(v/σ).

2.2. Orthogonal Gaussian-Hermitemoments

The OGHMswas proposed by Shen et al. [5, 6]. The OGHMs
of a signal s(x) is defined as

Mn
(
x, s(x)

) =
∫∝
−∝

s(x + t)Bn(t)dt =
〈
Bn(t), s(x + t)

〉
, (4)

where Bn(t) = g(t, σ)Pn(t), g(x, σ) = (1/
√
2πσ) exp(−x2/

2σ2) and Pn(t) is a Hermite polynomial function.
For calculating the OGHMs, we can use the following re-

cursive algorithm:

Mn
(
x, s(m)(x)

) = 2(n− 1)Mn−2
(
x, s(m)(x)

)
+ 2σMn−1

(
x, s(m+1)(x)

)
(n ≥ 2),

(5)

where s(m)(x) = (dm/dxm)s(x), s(0)(x) = s(x).

In particular,

M0
(
x, s(x)

) = g(x, σ)∗ s(x),

M1
(
x, s(x)

) = 2σ
(
d

dx

)(
g(x, σ)

)∗ s(x),
(6)

where “∗” represents the operation of convolution.
In the 2D case, the OGHMs of order (p, q) of an input

image I(x, y) can be defined similarly as

Mp,q
(
x, y, I(x, y)

)

=
∫∝
−∝

∫∝
∝
g(u, v, σ)Hp,q

(
u

σ
,
v

σ

)
I(x + u, y + v)dudv,

(7)

where Hp,q(u/σ , v/σ) = Hp(u/σ)Hq(v/σ), g(u, v, σ) = (1/
2πσ2) exp(−(u2/2σ2 + v2/2σ2)).

Obviously, the 2D OGHMs are separable, so the calcula-
tion of the 2D OGHMs can be decomposed into the cascade
of two steps of the 1D OGHMs calculation:

Mp,q
(
x, y, I(x, y)

)

=
∫∝
−∝

(∫∝
∝
g(u, δ)Hp

(
u

σ

)
I(x + u, y + v)du

)

× g(v, σ)Hp

(
v

σ

)
dv.

(8)

In order to detect moving objects in image sequences by
using OGHMs, if a video image sequence { f (x, y, t)}t=0,1,2,...
is given, for each spatial position (x, y) on the images, we
define the temporal OGHMs as follows:

Mn
(
t, f (x, y, t)

) =
∫∝
−∝

f (x, y, t + v)Bn(v)dv. (9)

Its recursive algorithm can be rewritten as follows:

Mn
(
t, f (x, y, t)

)
= 2(n−1)Mn−2

(
t, f (x, y, t)

)
+2σMn−1

(
t, f (1)(x, y, t)

)
.

(10)

In particular, we use only the moments of the odd orders
up to 5.

2.3. The properties of the OGHMs

First of all, the Gaussian filter has a property as follows:

(
dn

dtn

)(
g(t, σ)∗ f (x, y, t)

) = g(n)(t, σ)∗ f (x, y, t). (11)

According to the recursive algorithm, the OGHMs have
the following properties.
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Figure 1: The mask of the 1D OGHMs of order 0.

Property 1. Given a Gaussian function g(t, σ) and an image
f (x, y, t) of the image sequence { f (x, y, t)}t=0,1,2,..., we have

Mn
(
t, f (x, y, t)

) = n∑
i=0

ai

(
di

dti

)(
g(t, σ)∗ f (x, y, t)

)

=
( n∑
i=0

ai

(
di

dti

)
g(t, σ)

)
∗ f (x, y, t),

(12)

where ai depends on σ only.

This property shows that the mask
∑n

i=0 ai(di/dti)g(t, σ)
of the nth moment is the linear combination of the Gaussian
function and its derivatives of different orders.

Property 2. Given a Gaussian function g(t, σ) and an image
sequence { f (x, y, t)}t=0,1,2,..., we have

Mn
(
t, f (x, y, t)

) = k∑
i=0

a2i

(
d2i

dt2i

)(
g(t, σ)∗ f (x, y, t)

)

for n = 2k (n is even),

(13)

Mn
(
t, f (x, y, t)

)

=
k∑
i=0

a2i+1

(
d2i+1

dt2i+1

)(
g(t, σ)∗ f (x, y, t)

)
,

for n = 2k + 1 (n is odd),

(14)

where ai depends on σ only.

This property shows that the mask of the OGHMs of odd
order is the linear combination of the derivatives of odd or-
ders of the Gaussian function, and the mask of the OGHMs
of even order is the linear combination of the derivatives of
even orders of the Gaussian function.

Property 3. Given a Gaussian function g(t, σ) and an image
sequence { f (x, y, t)}t=0,1,2,..., Mn(t, f (x, y, t)) =

∑n
i=0 ai(di/
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Figure 2: The mask of the 1D OGHMs of order 1.

dti)(g(t, σ) ∗ f (x, y, t)), we note that F(t, δ) = ∑n
i=0 ai(di/

dti)g(t, σ); then F(t, σ) = 0 has n different real roots in the
interval (−∞,∞).

F(x, σ) is called the base function of the OGHMs (also
called the mask of the OGHMs). This property shows that
the mask of the nth moment has n different zero crossings.

2.4. Some conclusions

From the properties of OGHMs, we see that these moments
are in fact linear combinations of the derivatives of the fil-
tered signal by a Gaussian filter. As it is well known, deriva-
tives are important features widely used in signal and im-
age processing. Because differential operations are sensitive
to random noise, a smoothing is in general necessary. The
Gaussian-Hermite moments just meet this demand because
of the Gaussian smoothing included. In image processing,
one often needs the derivatives of different orders to effec-
tively characterize the images, but how to combine them is
still a difficult problem. TheOGHMs show away to construct
orthogonal features from different derivatives.

For facilely understanding the OGHMs, in Figures 1, 2, 3,
4, and 5, we give out some characteristics charts of the base
function of OGHMs.

In the spatial domain, because the base function of the
nth-order OGHMs will change its sign n times, OGHMs can
well characterize different spatial modes as other orthogonal
moments. As to the frequency domain behavior, because the
base function of the nth-order OGHMs consists of more os-
cillations when the order n is increased, they will thus contain
more and more frequency. Table 1 shows that the frequency
windows’ quality factor Q = (center/effective bandwidth) of
OGHMs base function is large than that of other moment
base function; therefore OGHMs separate different bands
more efficiently. Moreover, from the properties of OGHMs,
we see that these moments are in fact linear combinations
of the derivatives of the signal filtered by a Gaussian filter,
therefore, realizing differential operation and removing ran-
dom noise.
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Figure 3: The mask of the 1D OGHMs of order 2.
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Figure 4: The mask of the 1D OGHMs of order 3.

From the viewpoint of frequency analysis, it seems that
the OGHMs characterize images more efficiently. With the
help of the technique representing frequency characteristics
by the band centerω0 and effective bandwidth Be, we can bet-
ter see the differences between the moment base functions.
In Table 1, these characteristics for orders from 0 through 10
are shown. A similar conclusion holds in 2D cases. In general,
one uses the max order up to 10.

3. DETECTINGMOVINGOBJECTS USING OGHMS

3.1. Calculating the OGHMs images

According to (12), (13), and (14), we can see that all the
OGHMs are actually the linear combinations of the different
order derivatives of the image filtered by a temporal Gaus-
sian filter. As it is well known, the temporal derivatives can
be used to detect the moving objects in image sequences. The
OGHMs of odd orders are in fact the combinations of these
derivatives, it is therefore reasonable to use them to detect the
moving objects.

According to (12),Mn is equal to the temporal derivative
of the image filtered by a Gaussian filter, and the OGHMs
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Figure 5: The mask of the 2D OGHMs of order (1, 0).

aremuch smoother than othermoments, thereforemuch less
sensitive to noise, which could facilitate the detection of the
moving objects in noisy image sequences.

To detect the moving objects by using the OGHMs, we
first calculate the temporal moments of an image sequence.
According to (14), calculating the temporal OGHMs of an
image sequence is equal to calculating the convolution of
the mask F(t, σ) with f (x, y, t). In order to approach the
mask F(t, σ), according to the inequality

∫
|t−Et|≥ε g(t)dt ≤

(1/ε2)
∫
(t − Et)2g(t)dt = σ2/ε2, if we take ε = 5σ , then∫

|t−Et|≥ε g(t)dt ≤ 1/25 = 4%. Hence the Gaussian function as
the convolution kernel is common to choose No = 10σ + 1,
namely the masks of size 2L + 1 with L = 5σ is used. For
practical computation reasons, we use only the moments of
orders up to 5. Hence, in order to detect the moving objects
using the OGHMs, the temporal OGHMs of an image se-
quence is calculated first.

Since both the positive values and negative values of the
moments correspond to the moving objects (containing the
noise), we take the absolute value of the moments instead of
their original values. For example, for Figure 6, from Figure 7
to Figure 11, we present the OGHMs images, visualized by
linearly transforming the absolute value of the OGHMs to
the gray value ranging from 0 to 255. It can be seen that four
moving objects (2 persons, one car, and one cyclist) are well
enhanced in the moment images.

Thus M3 contains more information than M1 for de-
tecting the moving objects. Therefore, we can use the third
moment to detect the mobile objects. Figures 8 and 9 show
the experimental results in this case.

By comparing the results obtained in the case of σ = 0.3
and σ = 0.8, it can be seen when a larger σ is used, the results
of the detection of the moving objects are less sensitive to the
noises, but the detected objects have larger sizes than their
real sizes. This phenomenon can be explained in Section 3.4.

The M5 is a weighted sum of the first-, third-, and fifth-
order derivatives of image filtered by a temporal Gaussian fil-
ter. Therefore,M5 still contains more information than these
M1 and M3 for the detection of the moving objects. Figures
10 and 11 show the experiment results.
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Table 1: Frequency characteristics of the base functions of geometric, Hermite, Legendre moments, and OGHMs.

Moment Geometric moment Hermite moment Legendre moment OGHMs

order ω0 Be ω0/Be ω0 Be ω0/Be ω0 Be ω0/Be ω0 Be ω0/Be

0 0.40 2.11 0.1896 0.40 2.11 0.1896 0.40 2.11 0.1896 0.53 0.44 1.2045

1 1.25 3.87 0.3230 1.25 3.87 0.3230 1.25 3.87 0.3230 1.13 0.48 2.3542

2 1.59 4.71 0.3376 1.64 4.77 0.3438 1.94 4.90 0.3959 1.36 0.75 1.8133

3 2.32 5.74 0.4042 2.42 5.86 0.4130 2.60 5.74 0.4530 1.69 0.80 2.1125

4 2.61 6.23 0.4189 2.79 6.45 0.4326 3.25 6.46 0.5031 1.86 0.97 1.9175

5 3.28 7.00 0.4686 3.56 7.30 0.4877 3.92 7.15 0.5483 2.12 1.01 2.0990

6 3.52 7.36 0.4783 3.93 7.78 0.5051 4.59 7.77 0.5907 2.24 1.15 1.9478

7 4.15 7.98 0.5201 4.69 8.50 0.5518 5.29 8.41 0.6290 2.47 1.19 2.0756

8 4.36 8.27 0.5272 5.10 8.94 0.5705 6.01 9.01 0.6670 2.59 1.33 1.9474

9 4.95 8.79 0.5631 5.89 9.59 0.6142 6.77 9.64 0.7023 2.81 1.41 1.9929

10 5.14 9.03 0.5692 6.36 10.03 0.6341 7.55 10.23 0.7380 2.97 1.66 1.7892

3.2. Detecting themoving objects by integrating
the first, third, and fifthmoments

It is known that the third and fifth moments contain more
information than the first moment, so we can integrate the
first, third, and fifth moments.

Because the first, third, and fifth moments are orthogo-
nal, one can consider that the first moment is the projection
of image f (x, y, t) on axis 1; the third moment is the pro-
jection of image f (x, y, t) on axis 3; the fifth moment is the
projection of image f (x, y, t) on axis 5; and the axes 1, 3,
and 5 are orthogonal. For getting the perfect real moving ob-
jects using the first, third, and fifth moments, we may use the
vector module of the 3D space to regain its actual measure,

namelyM(x, y, t) =
√
M2

1 +M2
3 +M2

5 .
Henceforward, we principally adopt the M(x, y, t) as

OGHMs images (OGHMIs). We notice that the OGHMIs
contain more information than a single derivative image or
single OGHMs.

3.3. Segmenting themotion objects

We have noticed that OGHMI (OGHM) is also equal to the
image transformation. This transformation can suppress the
background, and enhance the motion information. We also
know, for the noise image, we cannot remove all noise by
a Gaussian filter. For obtaining the true region of the mov-
ing objects, having calculated the OGHMIs, we then detect
the moving objects by the use of the segmentation of such
images. To do this, a threshold for each OGHMI should
be determined. One of the well-known methods for the
threshold determination for image segmentation is the in-
variable moments method (IMM) [2, 3, 25]. But this method
has not taken into account the spatial and temporal rela-
tions between moving pixels, which are important for im-
age sequence analysis. To improve the method, instead of us-
ing a binary segmentation based on the threshold thus de-
termined, we use a fuzzy relaxation for the segmentation
of the moment images by taking into account these rela-
tions with the help of a nonsymmetric π fuzzy membership

function [2]:

π
(
M(x, y);T ,Mmin(x, y)

)

=




1− 2
(
T −M(x, y)

)2
(
T −Mmin(x, y)

)2
if 0 <

(
T −M(x, y)

)
(
T −Mmin(x, y)

) ≤ 0.5,

2
[ (

T −M(x, y)
)

(
T −Mmin(x, y)

) − 1
]2

if 0.5 <

(
T −M(x, y)

)
(
T −Mmin(x, y)

) ≤ 1,

1 ifM(x, y) ≥ T ,

0 otherwise,

(15)

where M(x, y) is the gray level of the OGHMI at the
point (x, y), T is the segmentation threshold of the
moment image M(x, y), which is obtained by using
the (IMM) [2], Mmin(x, y) is the minimum of M(x, y).
π(M(x, y);T ,Mmin(x, y)) is still noted as π(x, y).

For each point in the moment images, the membership
function, which gives a measure of the “mobility” of each
pixel in each moment image, is first determined. We then
apply a fuzzy relaxation to the membership function im-
ages, which gives the final results of the moving pixel detec-
tion [2].

3.4. Analyzing the localization errors

According to the theory of Gaussian filtering, a Gaussian
filter with larger standard deviation is less sensitive to the
noises, but brings larger localization errors [26]. How much
is the localization error of detecting the moving objects? Now
we give the discussion.

Let F(x, y, t) = ( f (x, y, t)+n(x, y, t)) be the input image;
n(x, y, t) is the Gaussian white noise image; f (x, y, t) is the
true image at time t. Given the image F(x, y, t), the Gaussian
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Figure 6: Initial image.

Figure 7: First OGHMs image.

Figure 8: Third OGHMs image (σ = 0.3).

filter (finite impulse response) output is as follows:

HF
(
x, y, t0

) = f (x, y, t)∗ g(t) + n(x, y, t)∗ g(t), (16)

so we have

Hf (x, y, 0) = f (x, y, t)∗ g(t) =
∫ w

−w
f (x, y,−t)g(t)dt,

(17)

where ω is the length of integrating windows; in general, ω =
5σ .

Figure 9: Third OGHMs image (σ = 0.8).

Figure 10: Fifth OGHMs image (σ = 0.3).

Figure 11: Fifth OGHMs image (σ = 0.8).

Supposing the noise variance is n20(x, y), then the noise
output satisfies

E
(
Hn
) = [E∣∣n(x, y, t)∗ g(t)

∣∣2]1/2 = n0

(∫ w

−w
g2(t)dt

)1/2
,

(18)

where Hf (x, y, t) and Hn(x, y, t) are filter responses to im-
age and noise, respectively. Let true edge point (we consider
that the boundary of the background and the moving object
point belong to the step-type edge, so its second derivative is
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zero at the edge point [27]) at t = 0; and let t0 be the edge
point of the total responseHF(x, y, t) (in fact, localization er-
ror point). Then,

H′′
F

(
x, y, t0

) = H′′
f

(
x, y, t0

)
+H′′

n

(
x, y, t0

) = 0, (19)

where “′” represents the derivative of a function on t. Taylor
expansion of H′′

f (x, y, t0) at t = 0 is as follows:

H′′
f

(
x, y, t0

) = H′′
f (x, y, 0) + t0H

′′′
f (x, y, 0) +O

(
t20
)
, (20)

where H′′
f (x, y, 0) = 0 is assumed (the true edge point). We

ignore the higher-order terms. Combining (19) and (20), we
have

t0H
′′′
f (x, y, 0) ≈ −H′′

n

(
x, y, t0

)
. (21)

From a derivative similar to that for noise, we have

E
∣∣H′′

n

(
x, y, t0

)∣∣2 = n20

∫ −w
−w

(
g′′(t)

)2
dt. (22)

Differentiating Hf (x, y, t) = f (x, y, t) ∗ g(t), and evalu-
ating at t = 0 (t ∈ R), we have

H′′′
f (x, y, 0) =

∫ w

−w
f (x, y,−t)g′′′(t)dt. (23)

Combining (21), (22), and (23), the localization error is
defined as follows:

T0 = 1(
E
[(
t0
)2])1/2

=
∣∣∣∫ w−w f (x, y,−t)g′′′(t)dt

∣∣∣
n0
(∫ w
−w g′′2(t)dx

)1/2 .

(24)

We must point out that the localization error T0 is con-
cerned with only the temporal domain (frame number). For
obtaining the space localization error, we must estimate the
motion speed of the moving object, then the space localiza-
tion error equals to multiple the motion speed with 1/T0.

According to (24), we can obtain the following conclu-
sions (1) If σ is bigger, the space localization error will be big-
ger. (2) If the speed of the moving object is faster, the space
localization error will be bigger.

4. COMPARING THE EXPERIMENTAL RESULTS

In this section, we give some experimental results and the
performance compared with other methods for detecting the
moving objects. For these experiments, we choose the image
sequence of the Reading University offered for test. In this
image sequence, it contains 548 frame images (0953–1500).
The size of each frame image is 768×576 and the gray level of
pixel is 256. The images were acquired by a fixed camera and
fixed parameters. Some original images are shown in Figures
12, 13, 14, and 15.

Figure 12: Initial image 0975.

Figure 13: Initial image 1105.

4.1. Comparing ourmethodwith a DM

For the original image 1105 (Figure 13), our experiments
show that one cannot well detect the moving objects by us-
ing classical temporal DM because of the high-level noise. In
Figure 16, we notice that the moving objects are very fuzzy
and that there exist lots of noises. So this method is very sen-
sitive to the noises.

However Figure 17 shows that the moving objects are de-
tected by using OGHMs with σ = 0.8, and segmented by
FRM [2]. We see that the moving objects are very well de-
tected. The experiment result shows the good performance
of our method.

4.2. Comparing ourmethodwith the BSmethod

In order to further test the performance of our method, the
method of the BS is employed. To get the test image sequence,
we artificially change the illumination condition of 10 frames
(0980–0989) among 548 images (0953–1500). For this se-
quence, we first take the average of these 548 frames to gen-
erate a background image, and employ the method of the BS
to detect the moving objects. Unfortunately, it fails for the
10 frames as the illumination was changed; an experimental
result is shown in Figure 18; the background and the mov-
ing objects mix together. However, using the OGHMs, we
succeeded to detect the moving objects in all frames of the
image sequence, except 4 frames (0979, 0980, 0989, 0990);
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Figure 14: Initial image 0981.

Figure 15: Initial image 1140.

Figure 16: Detecting the moving objects using DM, segmented by
FRM (1105).

an experimental result is shown in Figure 19. We can see that
the moving objects are very well detected.

4.3. Comparing the real objects with
the detectedmoving objects

Figure 20 shows an experiment result of detecting the mov-
ing objects by using OGHMs and segmenting the moving
object using the 3D MRM [2]. Figures 21 and 22 show the

Figure 17: Detecting themoving objects using OGHMs, segmented
by FRM (σ = 0.8).

Figure 18: Illumination abrupt change; background and moving
objects are mixed by BS (0981).

Figure 19: Illumination change; detecting the moving objects by
third OGHMs (0981).

superposition results of the original images with the moving
objects that were detected by using OGHMs and the moving
objects were segmented by 3D MRM. We can see that these
detected moving objects conform to the real moving objects.

4.4. Comparisonwith ABS

To improve the performance of BS methods for motion de-
tection, one can use ABS methods to update the background
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Figure 20: Detecting the moving objects by OGHMs, segmented by
3D MRM (1105).

Figure 21: Superposition of the moving objects with initial image
(0975).

Figure 22: Superposition of the moving objects with initial image
(1105).

image at each instant so that it can take into account the
environment changes such as the illumination change. One
of the problems of such adaptive methods is the choice of
value of the “learning rate” parameter for background up-
dating, which in fact depends on the velocity of the moving
objects. Unfortunately, in general, the velocity of the mov-
ing objects in a dynamic scene can change from time to time
and at the same instant, it can change from object to object.

False moving car

Figure 23: Detecting the moving objects using the adaptive back-
ground method (1140).

Figure 24: Detecting the moving objects using the OGHMs (1140).

Moreover, such methods can correct the illumination
changes just efficiently in background updating only after
the accumulation of a sufficiently large number of frames.
Another problem of such methods is that when there exist
slowly moving objects in the sequence, these moving objects
would be considered as static objects in the background dur-
ing the background updating process. So, when one detects
the moving objects by BS, there are some risks to detect false
moving objects that are in reality the trace of slowly mov-
ing objects at the preceding instants. By the use of OGHMs,
because the background images are not at all used, such
problems can be solved much easily. An experimental re-
sult is shown in Figure 23. From Figure 23, we can see that
by the ABS method, two moving cars are detected, of which
only one is the real moving car at the instant and another
is in fact a false one that in reality does not exist at the
instant. Figure 24 shows an experiment result of using our
method. We can see that the moving objects are very well de-
tected.

4.5. Comparing the integration performance
with othermethods

Detecting the moving objects can be divided into two cate-
gories: online detection and the offline detection. The online
detection applies principally to real-time surveillance and so
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Table 2: Comparing the performances of different method.

Method name Computation of each pixel Real time/online/offline Advantages Shortages

Temporal differential Addition: 1 time
Approximation of
real time;
online, offline

Simple
computing

Sensitive to the noise
Existing localization errors

Temporal differential
(Gaussian filtered)

Multiplication: 10σ +1 times
Addition: 10σ + 1 times

Approximation of
real time;
online, offline

Antinoises Existing localization errors

Simple BS Addition: average 2 times Offline
Precise
localization

No real time;
sensitive to the noise

ABS K mixed
Gaussian models

Multiplication: 20K times
Addition: 7K times
Exponential: K times
Square root: K times

Approximation of
real time; online

Precise
localization

Sensitive to the noise;
computation
complexity; demand
images
accumulation

OGHMs
Multiplication: 10σ + 1 times
Addition: 10σ + 1 times

Approximation of
real time;
online, offline

Antinoises Existing localization errors

forth. The offline detection applies principally to the analysis
of traffic accident and so forth. In general, the online detec-
tion treats with the long image sequence, for the past images,
if without special demand, it does not save the images. And
the offline detection treats with the short image sequence.

The online detection does not demand the high precise
localization of the moving objects. It only demand to de-
tect the moving objects in view range, for example, the au-
tomatic safe door opens and closes and so forth. However
the offline detection demand high precise localization of the
moving objects.

In evaluating the advantages or disadvantages of a detec-
tor of moving objects, we must pay attention to its applied
situation, in addition to some convenience criterions. For ex-
ample, the ABS for the offline detection is not significative,
because obtaining a good background model must demand
a lot of images.

In this section, some typical methods’ performances ad-
vantages and disadvantages are shown in Table 2. It shows
that our method has these advantages as follows.

(1) It can be used for the online and real-time detection.
We know that for obtaining the moving objects at T
time. We demand only the past 5σ frame image and
later 5σ frame image. When σ is not very large, such as
1, 5 frame images are demanded after T time. In gen-
eral, the CCD has the frame ratio 25/s. So delaying 0.2
second is completely acceptable. If we adopt the single-
direction expansion technique, namely f (x, y,T) =
f (x, y,T + 1) = · · · = f (x, y,T + 5σ), then it can
apply to the online and real-time system.

(2) It does not need the image accumulations, except the
simple DM; the other methods need image accumula-
tions.

(3) It has the stronger antinoise ability.

The disadvantage is the existence of the localization er-
rors.

Although the OGHMs method and the temporal DM
belong to the same category, they are different since the
OGHMs are not simple differential. However, it is reasonable
weight of the differentials of different order.

4.6. Simple statistic comparison of SNR

In the domain of detecting the moving objects, the SNR is
different from traditional SNR. Here the SNR is defined as
follows: SNR = M/(N1 + N2), where M is the total number
of motion pixel in the believable (true) region of moving ob-
jects; N1 is the total number of undetected motion pixels in
the believable region of the moving objects and N2 is the to-
tal number of the detectedmotion pixels in the nonbelievable
region of the moving objects.

Practically, it is difficult to obtain the believable region of
themoving objects, because the obtained believable region of
the moving objects is the same as that of the detected. To our
understanding, no comparable reports concerning the SNR
of the motion detection were published up till now.

Here, we only can simply compare the SNR using the
artificial believable region of the moving objects. In our ex-
periment, 100 successive images are employed. For each im-
age, the believable region of the moving objects is extracted
artificially. Let D represent the total pixel number of the de-
tected motion in the believable region of the moving objects.
The experiment results are shown in Table 3.

4.7. Experiment of localization errors

Theoretically, according to (24), we can obtain the localiza-
tion errors of the detected moving objects, and correct the
detection results. However, in practice, because the discrete
data can lead to error; sometimes, the experiment results are
not accordant with the true case.
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Table 3: The statistics showing the experiment results of SNR based on 100 images.

The name of the method D (average) N1 (average) N2 (average) SNR (average)

Temporal differential (unfiltered) 3547 2905 3262 1.0462

BS (average method, unfiltered) 5391 1061 957 3.1972

ABS 5169 1283 975 2.8574

OGHMs 5320 1132 1543 2.4120

T0 > 10

T0 > 5

T0 > 2

Figure 25: The temporal localization errors of the moving objects
and their sketch maps.

To observe the localization errors, the points of having
localization errors are represented by white. For example,
T0 > 10 represent the motion points that the temporal lo-
calization errors are less than 1/10 frame; T0 ≥ 2 represent
the motion points that the temporal localization errors are
less than 0.5 frame (see Figure 25).

5. CONCLUSIONS

In this paper, we have analyzed some properties of the
OGHMs and proposed a new method for motion detection

using the OGHMs. The experiment results are also reported,
which show good performance of our method.

The main contribution of this paper is as follows. (1)
Pointing out some properties of OGHMs. (2) Analyzing the
meaning of each ordermoment. (3) Proposing a newmethod
of detecting the motion objects using OGHMs. (4) Compar-
ing the experiment results with other methods.

As for the application of OGHMs, we only make a try.
The obtained results are simple; we still have a lot of research
work to be completed; for example, (1) the antinoise abil-
ity (concrete quantification) of the OGHMs is still open; (2)
equation (24) is a formula for estimating the localization er-
ror. However, because of the discrete data can lead to error,
how much error is arisen by using discrete data is still open.
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