Hindawi Publishing Corporation

EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 15482, Pages 1-11
DOI 10.1155/ASP/2006/15482

BeTrIS—An Index System for MPEG-7 Streams

Andrea Kofler-Vogt," Harald Kosch," Joerg Heuer,?2 and André Kaup?

I Department of Information Technology, University Klagenfurt, 9020 Klagenfurt, Austria

2 Siemens AG, 80333 Munich, Germany

3 Chair of Multimedia Communications and Signal Processing, University of Erlangen-Nuremberg,

91058 Erlangen, Germany

Received 8 September 2004; Revised 9 February 2005; Accepted 4 March 2005

The ISO/IEC Motion Picture Group (MPEG) issued in 2002 a standard, called MPEG-7, which enables the content description
of multimedia data in XML. The standard supports applications to exchange, identify, and filter multimedia contents based on
MPEG-7 descriptions. However, especially mobile applications that deal with MPEG-7 suffer from limited bandwidth, low com-
putational power, and limited battery life. In this document, we describe an index system adopted from database systems that
allows filter mechanisms and random access to encoded MPEG-7 streams and which overcome the limitation of the network and
the consuming terminal. Encoding is applied in order to reduce the data rate of the XML documents to be transmitted. The in-
dexed parts of the encoded streams can be accessed without the need to deserialize the complete stream. Furthermore, the system
is evaluated and results of the experimental evaluation are discussed.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

MPEG-7 [1-3] is a multimedia description standard which
has been standardized by the ISO/IEC Motion Picture Group
(MPEG) to enable content providers and consumers to iden-
tify and search multimedia by content. MPEG-7 descrip-
tions cover a wide spectrum of multimedia features like
creation information, semantic information about places,
persons, and/or events, low-level features (color, textures,
sound), spatial-temporal decompositions, and so forth. Since
its introduction in 2002, more and more applications use
MPEG-7 to exchange their multimedia data between dif-
ferent parties. Examples are the M?-Box [4] that is based
on MPEG-7, the TV-Anytime forum (see [5]) which in-
tegrated the binary coding of MPEG-7 in its standard, or
other application scenarios that are shown in [2]. Also, the
constant progress of digital TV, the multiplication of chan-
nels, the competition and convergence with the Web, and the
widespread deployment of a variety of set-top boxes call for
new services that may rely on MPEG-7. For instance, broad-
casters provide electronic program guide (EPG) services to
their users or try to integrate TV with web technologies. The
problem is that TV bandwidth is extremely expensive. Thus,
a compression mechanism for XML-based MPEG-7 data is
required. Furthermore, most set-top boxes are cheap, and
the low-end ones have roughly half the power of a low-end

mobile device. Due to this, the deserialization of compressed
XML data must not be too complicated. If the data were sent
as XML plain text, it would have to be fragmented so that
set-top boxes would not have to wait for the end of the entire
document to have been carouselled in order to start exploit-
ing the data. That means the compression mechanism has
not only to be efficient in terms of the reduction of the size
and processing but should also work in a streaming environ-
ment and should allow the encoding and filtering of inde-
pendent parts of the XML document.

In this context, the system part of MPEG-7 introduced
a codec called binary format for metadata (BiM) [6] to en-
able efficient transmission of the XML-based MPEG-7 data.
With this codec, the metadata is sent in a number of access
units (AUs), each containing several fragment update units
(FUUs). To speed up the random access on dedicated infor-
mation within the stream, an index system for BiM-encoded
metadata is required. This system should provide fast ran-
dom access to particular fragment update units within an
encoded stream. Consider as example the following applica-
tion scenario. A user heard in the office that a blockbuster
movie will be played this week on TV. But the user does not
know on which day, at which time, and which channel will
play this movie. The schedule of various TV-channels can be
requested from a provider in form of an MPEG-7 descrip-
tion. The usage of an index system allows the user to process

EURASIP Journal on Applied Signal Processing

a quick stream lookup which returns the position of the rele-
vant information in the BiM-stream. Thus, decoding exactly
only the relevant FUU(s) which contains the broadcast infor-
mation of the queried film is required instead of decoding, in
the worst case, the complete stream containing the schedule
of several TV stations over 7 days and then searching within
the decoded data.

In this paper, we will present the conception and imple-
mentation of such an index system. It processes efficiently
typical database operations (i.e., element queries, multiple-
field queries) on MPEG-7 data streams. Performance evalu-
ation will validate our approach.

This paper is structured as follows. First, we briefly dis-
cuss mechanisms and systems to index and compress XML
data already available. In Section 3, our index system called
BeTrIS (for B-tree index system) is described. There we show
how a B-tree can be used to index XML data of MPEG-7 de-
scriptions. Furthermore, we describe a mapping mechanism
that allows the streaming of index trees. Section 4 describes
improvements of the system in order to gain a more com-
pact coding of the index information and to reach a better
search performance. We compared the performance of our
system against an alternative index system called XISS. Re-
sults of these evaluations are shown in Section 5. Finally, in
Section 6, we summarize our work and give a brief overview
of open issues.

2. RELATED WORK

An XML document such as an MPEG-7 description con-
tains structured data, that is, elements that describe a hier-
archy, and element contents and attribute values containing
application-specific data. Transmitting such a description in
plain text produces a high overhead concerning the stor-
age consumption and thus is not applicable in many cases.
Therefore, compression mechanisms for XML documents
are required.

2.1. XML compression tools

A couple of compression tools were developed that take ad-
vantage of the structure of an XML document. Examples of
such tools are XMill [7], Millau [8], XGrind [9], and XPRESS
[10]. In the case of MPEG-7, a compression tool was required
which achieves a high compression rate, which can be used in
a streaming environment, and which allows the compression
of independent subtrees. In order to provide these function-
alities, MPEG-7 standardized its own binary format called
BiM [6].

BiM assigns binary codes to elements and attributes
based on the type declarations in the associated XML schema
and allows the independent compression and decompression
of single subtrees of an XML document.

However, random access mechanisms are not provided
by the first version of BiM. Instead, the complete stream has
to be parsed before a query can be processed. For fast random
access to desired FUUs, an index system is required.

2.2, XML indexing strategies

A number of indexing solutions for XML have been pro-
posed; among them are the Index Fabric [11], SphinX [12],
a multidimensional indexing strategy [13], XISS [14], APEX
[15], and ToXin [16, 17].

The XML indexing and storage system (XISS [13]), for
example, makes extensive usage of the B-tree implementa-
tion called generalized search trees (GiSTs [18]). The B-trees
are used to efficiently find all elements or attributes with the
same name string. The basic index structure of this system is
anumbering scheme [19] for elements and attributes of XML
documents. This numbering scheme quickly determines the
ancestor-descendant relationship between elements in the hi-
erarchy of XML data. Furthermore, XISS includes several al-
gorithms for processing regular path expressions called EE-
Join, EA-Join, and KC-Join.

The indexing scheme ToXin (Toronto XML indexing en-
gine [15, 16]) consists of two different types of structures:
a path index and a value index. The path index can be used
for forward and backward navigation in the document tree.
It has two components: the index tree which is a minimal
dataguide (see [20]) and a set of instance functions, one for
each edge in the index tree. These functions store the parent-
child relationship of the XML elements and are used to navi-
gate in the index tree. The value index stores the XML nodes
and values corresponding to an index edge.

Most proposed systems are optimized according to ex-
tended query functionality and provide for this a complex set
of index structures. Mapping these kinds of indexes into one
stream is difficult, first due to the complex reference mecha-
nisms when index trees are aligned, second, these index
structures are often not optimized for the requirement of a
small storage size, which is crucial in the streaming context
described in this paper. Thus, we will introduce an index sys-
tem that is based on a B-tree. We will refer to this system as
BeTrIS (for B-tree index system) in the rest of this work. Be-
TrIS provides fast access to certain FUU(s) in the streaming
mode.

3. BeTrIS
3.1. Usage of a B-tree to index XML data

The B-tree [21] is a field-proofed data structure for fast index
access in databases and file repositories.

The use of the B-tree in this context is motivated by the
requirements of the streaming environment, such as

(i) block-oriented partition of the memory in mobile de-
vices, that is, it is quite expensive to load a new block
in mobile devices and the block size is quite small; the
B-tree has been proven to be the most efficient data-
structure [22] in such memory layout, minimizing the
number of accessed data blocks;

(ii) efficient search behavior; since a B-tree is balanced, the
logarithmic search behavior can be guaranteed;

(iii) network bandwidth restrictions; here, we propose an
efficient coding schema of the B-tree (streamlined B-
tree) to optimize the space consumption.

Andrea Kofler-Vogt et al.

Further advantages are that the B-tree may be applied to
any kind of data and that updates caused by insertions or
deletions affect only a limited number of nodes.

The usage of the B-tree in the context of XML documents
is the following. Paths of a description tree are taken as in-
dex keys. Contexts, such as attribute and element values, are
stored along the respective paths. In this work, only root-to-
leaf paths are considered. Due to this, only leaf elements or
attributes of a document tree are indexed.

In order to index the data, first the relevant paths of a
document to be indexed are generated. These paths, without
the context and the values of attributes, serve as keys. They
are inserted into the index tree.

Figure 1 shows parts of the generated B-tree, after all
root-to-leaf paths of a small example document were in-
serted. The example B-tree is of order 2, thus any node must
have at least one key entry (n — 1) and can have at most three
entries (2n — 1). The same path may occur in a document
several times with different instance values. However, a key is
added only once into the tree. For this reason, for each key
the number of occurrences of the path in the document tree,
the values of attributes, or the context of elements, and where
in the stream the FUU(s) containing the indexed nodes can
be found, is transmitted too.

For better readability, only the beginning letters of each
path element are shown in Figure 1. For this reason, the
string MDMVUFACN stands for the path “Mpeg7/De-
scription/MultimediaContent/Video/Usagelnformation/Fi-
nancialResults/AccountItem/CostType/Name.” This path ap-
pears in the example document twice, once the Name has
the value “Total for Production” and once “Broadcast.”

3.2. The mapping of the tree to a linear stream

Once the index structure is generated, the information is
stored in the index stream. In a typical scenario, the index
stream is sent together with or before the description stream.
In any case, the hierarchical B-tree is mapped to a linear
stream.

For the stream mapping, the tree is traversed in a depth-
first manner, and the nodes are packed into the stream in the
order they are visited. This order is signaled in Figure 1 with
the node numbers of the tree.

For each node in the stream, the start offset of all children
beside the first child is coded too. This enables a skipping
of undesired node information. If a node does not have any
children, the offset is set to zero. For the first child node, the
offset is not transmitted since it is coded immediately after its
parent node. Figure 2 shows parts of the stream for the B-tree
represented above.

In this example, the node numbers are shown only for
better understanding. They are not transmitted in the index
stream. For one node in the B-tree, the stream stored the
following information. First, the numbers of key entries are
written in the stream, for example, in Figure 2, node number
one contains exactly one key. Afterwards, for each key entry
first, the key is written in the stream. After the key, a number
signals how much instances for this key are available in the

document. As shown in Figure 2, the key MDMVUAFCN ap-
pears twice in the indexed document. For each instance, the
value of the key (value of the attribute or the context of an
element) is written in the stream. After the value, a reference
to the occurrence in the indexed stream is coded. In our im-
plementation described next, such a reference provides the
index of the access unit and fragment updated unit in order
to identify the FUU containing the indexed leaf nodes. At the
end of each node, the offsets of the children beside the first
one are written in the tree stream.

3.3. Theindex search based on the tree stream

We consider an XPath [23] like query string as input. An
index search in the B-tree starts at the root node. Through
comparison of the search pattern with the keys, it is decided
in which child node the searched entry can be found. Thus,
if the desired key is not in the parent node, only one child has
to be visited.

The usage of offsets in the index stream enables one to di-
rectly process the proper node without having to parse the in-
formation of other nodes stored in between both nodes in the
stream. Thus, during the lookup, particular node informa-
tion is read until the node content matches the query string,
or no more children are available. In the latter case, the de-
sired information is not present in the indexed document.

As an example, the following query: “Mpeg7/Descrip-
tion/MultimediaContent/Video/Usagelnformation/Availabi-
lity/Dissemination/Disseminator/Agent/Name” where the
name of the agent is “Discovery” short (MDMVUADDAN =
“Discovery”) should be processed. Comparing the query
string with the entry in the first node leads to a further
proceeding in the second node. The search string is smaller
than its key. Thus, node number 3 is considered next. Since
the query string is greater than the first key in this node, but
smaller with respect to the lexicographical ordering than its
second key, the search proceeds at the node with the number
5. This node can be directly accessed through the usage of
the coded child offset. Here, the string matches with the
first key and the FUU containing the desired element can be
identified. The search path through the original B-tree for
this example is presented in Figure 3.

In this example, only the information of the nodes 1, 2,
3, and 5 is parsed, the other data in the stream is skipped or
ignored.

4. IMPROVEMENTS OF THE PROTOTYPE

4.1. Compacter coding of the index information

In order to carry the index information in a compact man-
ner, strings are convoyed in a string repository. This reposi-
tory carries each string exactly once. In the index tree, their
start offsets are used instead of the binary representation of
strings.

First experiments have shown that the size of the index
information may become almost that big as the size of the
BiM encoded data. Thus, we considered improvements in

EURASIP Journal on Applied Signal Processing

MDMVUFACN
Total for Production,
Broadcast

—_

™

MDMVUAFAc
2 10
EUR
3| MDMVUAAt | MDMVUADFh 7
pay per use, repeat urn:..
MDMVUAAD MDMVUAAT 5 | MDMVUADDN | MDMVUADDRK | MDMVUADEN 6| MDMVUADLR | MDMVUAFACN
PT30M 98-06-16, 98-07-16 Discovery urn:.. Internet, Terestrial es, es pay per view

F1GURE 1: Parts of a B-tree.

1 | 1, MDMVUAFCN, 2, Total for Production, ref (1), Brodcast, ref (2), offset (10) | 2

3 |2, MDMVUAA, 2, pay per use, ref (1), repeat, ref (2), MDMVUADFh, 1, urn:.., ref (1), offset (5), offset (6)| 4

F1GURE 2: Example of an index stream.

MDMVUFACN
Total for Production,
Broadcast

—_

MDMVUAFAc
EUR

[

3| MDMVUAAt | MDMVUADFh
pay per use, repeat urn:..

MDMVUADEN
Internet, Terestrial

MDMVUADDN | MDMVUADDRhA
Discovery urn:..

w

FIGURE 3: An example of a search path.

order to reduce the index size. As a first step, we decided
to use the binary coding of the path in the indexed tree as
standardized by MPEG-7 BiM (see [24]). In experimental
comparisons, we could achieve a reduction of the storage size

of about 38%. The concrete reduction depends on the test
data, that is, for documents with fewer instances per indexed
path, this rate is higher than for those with many instances
per indexed path.

4.2. Extended query functionality

The system described so far supports only simple path que-
ries. Such a query consists of a path containing several ele-
ments and possibly one attribute and optionally asks for a
certain value. For example, with the following query, all im-
ages are identified that were taken by a person (i.e., creator)
whose last name is “Vogt”: Mpeg7/Description/Multime-
diaContent/Image/CreationInformation/Creation/Creator/
Agent/Name/FamilyName = Vogt. For a first evaluation,
this query functionality was sufficient. However, in many
applications, more complex query functionality is required.
Due to this, we extended our prototype, in order to sup-
port multiple field queries which contain more than one
condition. For example, we may extend the query from
above, that is, not only the creators last name is of interest but
the picture needs also to show a person whose last name is

Andrea Kofler-Vogt et al.

“Kofler” This query can be formulated as XPath expression
as follows: Mpeg7/Description/MultimediaContent/Image/
CreationInformation/Creation/Creator/Agent/Name [Fam-
ilyName = Vogt][../../../../../Semantic/SemanticBase/Agent/
Name/FamilyName = Kofler]. Here, “../” denotes one stepup
in the hierarchy.

The system we explained above transmits the keys as bi-
nary encoded paths. A binary encoded path consists of a se-
quence of tree branch codes (TBCs) which are tokens for
the elements appearing in this path followed by a sequence
of position codes for those elements that may occur more
than once (see [24]). Because BeTrIS was optimized concern-
ing the storage size, the position codes were omitted in our
first approach. But while they do not influence the naviga-
tion within the B-tree, we propose to use them to answer
more complex queries. In the modified version of BeTrIS
still only the tree branch codes serve as key entries in the
B-Tree. But in order to provide more complex query func-
tionality, the position codes are transmitted too. This leads
to a modified syntax of the index stream which is shown in
Figure 4.

As mentioned above, a multiple-field query contains at
least two conditions. We propose to perform a separate
search for each condition and merge the resulting list by the
usage of position codes to a final result set. Due to this, a
multiple-field query is divided into a common prefix and at
least two conditions. For instance, the example query from
above can be separated in the following parts:

(i) prefix = Mpeg7/Description/MultimediaContent/
Image;
(ii) condition; = prefix/CreationInformation/Creation/
Creator/Agent/Name/FamilyName = Vogt;
(iii) condition, = prefix/Semantic/SemanticBase/Agent/
Name/FamilyName = Kofler.

After the separation of the query a search in the B-tree is
processed for each condition. Each search returns a list with
matching instances. Thus, in our example, two lists will be
created.

For better understanding, this will be explained more
detailed on an example. Figure 5 shows parts of a docu-
ment tree containing an MPEG-7 description of three pic-
tures.

Processing the query for the first condition (all creators
with the last name “Vogt”) leads to two matching instances.
The context nodes of these instances are highlighted with
dotted lines in Figure 5. For the instances the following posi-
tion code sequences will be returned: 1,2,1,1,2,1,2,2,1,2 and
1,3,1,1,2,1,2,2,1,2.

Similar, a search for the second condition (any picture
showing a person with the last name “Kofler”) again leads to
a list of 2 entries: 1,1,1,1,4,2,2,1,2 and 1,2,1,1,4,2,2,1,2.

The proper context nodes of the two instances are high-
lighted in gray in Figure 5.

Each entry of the first list is then compared with each
entry of the second list with respect to their position
codes. Relevant for the comparisons are those position num-
bers which are required to encode the positions of the

Index stream

Node 1 Node 2 Node n

Node 2

Key 1, instance information 1,

Key 2,| instance information 2,

Child offset 2, ...

Instance information 2

Value 1, position codes, aulndex, fuulndex

Value 2, position codes, aulndex, fuulndex

Value #, position codes, aulndex, fuulndex

FIGURE 4: Modified syntax of the index stream.

common prefix. In our example, the prefix Mpeg7/Descrip-
tion/MultimediaContent/Image consists of four elements.
Thus, the first four numbers of each identified position code
sequence are compared.

If for one entry in the first list an entry with matching
position codes for the prefix is found in the second list, this
means that the GivenName element of the Agent element and
the GivenName element of the Creator element both have
the same Image element as a predecessor. And thus, this path
will belong to the final result set. In our small example, entry
one of the first list starts with the same four position codes
as entry two of the second list. Thus, only one Image node
exists that has a proper child node for each condition. This
node is identified through the position codes 1,2,1,1 and it is
highlighted in gray having dotted lines in Figure 5.

Note that MPEG-7 position codes are only encoded for
those elements that may appear several times according to
the type definitions in the MPEG-7 schema. Thus, the se-
quences of position codes are smaller than those shown in
Figure 5.

4.3. Final system with improvement: data organization

While we evaluated the improvements discussed above, we
encountered three major drawbacks.

(i) If a matching entry is found in the index tree, all values
of the instances have to be processed in a sequential manner
in order to identify the matching values and generate the re-
sult set. Consider, for example, an MPEG-7 document that
describes 50 pictures. If a query is performed that searches
for a certain creator after identifying the matching key entry
in the index tree, a set of 50 values (called instance infor-
mation) has to be processed sequentially in order to identify
those pictures that were taken by the desired creator.

(ii) Although in the case that the current key entry
does not match the query string, the complete instance

EURASIP Journal on Applied Signal Processing

(1]
Multimedia)
1 content
[1]

Media Textano- Visual
locator tation descr,
[1] 2] [3] [4 [5]

ce T/ Seman-
@ tic base
[1] [1] [2]

Jo
(o) o) Coi) ;
coordin
(1 2 B @
() Gy 1
[1] [2]

[1]

(D (o

(1 (2]

@ Element node

Creation
inform-
ation

Creation
inform-

Context

Description,

[3]
Multimedia)
(1] content
(1]
&
H tation
ation 3] 4]
S
i tic base
1 (2] tic base (3]
o=
@ SR (2] (2]
(2] e e @
S [1]
2]

‘Multimedia)
content

Image

[1]7

Creation
inform-

(1]

Position code

[X] o
among siblings

FIGURE 5: Parts of a document tree.

information of this entry (i.e., values, position codes, etc.)
has to be read out of the index stream in order to reach the
next key of the encoded node. This is because the instance
information is coded immediately after its key (see Figure 4)
and no skipping information is available in the current ap-
proach.

(iii) If the decision has been taken that the searched key
is not in the current node and the child to be next visited is
already identified, although the complete information of the
current node (i.e., remaining keys and their instance infor-
mation) has to be read. The reason for this inconvenience is
that the child offsets are coded at the end of the node after all
keys and their instance information and again, no skipping
information is available.

To overcome the first problem, we decided to implement
a data organization that allows a more efficient search within
the indexed values. We built a data structure called value tree
for each key entry (see Figure 6). By storing these value trees
outside the index tree and simply referencing them, we al-
ready found a solution for the later two problems. Now the
instance information is not present any longer within the

index tree and thus is only accessed if necessary. In this sec-
tion, we will provide a detailed description on this new idea
concerning the data organization.

In order to avoid a sequential search within the instance
information of an indexed path, we implemented an exten-
sion of BeTrIS, where the instance information is organized
in a simple binary tree. The tree is sorted by the values of the
different instances belonging to the same path.

Consider, for example, the following list of values that
appear in an indexed document as instances for a certain
path: Daniel, Christina, Alex, Andrea, Rainer, Hans, Stefan,
Hiltrud, Agnes, Ulrike, Daniel, Hans, Andrea, Stefan, Rainer,
Rainer, Andrea, Stefan, Hans, Hiltrud, and Agnes. These
names are inserted in a simple binary tree which is shown
in Figure 7.

Such a tree is created for each indexed path. Thus, each
entry in the B-tree points to a binary tree (see Figure 6).

Each different value appears only once in the value tree
although it may occur several times for the indexed path.
Due to this, it is necessary to store additional information
in each node, like, for example, the position codes for each

Andrea Kofler-Vogt et al.

.
[1]
i

Value tree

FIGURE 6: Index tree referencing several value trees.

Figure 7: Example of a value tree.

appearance, and the reference to the actual occurrence of the
indexed path in the encoded description stream.

When creating the index, a B-tree is set up where each
indexed path references a binary tree (see Figure 6). Before
transmitting this index, all the information has to be mapped
in a flat stream. Similar to the mapping of the B-tree contain-
ing the indexed paths, each value tree has to be mapped to a
linear stream too. This mapping is performed for each value
tree and their encoded information is packed at the end of
the index stream. Thus, the index stream consists of three
different parts (see Figure 8):

(i) the stream of the linear B-tree,
(ii) the string repository,
(iii) the stream containing all value trees.

Experimental performance evaluations have shown that
the usage of data organization leads to a reduction of the in-
dex size if there are several instances per indexed paths. This
is because in the modified BeTrIS, each value for a certain
path is stored only once and then the data for each occur-
rence is presented. In the previous system, the offset to the
same value was possibly stored several times for the same

path. On the other hand, if there are only a few instances per
path, the modified system leads to a further overhead which
is founded by the more complex structure of the value tree in
comparison to a sequential list. The concrete results of these
measurements are shown in Table 1. We used the test data set
described in Section 5.1.

Concerning the query efficiency which was measured in
number of comparisons, the experiments have shown that
even for documents with a small number of instances per in-
dexed paths a better performance is visible. This is founded
in the logarithmic search behavior reached by the usage of
binary trees. In the former solution, the complete set of in-
dexed values for a matching path have to be compiled. For
those documents that have a greater number of instances, the
reduction of comparisons was between 92% and 99% in our
experiments.

5. PERFORMANCE CONSIDERATIONS

We performed a series of experiments to validate our index-
ing solution. We were interested in two factors: the storage
size of the index system and the number of comparisons to
be performed during the index search.

In order to get an overview of the performance, we eval-
uated the final BeTrIS system (as described in Section 4.3)
against a simulation of XISS described in Section 2.2 and
[14]. We choose this system, because it provides a rich set
of functionalities and because of the extensive usage of the
concept of B-trees, it was easily comparable to our system.

5.1. The test data set

We indexed a number of subtrees of three large example doc-
uments.

(i) Pictures.xml. This document contains an MPEG-7 de-
scription of 50 different pictures describing persons, places,
objects, and so forth appearing on these pictures. A to-
tal number of 2.483 paths are indexed for this document.
Among them, there are 82 different ones that serve as key
entries in the B-tree. This leads to an average number of 30
instances per path.

8 EURASIP Journal on Applied Signal Processing
Str1'n & Index tree Value trees
repository
Index stream
String repository Node 1|Node 2 .. Node x Vi v lValue trees Vil
. alue alue alue
Str%ng ! tree 1 tree 2 tree y
String 2
String Node 2
8 Key 1, value tree offset, Value tree 2
Key 2, value tree offset, Node 1| Node 2 Node z
Child offset 2, child offset 3, ...
L
Node 2
Value offset,
instance 1
instance 2
Figure 8: Modified index stream.
TaBLE 1: Size in bytes of the transmitted index information.
Document Original BeTrIS Extended BeTrIS ANP! Difference
Pictures 31.997 30.711 30 —4,02%
Advertisement 41.140 36.601 106 —11,03%
DescriptionEx 14.978 17.806 2 +18,88%
Average 22.029 21.280 46 +1,28%

'ANP stands for average number of path instances, that is, how often the same path occurs in the indexed document.

This description allows to ask, for instance, for all pic-
tures that show certain persons or places or that were created
by a certain person.

(ii) Advertisement.xml. This document contains an
MPEG-7 description of 100 advertisement spots. For this
document, a total number of 2.960 paths are indexed. Among
them there are 28 different paths which lead to an average of
106 instances per path.

The description can be used to find advertisement spots
which last a certain time period or spots that advertise for a
certain product or all advertisements of products of a certain
company, and so forth.

(iii) DescriptionExample000.xml. This document con-
tains an MPEG-7 description that demonstrates the usage of
different descriptors and description schemes defined in the
MPEG-7 standard. There are 714 paths indexed, among them
there are 361 different ones. This leads to an average number
of 2 instances per path.

The example queries, for instance, ask for color histo-
grams with certain properties, segments of a certain dura-
tion, and so on.

The queries we formulated for each example document
return a different number of indexed fragment update units
as result.

5.2. Theindexsize

For each test document, we measured the size in bytes re-
quired to transmit the complete index information of the two
systems. In both cases, the information of different compo-
nents has to be encoded.

As already mentioned above, BeTrIS consists of the fol-
lowing parts.

(i) The string repository which contains all values of at-
tributes and the content of elements. All these strings are
transmitted in an uncompressed manner.

(ii) The information of the inline B-tree is transmitted in
the index stream.

(iii) Finally, all value trees are mapped to a linear stream
and packed in the value stream.

On the other hand side, for XISS the following parts have
to be transmitted:

(i) the value table which maps a values to value IDs (vids);
(ii) the name index which maps names of elements of at-
tributes to name IDs (NIDs);
(iii) the attribute index which maps NIDs of attributes to
the occurrence information of the proper attribute
nodes;

Andrea Kofler-Vogt et al. 9
45 TaBLE 2: Detailed storage consumption of BeTrIS.
40 Component Size in %
35 +——
30 String repository 3%
Index stream 12%
£ 31 Value stream 85%
A 20 —
15 +—
10— TaBLE 3: Detailed storage consumption of XISS.
5 —
Component Size in %
Advertisment Pictures DescriptionEx. Value table 28%
Name index 6%
Element index 54%
O Our prototype : : 0
B XISS Attribute index 12%
F1GURE 9: The index size in bytes.)
TABLE 4: Average number of comparisons.
Example document BeTrIS XISS
(iv) Finally, the element index maps the NIDs of elements Advertisement.xml 15 41.120
to the instance information of the indexed elements. Pictures.xml 12 80.621
DescriptionExample.xml 12 2.061

All these components are realized as B-trees. We imple-
mented them using our approach of flat trees.

As shown in Figure 9, the index information to be trans-
mitted for BeTrIS is in all three cases smaller than that of
XISS.

Tables 2 and 3 show the average storage consumption
evaluated for both systems more detailed.

There are several reasons, why our prototype is better
concerning the storage size than the alternative system. First,
the systems use different modes to index the same data. In
BeTrIS only leaf nodes are indexed by storing the XPaths
leading at these nodes. Contrary, in XISS each single node
is indexed separately. Second, BeTrIS compresses the data by
using the binary coding of paths while in XISS the complete
information is transmitted in an uncompressed manner. Bi-
nary coding of paths is not applicable to XISS because there
a numbering scheme [19] is used to store parent-child re-
lationships while in our case those are resolved through path
expressions. Finally, the redundant data XISS stores in its dif-
ferent components also leads to a bigger index size.

5.3. Query efficiency

As mentioned above, for each example document, several
queries were formulated. These queries were performed in
both systems and afterwards the average number of required
comparisons for each document was calculated.

BeTrIS requires one search in the index tree and a further
search in the identified value tree to answer a simple path
query. Contrary, in the case of XISS, two search operations
are necessary for each path step of the query. One to identify
the NID of the element or attribute name and a second one to
find all occurrences stored for this NID. Similar, two search
operations are required for the searched value. Afterwards,
several Join-Algorithms are performed as proposed in [14]
in order to identify parent-child relationships. This causes

further comparisons required to answer a query. Due to this,
XISS produces a significant higher number of comparisons
as shown in Table 4.

5.4. Summarization of the performance consideration

The evaluation of the two systems has shown that the index
size of BeTrIS is smaller than that of XISS. On average, there
is a difference of about 10.5%. Detailed analyses of these re-
sults have shown that on average 35% of the complete index
size of our system is occupied by the position codes. Thus,
at the moment we are examining mechanisms for differential
coding of these codes which is estimated to lead to a signif-
icant reduction of the storage size. Furthermore, we plan to
compress the values in the string repository which are trans-
mitted in an uncompressed manner at the moment.

Concerning the query efficiency which was measured
in number of comparisons, BeTrIS could present signifi-
cant better results (factor of approximately 1:3000). This is
founded in the design of XISS which is in favour of efficiently
answering queries of several types in applications with suf-
ficient memory space and CPU power. Furthermore, XISS
supports more complex query functionality. For example, it
is able to answer wildcard queries (when the exact nesting of
nodes is not known) while BeTrIS in its current implemen-
tation does not support those queries. However, the index
presented in this paper focuses on environments with lim-
ited bandwidth, memory, and/or processing power.

6. CONCLUSION AND OUTLOOK

In this work, we proposed an index system that provides
fast random access to binary encoded MPEG-7 descriptions.

10

EURASIP Journal on Applied Signal Processing

The approach was motivated by the increased usage of
MPEG-7 in mobile multimedia application relying on meta-
data for identification, filter, and search, for instance, elec-
tronic program guides (EPG), multimedia mail services, and
so forth.

With our approach, we have shown how a B-tree can be
used to index XML-based MPEG-7 data. We proposed a cod-
ing scheme that allows the streaming of an index tree. Ad-
ditionally, we improved our prototype by applying the bi-
nary coding of XML-based path structures in order to re-
duce the index size. The functionality was extended to sup-
port multiple-field queries. For this purpose, we utilize the
position codes of the MPEG-7 BiM. Finally, we achieved
a decrease in search time by the usage of value trees for
the element or attribute values which belong to the same
path.

Detailed performance evaluations against an alternative
system called XISS have shown that our index system re-
quires less storage size for the complete test data set. While
about 10% seems to be a minor difference, we discussed some
ideas that allow a further reduction of the storage size. At
the moment, we are working on these compression mech-
anisms which is estimated to increase the difference signif-
icantly. Comparing the number of required comparisons to
answer a query has shown that the presented significantly im-
proves processing efficiency. With our query set, we not only
demonstrated the efficiency of our index system concerning
searching and filter mechanisms but we also have shown dif-
ferent application scenarios for the usage of MPEG-7-based
description.

As already mentioned above, further work addresses the
reduction of the index size. Especially type-specific com-
pression algorithms for the values currently stored in string
repositories have to be considered. Beside that compact, for
example, differential encoding of position codes have to be
investigated. Based on the observation that on average 35%
of the present index stream consists of position information,
improvement in the position coding can have significant ef-
fect on the index size. Finally, we will evaluate the gain of
the reordering of entries in the index tree, when the fre-
quency of different queries is considered too. At the moment,
we assume a uniform distribution of the key entries in the
tree.

ACKNOWLEDGMENT

This project was supported by the Austrian Science Fund
(FWF) under Project no. P14789.

REFERENCES

[1] J. M. Martinez, “Overview of the MPEG-7 standard,” in
ISO/IEC JTC1/SC29/WGI11 N4980, Klagenfurt, Austria, July
2002, available from http://www.mp7c.org/.

[2] H. Kosch, Distributed Multimedia Database Technologies Sup-
ported by MPEG-7 and MPEG-21, CRC Press, Boca Raton, Fla,
USA, 2003, 248 pages.

[3] B. S. Manjunath, P. Salembier, and T. Sikora, Introduction to
MPEG-7, John Wiley & Sons, New York, NY, USA, 2002.

[4] J. Heuer, J. L. Casas, and A. Kaup, “Adaptive multimedia mes-
saging based on MPEG-7—the M3-box,” in Proceedings of
2nd International Symposium on Mobile Multimedia Systems
& Applications (MMSA 00), pp. 6-13, Delft, the Netherlands,
November 2000.

[5] Official homepage of the TV-Anytime forum (see http://www
.tv-anytime.org/).

[6] U. Niedermeier, J. Heuer, A. Hutter, W. Stechele, and A. Kaup,
“An MPEG-7 tool for compression and streaming of XML
data,” in Proceedings of IEEE International Conference on Mul-
timedia and Expo (ICME ’02), vol. 1, pp. 521-524, Lausanne,
Switzerland, August 2002.

[7] H. Liefke and D. Suciu, “XMill: an efficient compressor for
XML data,” in Proceedings of ACM SIGMOD International
Conference on Management of Data, pp. 153—164, Dallas, Tex,
USA, May 2000.

[8] M. Girardot and N. Sundaresan, “Millau: an encoding for-
mat for efficient representation and exchange of XML over
the Web,” in Proceedings of 9th International World Wide Web
Conference, Amsterdam, the Netherlands, May 2000, http://
www9.org/.

[9] P. Tolani and J. R. Haritsa, “XGRIND: a query-friendly XML
compressor,” in Proceedings of IEEE International Conference
on Data Engineering (ICDE ’02), pp. 225-235, San Jose, Calif,
USA, February—March 2002.

[10] J.-K. Min, M.-]. Park, and C.-W. Chung, “XPRESS: a queriable
compression for XML data,” in Proceedings of ACM SIGMOD
International Conference on Management of Data, pp. 122-133,
San Diego, Calif, USA, June 2003.

[11] B. E Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and
M. Shadmon, “A fast index for semistructured data,” in Pro-
ceedings of 27th International Conference on Very Large Data
Bases (VLDB ’01), pp. 341-350, Rome, Italy, September 2001.

[12] L.K. Poolaand]. R. Haritsa, “SphinX: schema-conscious XML
indexing,” Tech. Rep. RE200104, Indian Institute of Science,
Bangalore, India, 2001.

[13] H. V. Jagadish, N. Koudas, and D. Srivastava, “On effec-
tive multi-dimensional indexing for strings,” in Proceedings
of ACM SIGMOD International Conference on Management of
Data, pp. 403—414, Dallas, Tex, USA, May 2000.

[14] Q. Li and B. Moon, “Indexing and querying XML data for
regular path expressions,” in Proceedings of 27th International
Conference on Very Large Data Bases (VLDB 01), pp. 361-370,
Rome, Italy, September 2001.

[15] C.-W. Chung, J.-K. Min, and K. Shim, “APEX: an adaptive

path index for XML data,” in Proceedings of ACM SIGMOD

International Conference on Management of Data, pp. 121-132,

Madison, Wis, USA, June 2002.

E Rizzolo and A. O. Mendelzon, “Indexing XML data with

ToXin,” in Proceedings of 4th International Workshop on the

Web and Databases (WebDB ’01), pp. 49-54, Santa Barbara,

Calif, USA, May 2001.

[17] A. O. Mendelzon, “ToX: the Toronto XML server,” in Pro-
ceedings of International Database Engineering and Applications
Symposium (IDEAS °02), IEEE CS Press, Edmonton, Canada,
July 2002.

[18] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer, “Generalized
search trees for database systems,” in Proceedings of 21st Inter-
national Conference on Very Large Data Bases (VLDB °95), pp.
562-573, Zurich, Switzerland, September 1995.

[19] P. E Dietz, “Maintaining order in a linked list,” in Proceed-
ings of 14th Annual ACM Symposium on Theory of Comput-
ing (STOC ’82), pp. 122-127, San Francisco, Calif, USA, May
1982.

(16

http://www.mp7c.org/
http://www.tv-anytime.org/
http://www.tv-anytime.org/
http://www9.org/
http://www9.org/

Andrea Kofler-Vogt et al.

11

[20] R. Goldman and J. Widom, “DataGuides: enabling query for-
mulation and optimization in semistructured databases,” in
Proceedings of 23rd International Conference on Very Large
Data Bases (VLDB ’97), pp. 436—445, Athens, Greece, August
1997.

[21] R. Bayer and E. M. McCreight, “Organization and mainte-
nance of large ordered indexes,” Acta Informatica, vol. 1, no. 3,
pp. 173-189, 1972.

[22] B. C. Ooi and K.-L. Tan, “B-trees: bearing fruits of all
kinds,” in Proceedings of 13th Australasian Database Confer-
ence (ADC’02), IEEE CS Press, Melbourne, Victoria, Australia,
January—February 2002.

[23] J. Clark and S. DeRose, “XML path language (XPath), version
1.0,” Tech. Rep. REC-xpath-19991116, World Wide Web Con-
sortium, New Delhi, India, W3C recommendation, November
1999.

[24] ISO/IEC 15938-1 Multimedia Content Description Interface
Part 1: Systems, Geneva 2002.

Andrea Kofler-Vogt received the Dipl.-Ing.
degree in computer science from the Uni-
versity of Klagenfurt, Austria, 2001, with
a specialization on storage of multimedia
content in database systems. At the mo-
ment she is a Ph.D. student supported by
the University of Klagenfurt and the Cor-
porate Technology of Siemens in Germany.
She is researching in the field of metadata
indexing.

Harald Kosch is an Associate Professor at
the University of Klagenfurt. His domains
of interest are distributed multimedia sys-
tems, multimedia databases, middleware,
and Internet applications. He started re-
search at the Ecole Normale Superieure in
1993 during postgraduate study and en-
tered the Ph.D. program in 1994, obtaining
his Ph.D. degree in June 1997. He actively
participates in the Moving Picture Experts
Group MPEG-7 and MPEG-21 standardization and is involved in
several international research projects in the domain of distributed
multimedia systems.

Joerg Heuer received the Dipl.-Ing. de-
gree in electrical engineering at the Frie-
drich-Alexander University of Erlangen,
Germany, 1997, with a specialization on
digital signal processing and high-frequency
engineering. Supported by the Corporate
Technology of Siemens, he received a Ph.D.
degree from the Friedrich-Alexander Uni-
versity of Erlangen in 2003 for his work on
multimedia content description. He joined
the Corporate Technology of Siemens AG in 2002, where he is
working as a Senior Scientist in the fields of multimedia content
description and metadata coding in the domain of communication
applications. Further research interests include multimedia adap-
tation in heterogeneous environments and indexing of metadata.
He has been actively contributing to the MPEG standardization
activity since 1999, in particular, on MPEG-7 and MPEG-21. He
is a coeditor of Part 5, “Multimedia Description Schemes,” Part 8,
“Extraction and Use of MPEG-7 Descriptions,” and Amendment 1

of Part 1, “Systems” of MPEG-7. Currently he is also contribut-
ing to the DVB CBMS standardization. He has also been active in
several European research projects, including IST-SAMBITS, SA-
VANT, and ISIS.

André Kaup received the Dipl.-Ing. and
Dr.-Ing. degrees in electrical engineering
from Aachen University of Technology
(RWTH), Germany, in 1989 and 1995, re-
spectively. From 1989 to 1995, he was with
the Institute for Communication Engineer-
ing at Aachen University of Technology,
where he was responsible for industrial as
well as academic research projects in the ar-
eas of high-resolution printed image com-
pression, object-based image analysis and coding, and models for
human perception. In 1995 he joined Siemens Corporate Technol-
ogy in Munich, where he chaired European research projects in
the area of very low bit rate video coding, image quality enhance-
ment, and mobile multimedia communications. In 1999 he was ap-
pointed Head of mobile applications and services, with research
focussing on multimedia adaptation for heterogeneous commu-
nication networks. Since 2001 he is a Full Professor and Head of
the Chair of Multimedia Communications and Signal Processing
at University of Erlangen-Nuremberg. He is a Member of the Ger-
man Informationstechnische Gesellschaft and a Senior Member of
the IEEE. He was elected Siemens Inventor of the year 1998 and is
the recipient of the 1999 ITG Award. From 1997 to 2001, he was
also the Head of the German MPEG delegation and an Adjunct
Professor at Technical University of Munich.

	INTRODUCTION
	RELATED WORK
	XML compression tools
	XML indexing strategies

	BeTrIS
	Usage of a B-tree to index XML data
	The mapping of the tree to a linear stream
	The index search based on the tree stream

	Improvements of the Prototype
	Compacter coding of the index information
	Extended query functionality
	Final system with improvement: data organization

	Performance Considerations
	The test data set
	The index size
	Query efficiency
	Summarization of the performance consideration

	Conclusion and Outlook
	Acknowledgment
	REFERENCES

