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The problem of locating a mobile terminal has received significant attention in the field of wireless communications. Time-of-
arrival (TOA), received signal strength (RSS), time-difference-of-arrival (TDOA), and angle-of-arrival (AOA) are commonly used
measurements for estimating the position of the mobile station. In this paper, we present a constrained weighted least squares
(CWLS) mobile positioning approach that encompasses all the above described measurement cases. The advantages of CWLS in-
clude performance optimality and capability of extension to hybrid measurement cases (e.g., mobile positioning using TDOA and
AOA measurements jointly). Assuming zero-mean uncorrelated measurement errors, we show by mean and variance analysis that
all the developed CWLS location estimators achieve zero bias and the Cramér-Rao lower bound approximately whenmeasurement
error variances are small. The asymptotic optimum performance is also confirmed by simulation results.
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1. INTRODUCTION

Accurate positioning of a mobile station (MS) will be one
of the essential features that assists third generation (3G)
wireless systems in gaining a wide acceptance and trigger-
ing a large number of innovative applications. Although the
main driver of location services is the requirement of lo-
cating Emergency 911 (E-911) callers within a specified ac-
curacy in the United States [1], mobile position informa-
tion will also be useful in monitoring of the mentally im-
paired (e.g., the elderly with Alzheimer’s disease), young
children and parolees, intelligent transport systems, location
billing, interactive map consultation and location-dependent
e-commerce [2–6]. Global positioning system (GPS) could
be used to provide mobile location, however, it would be
expensive to be adopted in the mobile phone network be-
cause additional hardware is required in the MS. Alterna-
tively, utilizing the base stations (BSs) in the existing net-
work for mobile location is preferable and is more cost effec-
tive for the consumer. The basic principle of this software-
based solution is to use two or more BSs to intercept
the MS signal, and common approaches [6–8] are based
on time-of-arrival (TOA), received signal strength (RSS),
time-difference-of-arrival (TDOA), and/or angle-of-arrival
(AOA) measurements determined from the MS signal re-
ceived at the BSs.

In the TOAmethod, the distance between the MS and BS
is determined from the measured one-way propagation time
of the signal traveling between them. For two-dimensional
(2D) positioning, this provides a circle centered at the BS
on which the MS must lie. By using at least three BSs to re-
solve ambiguities arising from multiple crossings of the lines
of position, the MS location estimate is determined by the
intersection of circles. The RSS approach employs the same
trilateration concept where the propagation path losses from
the MS to the BSs are measured to give their distances. In the
TDOAmethod, the differences in arrival times of the MS sig-
nal at multiple pairs of BSs are measured. Each TDOA mea-
surement defines a hyperbolic locus on which the MS must
lie and the position estimate is given by the intersection of
two or more hyperbolas. Finally, the AOA method necessi-
tates the BSs to have multielement antenna arrays for mea-
suring the arrival angles of the transmitted signal from the
MS at the BSs. From each AOA estimate, a line of bearing
(LOB) from the BS to the MS can be drawn and the position
of the MS is calculated from the intersection of a minimum
of two LOBs. In general, the MS position is not determined
geometrically but is estimated from a set of nonlinear equa-
tions constructed from the TOA, RSS, TDOA, or AOA mea-
surements, with knowledge of the BS geometry.

Basically, there are two approaches for solving the non-
linear equations. The first approach [9–12] is to solve them
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directly in a nonlinear least squares (NLS) or weighted least
squares (WLS) framework. Although optimum estimation
performance can be attained, it requires sufficiently precise
initial estimates for global convergence because the corre-
sponding cost functions are multimodal. The second ap-
proach [13–17] is to reorganize the nonlinear equations into
a set of linear equations so that real-time implementation is
allowed and global convergence is ensured. In this paper, the
latter approach is adopted, and we will focus on a unified de-
velopment of accurate location algorithms, given the TOA,
RSS, TDOA, and/or AOA measurements.

For TDOA-based location systems, it is well known that
for sufficiently small noise conditions, the corresponding
nonlinear equations can be reorganized into a set of linear
equations by introducing an intermediate variable, which is
a function of the source position, and this technique is com-
monly called spherical interpolation (SI) [13]. However, the
SI estimator solves the linear equations via standard least
squares (LS) without using the known relation between the
intermediate variable and the position coordinate. To im-
prove the location accuracy of the SI approach, Chan and
Ho have proposed [14] to use a two-stage WLS to solve
for the source position by exploiting this relation implic-
itly via a relaxation procedure, while [15] incorporates the
relation explicitly by minimizing a constrained LS function
based on the technique of Lagrange multipliers. According
to [15], these two modified algorithms are referred to as the
quadratic correction least squares (QCLS) and linear correc-
tion least squares (LCLS), respectively. Recently, we have im-
proved [18] the performance of the LCLS estimator by in-
troducing a weighting matrix in the optimization, which can
be regarded as a hybrid version of the QCLS and LCLS algo-
rithms. The idea of this constrained weighted least squares
(CWLS) technique has also been extended to the RSS [19]
and TOA [20] measurements. Using a different way of con-
verting nonlinear equations to linear equations without in-
troducing dummy variables, Pages-Zamora et al. [16] have
developed a simple LS AOA-based location algorithm. In this
work, our contributions include (i) development of a unified
approach for mobile location which allows utilizing different
combinations of TOA, RSS, TDOA, and AOA measurements
via generalizing [18–20] and improving [16] with the use
of WLS; and (ii) derivation of bias and variance expressions
for all the proposed algorithms. In particular, we prove that
the performance of all the proposed estimation methods can
achieve zero bias and the Cramér-Rao lower bound (CRLB)
[21] approximately when the measurement errors are uncor-
related and small in magnitude.

The rest of this paper is organized as follows. In Section 2,
we formulate the models for the TOA, TDOA, RSS, and
AOAmeasurements and state our assumptions. In Section 3,
three CWLS location algorithms using TDOA, RSS, and TOA
measurements, respectively, are first reviewed, and a WLS
AOA-based location algorithm is then devised via modi-
fying [16]. Mobile location using various combinations of
TOA, TDOA, RSS, and AOAmeasurements is also examined.
In particular, a TDOA-AOA hybrid algorithm is presented
in detail. The performance of all the developed algorithms

Table 1: List of abbreviations and symbols.

AOA Angle-of-arrival

CWLS Constrained weighted least squares

CRLB Cramér-Rao lower bound

NLS Nonlinear least squares

RSS Received signal strength

TOA Time-of-arrival

TDOA Time-difference-of-arrival

AT Transpose of matrix A

A−1 Inverse of matrix A

Ao Optimum matrix of A

σ2 Noise variance

Cn Noise covariance matrix

I(x) Fisher information matrix for parameter vector x

x̃ Optimization variable vector for x

x̂ Estimate of x

diag(x) Diagonal matrix formed from vector x

IM M ×M identity matrix

1M M × 1 column vector with all ones

0M M × 1 column vector with all zeros

OM×N M ×N matrix with all zeros

� Element-by-element multiplication

is studied in Section 4. Simulation results are presented in
Section 5 to evaluate the location estimation performance of
the proposed estimators and verify our theoretical findings.
Finally, conclusions are drawn in Section 6. A list of abbre-
viations and symbols that are used in the paper is given in
Table 1.

2. MEASUREMENTMODELS

In this section, the models and assumptions for the TOA,
TDOA, RSS, and AOA measurements are described. Let x =
[x, y]T be the MS position to be determined and let the
known coordinates of the ith BS be xi = [xi, yi]T , i = 1, 2,
. . . ,M, where the superscript T denotes the transpose opera-
tion andM is the total number of receiving BSs. The distance
between the MS and the ith BS, denoted by di, is given by

di =
√

(

x − xi
)2

+
(

y − yi
)2
, i = 1, 2, . . . ,M. (1)

2.1. TOAmeasurement

The TOA is the one-way propagation time taken for the sig-
nal to travel from the MS to a BS. In the absence of distur-
bance, the TOA measured at the ith BS, denoted by ti, is

ti = di
c
, i = 1, 2, . . . ,M, (2)
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where c is the speed of light. The range measurement based
on ti in the presence of disturbance, denoted by rTOA,i, is
modeled as

rTOA,i = di + nTOA,i

=
√

(

x − xi
)2

+
(

y − yi
)2

+ nTOA,i, i = 1, 2, . . . ,M,
(3)

where nTOA,i is the range error in rTOA,i. Equation (3) can also
be expressed in vector form as

rTOA = fTOA(x) + nTOA, (4)

where

rTOA =
[

rTOA,1 rTOA,2 · · · rTOA,M
]T

,

nTOA =
[

nTOA,1 nTOA,2 · · ·nTOA,M
]T

,

fTOA(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

(

x − x1
)2

+
(

y − y1
)2

√

(

x − x2
)2

+
(

y − y2
)2

...
√

(

x − xM
)2

+
(

y − yM
)2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(5)

2.2. TDOAmeasurement

The TDOA is the difference in TOAs of theMS signal at a pair
of BSs. Assigning the first BS as the reference, it can be easily
deduced that the range measurements based on the TDOAs
are of the form

rTDOA,i =
(

di − d1
)

+ nTDOA,i

=
√

(

x − xi
)2

+
(

y − yi
)2 −

√

(

x − x1
)2

+
(

y − y1
)2

+ nTDOA,i, i = 2, 3, . . . ,M,
(6)

where nTDOA,i is the range error in rTDOA,i. Notice that if the
TDOA measurements are directly obtained from the TOA
data, then nTDOA,i = nTOA,i−nTOA,1, i = 2, 3, . . . ,M. In vector
form, (6) becomes

rTDOA = fTDOA(x) + nTDOA, (7)

where

rTDOA =
[

rTDOA,2 rTDOA,3 · · · rTDOA,M
]T

,

nTDOA =
[

nTDOA,2 nTDOA,3 · · ·nTDOA,M
]T

,

fTDOA(x)=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

(

x−x2
)2
+
(

y−y2
)2−

√

(

x−x1
)2
+
(

y−y1
)2

√

(

x−x3
)2
+
(

y−y3
)2−

√

(

x−x1
)2
+
(

y−y1
)2

...
√

(

x−xM
)2
+
(

y−yM
)2−

√

(

x−x1
)2
+
(

y−y1
)2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(8)

2.3. RSSmeasurement

Without measurement error, the RSS or received power at
the ith BS, denoted by Pr

i , can be modeled as [22]

Pr
i = Ki

Pt
i

dai
, i = 1, 2, . . . ,M, (9)

where Pt
i is the transmitted power, Ki accounts for all other

factors which affect the received power, including the an-
tenna height and antenna gain, and a is the propagation con-
stant. Note that the propagation parameter a can be obtained
via finding the path loss slope by measurement [22]. In free
space, a is equal to 2, but in some urban and suburban areas,
a can vary from 3 to 6. From (9), the range measurements
based on the RSS data with the use of the known {Pt

i} and
{Ki}, denoted by {rRSS,i}, are determined as

rRSS,i = Ki
Pt
i

Pr
i
+ nRSS,i

=
[

(

x − xi
)2

+
(

y − yi
)2
]a/2

+ nRSS,i, i = 1, 2, . . . ,M,

(10)

where nRSS,i is the range error in rRSS,i. It is noteworthy that
if a = 1, then (10) will be of the same form as (3). Equation
(10) can also be expressed in vector form as

rRSS = fRSS(x) + nRSS, (11)

where

rRSS =
[

rRSS,1 rRSS,2 · · · rRSS,M
]T

,

nRSS =
[

nRSS,1 nRSS,2 · · ·nRSS,M
]T

,

fRSS(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

(

x − x1
)2

+
(

y − y1
)2
]a/2

[

(

x − x2
)2

+
(

y − y2
)2
]a/2

...

[

(

x − xM
)2

+
(

y − yM
)2
]a/2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(12)
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2.4. AOAmeasurement

The AOA of the transmitted signal from the MS at the ith BS,
denoted by φi, is related to x and xi by

tan
(

φi
) = y − yi

x − xi
, i = 1, 2, . . . ,M. (13)

Geometrically, φi is the angle between the LOB from the ith
BS to the MS and the x-axis. The AOA measurements in the
presence of angle errors, denoted by {rAOA,i}, are modeled as

rAOA,i=φi+nAOA,i= tan−1
(

y−yi
x−xi

)

+nAOA,i, i=1, 2, . . . ,M,

(14)

where nAOA,i is the noise in rAOA,i. Equation (14) can also be
expressed in vector form as

rAOA = fAOA(x) + nAOA, (15)

where

rAOA =
[

rAOA,1 rAOA,2 · · · rAOA,M
]T

,

nAOA =
[

nAOA,1 nAOA,2 · · ·nAOA,M
]T

,

fAOA(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

tan−1
(

y − y1
x − x1

)

tan−1
(

y − y2
x − x2

)

...

tan−1
(

y − yM
x − xM

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(16)

To facilitate the development and analysis of the pro-
posed location algorithms, we make the following assump-
tions for the TOA, TDOA, RSS, and AOA measurements.

(A1) All measurement errors, namely, {nTOA,i}, {nTDOA,i},
{nRSS,i}, and {nAOA,i} are sufficiently small and are
modeled as zero-mean Gaussian random variables
with known covariance matrices, denoted by Cn,TOA,
Cn,TDOA, Cn,RSS, and Cn,AOA, respectively. The zero-
mean error assumption implies that multipath and
non-line-of-sight (NLOS) errors have been mitigated,
which can be done by considering the techniques in
[23–27]. Nevertheless, the effect of NLOS propaga-
tion will be studied in Section 5 for the TOA measure-
ments.

(A2) For RSS-based location, the propagation parameter a
is known and has a constant value for all RSS measure-
ments.

(A3) The numbers of BSs for location using the TOA,
TDOA, RSS, and AOA measurements are at least 3, 4,
3, and 2, respectively.

3. ALGORITHMDEVELOPMENT

This section describes our development of the CWLS/WLS
mobile positioning approach for the cases of TDOA, RSS,
TOA, and AOA measurements. We also discuss how the
proposed methods can be extended to hybrid measurement
cases, such as the TDOA-AOA.

3.1. TDOA [18]

Without disturbance, (6) becomes

rTDOA,i =
√

(

x − xi
)2

+
(

y − yi
)2 −

√

(

x − x1
)2

+
(

y − y1
)2

=⇒ rTDOA,i +
√

(

x − x1
)2

+
(

y − y1
)2

=
√

(

x − xi
)2

+
(

y − yi
)2
, i = 2, 3, . . . ,M.

(17)

Squaring both sides of (17) and introducing an intermediate
variable, R1, which has the form

R1 = d1 =
√

(

x − x1
)2

+
(

y − y1
)2
, (18)

we obtain the following set of linear equations [13]

(

x − x1
)(

xi − x1
)

+
(

y − y1
)(

yi − y1
)

+ rTDOA,iR1

= 1
2

[

(

xi−x1
)2
+
(

yi−y1
)2−r2TDOA,i

]

, i=2, 3, . . . ,M.

(19)

Writing (19) in matrix form gives

Gϑ = h, (20)

where

G =

⎡

⎢

⎢

⎢

⎢

⎣

x2 − x1 y2 − y1 rTDOA,2

...
...

...

xM − x1 yM − y1 rTDOA,M

⎤

⎥

⎥

⎥

⎥

⎦

,

h = 1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

x2 − x1
)2

+
(

y2 − y1
)2 − r2TDOA,2

...
(

xM − x1
)2

+
(

yM − y1
)2 − r2TDOA,M

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(21)

and the parameter vector ϑ = [x−x1, y− y1,R1]T consists of
the MS location as well as R1.
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In the presence of measurement errors, the SI technique
determines the MS position by simply solving (20) via stan-
dard LS, and the location estimate is found from [13]

̂ϑ = argmin
ϑ̆
(Gϑ̆− h)T(Gϑ̆− h)

= (GTG
)−1

GTh,

(22)

where ϑ̆ = [x̆ − x1, y̆ − y1, R̆1]T is an optimization variable
vector and −1 represents the matrix inverse, without utilizing
the known relationship between x̆, y̆, and R̆1.

An improvement to the SI estimator is the LCLS method
[15], which solves the LS cost function in (22) subject to the

constraint of (x̆ − x1)2 + ( y̆ − y1)2 = R̆2
1, or equivalently,

ϑ̆
T
Σϑ̆ = 0, (23)

where Σ = diag(1, 1,−1).
On the other hand, Chan and Ho [14] have improved

the SI estimator through two stages. In the first stage of the
QCLS estimator, a coarse estimate is computed by minimiz-
ing a WLS function

(Gϑ̆− h)TΥ−1(Gϑ̆− h), (24)

whereΥ is a symmetric weighting matrix, which is a function
of the estimate of R1, denoted by ̂R1. A better estimate of ϑ is
then obtained in the second stage via minimizing (x̆− x1)2 +

( y̆ − y1)2 − R̆2
1 according to another WLS procedure. Since

̂R1 is not available at the beginning, normally a few iterations
between the two stages are required to attain the best solution
[15].

The idea of our CWLS estimator is to combine the key
principles in the CWLS and LCLS methods, that is, the MS
position estimate is determined by minimizing (24) subject
to (23). For sufficiently small measurement errors, the in-
verse of the optimum weighting matrix Υ−1 for the CWLS
algorithm is found using the best linear unbiased estimator
(BLUE) [21] as in [14]:

Υo = s1sT1 � Cn,TDOA, (25)

where

s1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d2

d3

...

dM

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d2 − d1 + R1

d3 − d1 + R1

...

dM − d1 + R1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(26)

and � denotes element-by-element multiplication. Since Υ
contains the unknown {di}, we express di = di − d1 + R1

and approximate di − d1 by rTDOA,i and thus an approximate
version of Υo, namely, ŝ1ŝT1 � Cn,TDOA with ŝ1 = [rTDOA,2 +
̂R1 · · · rTDOA,M + ̂R1]T is employed in practice.

Similar to [15], the CWLS problem is solved by using the
technique of Lagrange multipliers and the Lagrangian to be
minimized is

LTDOA(ϑ̆,η) = (Gϑ̆− h)TΥ−1(Gϑ̆− h) + ηϑ̆
T
Σϑ̆, (27)

where η is the Lagrange multiplier to be determined. The es-
timate of ϑ is obtained by differentiating LTDOA(ϑ̆,η) with
respect to ϑ̆ and then equating the results to zero (see Appen-
dix A.1):

̂ϑ = (GTΥ−1G + ηΣ
)−1

GTΥ−1h, (28)

where η is found from the following 4-root equation:

3
∑

i=1

αiβi
(

η + ζi
)2 = 0 (29)

and {αi}, {βi}, and {ζi}, i = 1, 2, 3, have been defined in Ap-
pendix A.1. The procedure for CWLS TDOA-based location
is summarized as follows.

(i) Set Υ = IM−1, where IM−1 denotes the identity matrix
of dimension (M − 1).

(ii) Find all roots of (29) by using a standard root finding
algorithm. Then take only the real roots into consider-
ation as the Lagrange multiplier is always real for a real
optimization problem.

(iii) Put the real η’s back to (28) and obtain subestimates of
̂ϑ. Then choose the solution ̂ϑ from those subestimates
which makes the expression (Gϑ̆ − h)TΥ−1(Gϑ̆ − h)
minimum.

(iv) ConstructΥ according to (25) using the obtained ̂R1 in

step (iii). Then, repeat steps (ii) and (iii) until ̂ϑ con-
verges.

3.2. RSS [19]

Without measurement errors, (10) becomes

rRSS,i =
[

(

x − xi
)2

+
(

y − yi
)2
]a/2

, i = 1, 2, . . . ,M. (30)

Extending the SI technique and taking power 2/a on both
sides of (30) yields

r2/aRSS,i = R2
2 − 2xxi − 2yyi +

(

x2i + y2i
)

=⇒ xix + yi y − 0.5R2
2

= 1
2

(

x2i + y2i − r2/ai

)

, i = 1, 2, . . . ,M,

(31)

where

R2 =
√

x2 + y2 (32)
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is the introduced intermediate variable in order to linearize
(30) in terms of x, y, and R2

2. Similar to the TDOA measure-
ments, (31) can be expressed in matrix-vector form:

Aθ = b, (33)

where

A =

⎡

⎢

⎢

⎢

⎢

⎣

x1 y1 −0.5
...

...
...

xM yM −0.5

⎤

⎥

⎥

⎥

⎥

⎦

, θ =

⎡

⎢

⎢

⎢

⎣

x

y

R2
2

⎤

⎥

⎥

⎥

⎦

,

b = 1
2

⎡

⎢

⎢

⎢

⎢

⎣

x21 + y21 − r2/aRSS,1

...

x2M + y2M − r2/aRSS,M

⎤

⎥

⎥

⎥

⎥

⎦

.

(34)

The CWLS estimate of θ is obtained by minimizing

(Aθ̆ − b)TΨ−1(Aθ̆ − b), (35)

whereΨ−1 is the corresponding weighting matrix, subject to

qT θ̆ + θ̆
T
Pθ̆ = 0 (36)

such that

θ̆ =

⎡

⎢

⎢

⎢

⎣

x̆

y̆

R̆2

⎤

⎥

⎥

⎥

⎦

, P =

⎡

⎢

⎢

⎢

⎣

1 0 0

0 1 0

0 0 0

⎤

⎥

⎥

⎥

⎦

, q =

⎡

⎢

⎢

⎢

⎣

0

0

−1

⎤

⎥

⎥

⎥

⎦

. (37)

Here, (36) is a matrix characterization of the relation in (32).
The optimum value ofΨ is also determined based on the

BLUE as follows. For sufficiently small measurement errors,
the value of r2/aRSS,i can be approximated as

r2/aRSS,i =
(

dai + nRSS,i
)2/a

≈ d2i +
2
a

(

di
)2−a

nRSS,i, i = 1, 2, . . . ,M.

(38)

As a result, the disturbance between the true and estimate of
the squared distances is

εi = r2/aRSS,i − d2i ≈
2
a

(

di
)2−a

nRSS,i, i = 1, 2, . . . ,M. (39)

In vector form, {εi} is expressed as

ε=
[

2
a

(

d1
)2−a

nRSS,1,
2
a

(

d2
)2−a

nRSS,2, . . . ,
2
a

(

dM
)2−a

nRSS,M

]T

.

(40)

The covariance matrix of the disturbance, which leads to the
optimum weighting matrix, is thus of the form

Ψo = E
{

εεT
} = s2sT2 � Cn,RSS, (41)

where

s2 =
[

1
a

(

d1
)2−a 1

a

(

d2
)2−a · · · 1

a

(

dM
)2−a

]T

. (42)

Since s2 depends on the unknowns {di}, we use {r1/ai } instead
of {di} to form an estimate of s2, denoted by ŝ2, which is

ŝ2 =
[

1
a
r2/a−1RSS,1

1
a
r2/a−1RSS,2 · · · 1

a
r2/a−1RSS,M

]T

. (43)

Minimizing (35) subject to (36) is equivalent to minimizing
the Lagrangian

LRSS(θ̆, λ) = (Aθ̆ − b)TΨ−1(Aθ̆ − b) + λ
(

qT θ̆ + θ̆
T
Pθ̆
)

,
(44)

where λ is the corresponding Lagrangemultiplier. The CWLS
solution using the RSSmeasurements is given by (see Appen-
dix A.2)

̂θ = (ATΨ−1A + λP
)−1
(

ATΨ−1b− λ

2
q
)

, (45)

where λ is determined from the 5-root equation:

c3 f3 − λ

2
c3g3 +

2
∑

i=1

ci fi
1 + λγi

− λ

2

2
∑

i=1

cigi
1 + λγi

+
2
∑

i=1

ei fiγi
(

1 + λγi
)2

− λ

2

2
∑

i=1

eigiγi
(

1+λγi
)2 −

λ

2

2
∑

i=1

ci fiγi
(

1+λγi
)2 +

λ2

4

2
∑

i=1

cigiγi
(

1+λγi
)2 = 0.

(46)

The {ci}, {ei}, { fi}, and {gi}, i = 1, 2, 3, have been defined in
Appendix A.2. The CWLS solution using the RSS measure-
ments is found by the following procedure.

(i) Obtain the real roots of (46) using a root finding algo-
rithm.

(ii) Put the real λ’s back to (45) and obtain subestimates of
̂θ.

(iii) The subestimate that yields the smallest objective value
of (Aθ̆− b)TΨ−1(Aθ̆− b) is taken as the globally opti-
mal CWLS solution.
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3.3. TOA [20]

Since themodels of the TOA and RSS will have the same form
if the propagation constant is equal to unity, putting a = 1 in
Section 3.2 yields the algorithm of the CWLS estimator using
the TOA data.

3.4. AOA

In the absence of noise, (13) becomes

tan
(

rAOA,i
) = sin

(

rAOA,i
)

cos
(

rAOA,i
)

= y − yi
x − xi

, i = 1, 2, . . . ,M.

(47)

By cross-multiplying and rearranging (47), a set of linear
equations in x and y for the AOA measurements is obtained
as

x sin
(

rAOA,i
)− y cos

(

rAOA,i
)

= xi sin
(

rAOA,i
)− yi cos

(

rAOA,i
)

, i = 1, 2, . . . ,M.
(48)

Expressing (48) in matrix form, we have [16]

Hx = k, (49)

where

H =

⎡

⎢

⎢

⎢

⎢

⎣

sin
(

rAOA,1
) − cos

(

rAOA,1
)

...
...

sin
(

rAOA,M
) − cos

(

rAOA,M
)

⎤

⎥

⎥

⎥

⎥

⎦

,

k =

⎡

⎢

⎢

⎢

⎢

⎣

x1 sin
(

rAOA,1
)− y1 cos

(

rAOA,1
)

...

xM sin
(

rAOA,M
)− yM cos

(

rAOA,M
)

⎤

⎥

⎥

⎥

⎥

⎦

.

(50)

To improve the performance of the LS estimator of [16], we
propose to use WLS to estimate the MS location x and the
solution is

x̂ = argmin
x̆
(Hx̆− k)TΩ−1(Hx̆− k)

= (HTΩ−1H
)−1

HTΩ−1k,

(51)

where Ω−1 is the corresponding weighting matrix and x̆ =
[x̆, y̆]T . Again, we use the BLUE technique to determine the
optimum Ω as follows. In the presence of measurement er-
rors, (48) becomes

x sin
(

φi + nAOA,i
)− y cos

(

φi + nAOA,i
)

= xi sin
(

φi + nAOA,i
)− yi cos

(

φi + nAOA,i
)

, i = 1, 2, . . . ,M.
(52)

It is noteworthy that (52) is similar to the Taylor series lin-
earization based on a geometrical viewpoint [17], although
the latter considers only one AOAmeasurement with the cor-
responding BS locates at the origin. By expanding sin(φi +
nAOA,i) and cos(φi+nAOA,i), and considering sufficiently small
angle errors such that sin(nAOA,i) ≈ nAOA,i and cos(nAOA,i) ≈
1, we obtain the residual error in rAOA,i as

δi = nAOA,i
[(

x − xi
)

cos
(

φi
)

+
(

y − yi
)

sin
(

φi
)]

,

i = 1, 2, . . . ,M.
(53)

In vector form, {δi} is expressed as

δ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

nAOA,1
[(

x − x1
)

cos
(

φ1
)

+
(

y − y1
)

sin
(

φ1
)]

nAOA,2
[(

x − x2
)

cos
(

φ2
)

+
(

y − y2
)

sin
(

φ2
)]

...

nAOA,M
[(

x − xM
)

cos
(

φM
)

+
(

y − yM
)

sin
(

φM
)]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(54)

Thus the inverse of the optimum weighting matrix,Ωo, is

Ωo = E
{

δδT
} = s3sT3 � Cn,AOA, (55)

where

s3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

x − x1
)

cos
(

φ1
)

+
(

y − y1
)

sin
(

φ1
)

(

x − x2
)

cos
(

φ2
)

+
(

y − y2
)

sin
(

φ2
)

...
(

x − xM
)

cos
(

φM
)

+
(

y − yM
)

sin
(

φM
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d1

d2

...

dM

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(56)

because cos(φi) = (x−xi)/di and sin(φi) = (y− yi)/di. Again,
since s3 involves the unknown parameters x and {φi}, they
will be approximated as x̂ and {rAOA,i}, respectively, in the
actual implementation. In summary, the WLS procedure for
AOA-based location is

(i) setΩ = IM ;
(ii) use (51) to determine the estimate of x;
(iii) construct Ω based on (55) using the computed x̂ in

step (ii) and repeat step (ii) until parameter conver-
gence.

It is noteworthy that since H also consists of noise, we
have already attempted to introduce constraints in the WLS
solution in order to remove the bias due to the noisy com-
ponents, but improvement over the WLS estimator has not
been observed. As a result, it is believed that the noise in
H can be ignored for sufficiently high signal-to-noise ratio
(SNR) conditions. In fact, Pages-Zamora et al. [16] have sim-
ilarly observed that the LS estimator performs even better
than its total least squares counterpart.
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3.5. TDOA-AOA hybrid

It is apparent that combining different types of the mea-
surements, if available, can improve location performance
and/or reduce the number of receiving BSs. Among various
hybrid schemes, the most popular one is to use the TDOA
and AOA measurements simultaneously [17]. To perform
TDOA-AOA mobile positioning, (48) is now rewritten by
adding y1 cos(rAOA,i)− x1 sin(rAOA,i) on both sides:

(

x − x1
)

sin
(

rAOA,i
)− (y − y1

)

cos
(

rAOA,i
)

= (xi − x1
)

sin
(

rAOA,i
)− (yi − y1

)

cos
(

rAOA,i
)

,

i = 1, 2, . . . ,M.
(57)

Combining (19) and (57) into a single matrix-vector form
yields

Bϑ = w, (58)

where

B =
⎡

⎣

G

H 0M

⎤

⎦ , w =
⎡

⎣

h

k′

⎤

⎦ ,

k′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
(

x2 − x1
)

sin
(

rAOA,2
)− (y2 − y1

)

cos
(

rAOA,2
)

...
(

xM − x1
)

sin
(

rAOA,M
)− (yM − y1

)

cos
(

rAOA,M
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(59)

with 0M is an M × 1 column vector with all zeros. Then ϑ is
solved by minimizing

(Bϑ̆−w)TW−1(Bϑ̆−w) (60)

subject to

ϑ̆
T
Σϑ̆ = 0. (61)

The optimum weighting matrix, denoted by Wo−1, is deter-
mined from the inverse of

Wo = s4sT4 � Cn,TDOA-AOA, (62)

where s4 = [s1 s3]T and Cn,TDOA-AOA is the covariance ma-
trix of the TDOA and AOA measurement errors. By follow-
ing the estimation procedure in Section 3.1, the parameter

vector ̂ϑ is determined. Similarly, mobile location algorithms
using AOA and RSS or TOA measurements can be deduced.

For TDOA-TOA or TDOA-RSS hybrid positioning, a
simple and effective way is to convert the TOA and RSS,
respectively, into TDOA measurements and then apply the
CWLS TDOA-based location algorithm. Finally, it is straight-
forward to combine TOA and RSS measurements via con-
verting the former to the latter or vice versa. Localization
with more than two types of measurements can be extended
easily in a similar manner.

4. PERFORMANCE ANALYSIS

As briefly mentioned in Section 1, the CWLS and WLS es-
timators in Section 3 can achieve zero bias and the CRLB
approximately when the noise is uncorrelated and small in
power. In the following subsections we provide the proofs of
this desirable property for each measurement case.

4.1. Mean and variance analysis for generic
unconstrainedminimization problems

The idea behind the performance analysis here is to recast the
CWLS estimators to unconstrained minimization problems,
and then to use the analysis technique for unconstrained
problems [28] to find out the mean and covariance of the
estimators. To describe the latter, consider a generic uncon-
strained estimation problem as follows:

ŷ = argmin
y̆

J(y̆), (63)

where J(y̆) is a function continuous in y̆. Given that y is the
true value of the estimated parameter, it is shown [28] that

bias(ŷ) ≈ −E
[

∂2J

∂y̆∂y̆T

]−1
E
[

∂J

∂y̆

]∣

∣

∣

∣

y̆=y
, (64)

Cy ≈ E
[

∂2J

∂y̆∂y̆T

]−1
E

[

(

∂J

∂y̆

)(

∂J

∂y̆

)T
]

E
[

∂2J

∂y̆∂y̆T

]−1∣
∣

∣

∣

y̆=y
,

(65)

where bias(ŷ) and Cy represent the bias and the covariance
matrix associated with ŷ, respectively. The approximations
in (64) and (65) are based on the assumption that noise
variances are sufficiently small. In the following, we will ap-
ply (64) and (65) to show that all the developed algorithms
are approximately unbiased and to produce their theoretical
variances.

4.2. TDOA

Although the CWLS problem of (24) subject to (23) consists
of a parameter vector ϑ̆with 3 variables, namely, x̆−x1, y̆−y1,
and R̆1, it can be reduced to a 2-variable optimization prob-

lem using the relation of (18), that is, setting R̆1 = (ϑ̆
T
1 ϑ̆1)

1/2

where ϑ̆1 = [x̆ − x1 y̆ − y1]T . In so doing, the CWLS po-
sition estimate using the TDOA measurements is equivalent
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to

̂ϑ1 = argmin
ϑ̆1

JTDOA
(

ϑ̆1
)

, (66)

where

JTDOA
(

ϑ̆1
) =

[

Sϑ̆1 +
(

ϑ̆
T
1 ϑ̆1

)1/2
rTDOA − h

]T

×Υ−1
[

Sϑ̆1 +
(

ϑ̆
T
1 ϑ̆1

)1/2
rTDOA − h

]

(67)

which is the cost function of the CWLS algorithm using
TDOA measurements in terms of ϑ̆1 with

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x2 − x1 y2 − y1

x3 − x1 y3 − y1

...
...

xM − x1 yM − y1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (68)

The values of E[∂JTDOA(ϑ̆1)/∂ϑ̆1], E[∂2JTDOA(ϑ̆1)/∂ϑ̆1∂ϑ̆
T
1 ],

and E[(∂JTDOA(ϑ̆1)/∂ϑ̆1)(∂JTDOA(ϑ̆1)/∂ϑ̆1)T] at ϑ̆1 = ϑ1 are
calculated in Appendix B.1. Using (64) and (65) with J =
JTDOA(ϑ̆1), the mean and the covariance matrix of theMS po-
sition estimated by the CWLS algorithm are

E[x̂] ≈ x, (69)

Cx ≈
{

[

ST + d−11

(

x − x1
)(

sT1 − d11TM−1
)]

,

×Υ−1
[

S + d−11

(

s1 − d11M−1
)(

x − x1
)T
]}−1

,
(70)

where 1M−1 is denoted as an (M− 1)× 1 column vector with
all ones. Equation (69) shows that the estimator is approx-
imately unbiased, while the two diagonal elements in (70)
correspond to the variance of the position estimate x̂. Now
we are going to compute Cx particularly when all the mea-
surement errors are uncorrelated. This implies that the co-
variance matrix for the TDOA measurement errors has the
form of

Cn,TDOA =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

σ2TDOA,2 0 · · · 0

0 σ2TDOA,3 · · · 0

...
...

. . .
...

0 0 · · · σ2TDOA,M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (71)

Considering sufficiently small error conditions such thatΥ ≈
Υo, we have

Υ ≈ s1sT1 � Cn,TDOA

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d22σ
2
TDOA,2 0 · · · 0

0 d23σ
2
TDOA,3 · · · 0

...
...

. . .
...

0 0 · · · d2Mσ
2
TDOA,M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
(72)

We also note that

[

ST + d−11

(

x − x1
)(

sT1 − d11TM−1
)] =

⎡

⎢

⎢

⎢

⎣

(

x2−x1
)

+
(

x − x1
)d2 − d1

d1
· · · (

xM − x1
)

+
(

x − x1
)dM − d1

d1
(

y2 − y1
)

+
(

y − y1
)d2 − d1

d1
· · · (yM − y1

)

+
(

y − y1
)dM − d1

d1

⎤

⎥

⎥

⎥

⎦

(73)

and [S+d−11 (s1−d11M−1)(x−x1)T] is given by the transpose
of (73).

Substituting (72) and (73) into (70), the inverse of co-
variance matrix Cx is calculated as

C−1x ≈

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M
∑

i=2

1
σ2TDOA,i

[

x − xi
di

− x − x1
d1

]2 M
∑

i=2

1
σ2TDOA,i

[

x − xi
di

− x − x1
d1

][

y − yi
di

− y − y1
d1

]

M
∑

i=2

1
σ2TDOA,i

[

x − xi
di

− x − x1
d1

][

y − yi
di

− y − y1
d1

] M
∑

i=2

1
σ2TDOA,i

[

y − yi
di

− y − y1
d1

]2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (74)
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On the other hand, the Fisher information matrix (FIM) for
the TDOA-based mobile location problem with uncorrelated

measurement errors is computed in Appendix C as shown
below

ITDOA(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M
∑

i=2

1
σ2TDOA,i

[

x − xi
di

− x − x1
d1

]2 M
∑

i=2

1
σ2TDOA,i

[

x − xi
di

− x − x1
d1

][

y − yi
di

− y − y1
d1

]

M
∑

i=2

1
σ2TDOA,i

[

x − xi
di

− x − x1
d1

][

y − yi
di

− y − y1
d1

] M
∑

i=2

1
σ2TDOA,i

[

y − yi
di

− y − y1
d1

]2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(75)

which implies C−1x ≈ ITDOA(x). As a result, the performance
of the TDOA-based mobile positioning algorithm via the use
of CWLS achieves the CRLB for uncorrelated measurement
errors. It is also expected that the optimality still holds when
the TDOA measurement errors are correlated.

4.3. RSS

Similar to Section 4.1, R̆2 in θ̆ is substituted by xTx so the
CWLS solution using the RSS measurements is equivalent to

x̂ = argmin
x̆

JRSS(x̆), (76)

where

JRSS(x̆) =
[

XBSx̆− 0.5
(

x̆T x̆
)

1M − b
]T

×Ψ−1[XBSx̆− 0.5
(

x̆T x̆
)

1M − b
]

(77)

with

XBS =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1 y1

x2 y2

...
...

xM yM

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (78)

The required values of the derivatives have been computed
in Appendix B.2. Putting them into (64) and (65) with J =
JRSS(x̆) gives

E[x̂] ≈ x, (79)

Cx ≈
{(

XT
BS − x1TM

)

Ψ−1(XBS − 1MxT
)}−1

. (80)

Again, the unbiasedness of the algorithm is illustrated in
(79). For uncorrelated measurement errors, we have

Cn,RSS =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

σ2RSS,1 0 · · · 0

0 σ2RSS,2 · · · 0

...
...

. . .
...

0 0 · · · σ2RSS,M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (81)

Assuming ideal weighting matrix as in the previous analysis,
the inverse ofΨ−1 for the RSS-based algorithm is

Ψ ≈ s2sT2 � Cn,RSS

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
a2
d2(2−a)1 σ2RSS,1 0 · · · 0

0
1
a2
d2(2−a)2 σ2RSS,2 · · · 0

...
...

. . .
...

0 0 · · · 1
a2
d2(2−a)M σ2RSS,M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(82)

It is also noted that

XT
BS − x1TM =

⎡

⎣

x1 − x x2 − x · · · xM − x

y1 − y y2 − y · · · yM − y

⎤

⎦ (83)

and (XBS− 1MxT) is the transpose of (83). Hence the inverse
of the covariance matrix is
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C−1x ≈ (XT
BS − x1TM

)

Ψ−1(XBS − 1MxT
) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M
∑

i=1

a2
(

x − xi
)2
d2(a−2)i

σ2RSS,i

M
∑

i=1

a2
(

x − xi
)(

y − yi
)

d2(a−2)i

σ2RSS,i

M
∑

i=1

a2
(

x − xi
)(

y − yi
)

d2(a−2)i

σ2RSS,i

M
∑

i=1

a2
(

y − yi
)2
d2(a−2)i

σ2RSS,i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (84)

From Appendix C, the FIM for RSS-based mobile location
with uncorrelated measurement errors can be computed,
which is given by

IRSS(x)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M
∑

i=1

a2
(

x−xi
)2
d2(a−2)i

σ2RSS,i

M
∑

i=1

a2
(

x−xi
)(

y−yi
)

d2(a−2)i

σ2RSS,i

M
∑

i=1

a2
(

x−xi
)(

y−yi
)

d2(a−2)i

σ2RSS,i

M
∑

i=1

a2
(

y−yi
)2
d2(a−2)i

σ2RSS,i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(85)

which means IRSS(x) ≈ C−1x , and thus the optimality of
the RSS-based location algorithm for white disturbance is
proved.

4.4. TOA

By putting a = 1 in Section 4.2, the bias and variance ex-
pressions for the position estimate using the TOA data are
obtained. Nevertheless, we have already shown that its esti-
mation performance attains the CRLB in uncorrelated mea-
surement errors in [20].

4.5. AOA

From Section 3.4, theWLS cost function for AOA-based mo-
bile positioning is

JAOA(x̆) = (Hx̆ − k)TΩ−1(Hx̆ − k). (86)

In Appendix B.3, the mean and the covariance matrix of the
MS position estimate are calculated as

E[x̂] ≈ x, (87)

Cx ≈
(

HTΩ−1H
)−1

. (88)

In particular, for uncorrelated measurement errors, Cn,AOA is
of the form

Cn,AOA =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

σ2AOA,1 0 · · · 0

0 σ2AOA,2 · · · 0

...
...

. . .
...

0 0 · · · σ2AOA,M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (89)

Considering sufficiently small noise conditions, we have

Ω ≈ s3sT3 � Cn,AOA

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d21σ
2
AOA,1 0 · · · 0

0 d22σ
2
AOA,2 · · · 0

...
...

. . .
...

0 0 · · · d2Mσ
2
AOA,M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

H ≈

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y − y1
d1

−x − x1
d1

y − y2
d2

−x − x2
d2

...
...

y − yM
dM

−x − xM
dM

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(90)

Putting (90) into (88) yields

C−1x ≈ HTΩ−1H

≈

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M
∑

i=1

(

y − yi
)2

σ2AOA,id
4
i

−
M
∑

i=1

(

x − xi
)(

y − yi
)

σ2AOA,id
4
i

−
M
∑

i=1

(

x − xi
)(

y − yi
)

σ2AOA,id
4
i

M
∑

i=1

(

x − xi
)2

σ2AOA,id
4
i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(91)

On the other hand, the FIM for AOA-based mobile loca-
tion with uncorrelated measurement errors is computed in
Appendix C as

IAOA(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M
∑

i=1

(

y − yi
)2

σ2AOA,id
4
i

−
M
∑

i=1

(

x − xi
)(

y − yi
)

σ2AOA,id
4
i

−
M
∑

i=1

(

x − xi
)(

y − yi
)

σ2AOA,id
4
i

M
∑

i=1

(

x − xi
)2

σ2AOA,id
4
i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(92)
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which implies IAOA(x) ≈ C−1x . As a result, the performance
of using the WLS estimator for AOA-based mobile loca-
tion with uncorrelated measurement errors is optimal under
small noise conditions.

4.6. TDOA-AOA hybrid

Similar to Section 4.1, the CWLS position estimate using
both TDOA and AOA measurements is equivalent to

̂ϑ1 = argmin
ϑ̆1

JTDOA-AOA
(

ϑ̆1
)

, (93)

where

JTDOA-AOA
(

ϑ̆1
)

= (Bϑ̆−w)TW−1(Bϑ̆−w)

=
⎡

⎣

⎡

⎣

S

H

⎤

⎦ ϑ̆1 +
(

ϑ̆
T
1 ϑ̆1

)1/2
⎡

⎣

rTDOA

0M

⎤

⎦−w

⎤

⎦

T

×W−1
⎡

⎣

[

S
H

]

ϑ̆1 +
(

ϑ̆
T
1 ϑ̆1

)1/2
⎡

⎣

rTDOA

0M

⎤

⎦−w

⎤

⎦

(94)

with

B =
[

S rTDOA

H 0M

]

. (95)

In Appendix B.4, we have shown that

E[x̂] ≈ x (96)

which indicates its unbiasedness and

Cx≈
⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎣

[

ST HT
]

+
(

x−x1
)

⎛

⎝d−11

⎡

⎣

s1

0M

⎤

⎦−
⎡

⎣

1M−1

0M

⎤

⎦

⎞

⎠

T
⎤

⎥

⎦

×W−1
⎡

⎣

⎡

⎣

S

H

⎤

⎦+

⎛

⎝d−11

⎡

⎣

s1

0M

⎤

⎦−
⎡

⎣

1M−1

0M

⎤

⎦

⎞

⎠

(

x−x1
)T

⎤

⎦

⎫

⎬

⎭

−1

=
{

[

ST + d−11

(

x − x1
)(

sT1 − d11TM−1
)

HT
]

× W−1
⎡

⎣

S + d−11

(

s1 − d11M−1
)(

x− x1
)T

H

⎤

⎦

⎫

⎬

⎭

−1

.

(97)

In particular, for uncorrelated measurement errors, we have

Cn,TDOA-AOA =
⎡

⎣

Cn,TDOA O(M−1)×M

OM×(M−1) Cn,AOA

⎤

⎦ , (98)

where

Cn,TDOA = diag
(

σ2TDOA,2, σ
2
TDOA,3, . . . , σ

2
TDOA,M

)

,

Cn,AOA = diag
(

σ2AOA,1, σ
2
AOA,2, . . . , σ

2
AOA,M

)

,
(99)

and O(M−1)×M is denoted as an (M − 1)×M matrix with all
zeros. Using the ideal weighting matrix, we get

W = s4sT4 � Cn,TDOA-AOA

=
⎡

⎣

s1sT1 � Cn,TDOA O(M−1)×M

OM×(M−1) s3sT3 � Cn,AOA

⎤

⎦

=
⎡

⎣

Υ O(M−1)×M

OM×(M−1) Ω

⎤

⎦

(100)

which is a diagonalmatrix. Substituting (100) into (97) yields

C−1x ≈ [ST + d−11

(

x − x1
)(

sT1 − d11TM−1
)]

× Υ−1
[

S + d−11

(

s1 − d11M−1
)(

x− x1
)T
]

+HTΩ−1H.

(101)

In Appendix C, the FIM for the TDOA-AOA hybrid mobile
positioning problem with uncorrelated errors can be com-
puted as

ITDOA-AOA(x) = ITDOA(x) + IAOA(x). (102)

From the results of (74), (75), (91), and (92), it is noted that
C−1x ≈ ITDOA-AOA. As a result, it is proved that the perfor-
mance of the TDOA-AOA hybrid mobile positioning algo-
rithm achieves the CRLB for sufficiently small uncorrelated
noise conditions.

5. SIMULATION RESULTS

Computer simulation using MATLAB had been conducted
to evaluate the performance of the proposed TOA-based,
TDOA-based, RSS-based, AOA-based, and TDOA-AOA hy-
brid mobile positioning algorithms. Comparisons with
the NLS approach as well as corresponding CRLBs were
also made. We considered a 5-BS geometry with coordi-
nates [0, 0]m, [3000

√
3, 3000]m, [0, 6000]m, [−3000√3,

3000]m, and [−3000√3,−3000]m, while the MS position
was fixed at [x, y] = [1000, 2000]m. The value of a was set
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Figure 1: Mean square range errors for TOA measurements in un-
correlated noise.

to be 2 in all RSS measurements. For the proposed approach,
steps (ii) and (iii) of the TDOA-based and TDOA-AOA hy-
brid algorithms and step (ii) of the AOA-based algorithm
were only repeated once because no obvious improvement
was observed formore iterations. On the other hand, we used
the Newton-Raphson iterative procedure in the NLS imple-
mentation with three iterations. For TDOA, TOA, and RSS
measurements, NLS initialization was given by (28) and (45)
with setting the values of the Lagrange multipliers to zero. As
for AOA measurements, (51) was employed to initialize the
NLS estimator withΩ = IM . All results were averages of 1000
independent runs.

Figure 1 shows the mean square range errors (MSREs) of
the TOA-based CWLS and NLS estimators as well as CRLB
versus power of distance error based on the TOA measure-
ments. For simplicity, we assumed that the disturbances in
the TOA measurements, namely, {nTOA,i}, were white Gaus-
sian processes with identical variances. The MSRE was de-
fined as E[(x− x̂)2 + (y− ŷ)2] and its unit was m2, which be-
came dBm2 in dB scale. We observe that the performance of
the proposed andNLSmethodsmet the CRLBwhen the TOA
noise power was less than 75dBm2 and 60dBm2, respectively,
which indicated that the former had a larger optimum oper-
ation range. The effect of positive mean TOA errors, which
corresponded to NLOS propagation, was also illustrated in
the same figure. Here the range measurements were modeled
as

rTOA,i = di + nTOA,i +Nui, (103)

where N = 100m was the maximum error introduced by
NLOS and ui, i = 1, 2, . . . ,M, were independent uniformly
distributed random numbers ranged from 0 to 1. It is seen
that the nonzero mean errors introduced biases in both

methods when the TOA noise power was less than 35dBm2,
but its effect became negligible for larger power of nTOA,i, par-
ticularly for the CWLS estimator.

Figures 2, 3, and 4 show the MSREs of the RSS-based,
TDOA-based, and AOA-based positioning algorithms, re-
spectively, as well as the corresponding CRLBs, versus power
of measurement errors. The disturbances in the RSS and
AOA measurements were white Gaussian processes with
identical variances as in the TOAmeasurements. As the units
of the σ2RSS,i and σ

2
AOA,i werem

2a and rad2, they became dBm2a

and dBrad2 when represented in dB scales. While the TDOA
measurements were Gaussian with covariance matrix of the
form

Cn,TDOA = σ2TDOA
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 1 · · · 1

1 2 · · · 1
...

...
. . .

...

1 1 · · · 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (104)

From the figures, we observe that the performance of all the
proposed methods approached the corresponding CRLBs for
sufficiently small measurement errors, which verified their
optimality at sufficiently high SNRs. Moreover, the superi-
ority of the CWLS approach over the NLS scheme was again
demonstrated for larger disturbance environments.

Figure 5 shows theMSREs with TDOA-AOA hybridmea-
surements, where the disturbances in the same type of mea-
surements had identical power with zero mean, and they
were uncorrelated with each other. It can be observed that
the variances of the CWLS estimator approached the corre-
sponding CRLB for all cases while the NLS scheme failed to
produce optimum performance particularly when the AOA
noise power was −10dBrad2. This illustrated that the CWLS
estimator for TDOA-AOA hybridmobile positioning was op-
timum for uncorrelated TDOA and AOA measurements and
was more robust than the NLS method.

The computational complexity of the CWLS and NLS
methods was also compared using the average number of
floating point operations (FLOPS) provided by MATLAB,
and the results are given in Table 2. It is seen that for AOA
measurements, the proposed method required fewer FLOPS
than the NLS while it needed more FLOPS for RSS and TOA
measurements. For TDOA and TDOA-AOA hybrid measure-
ments, both methods had comparable complexity. It is note-
worthy to mention that the computational requirements of
the CWLS approach can be significantly reduced if we only
solve for the Lagrange multiplier whose value is closest to
zero as in the LCLS method [15].

6. CONCLUSIONS

This paper considers a unified constrained weighted least
squares (CWLS)/weighted least squares (WLS) mobile lo-
cation approach for time-of-arrival (TOA), received sig-
nal strength (RSS), time-difference-of-arrival (TDOA), and
angle-of-arrival (AOA) measurements. The basic idea is to
reorganize the nonlinear equations obtained from the mea-
surements into linear equations. These linear equations are
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Figure 2: Mean square range errors for RSS measurements in un-
correlated noise.
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Figure 3: Mean square range errors for TDOA measurements in
correlated noise.

then solved in an optimum manner with the use of weighted
least squares and/or method of Lagrange multipliers. The
proposed approach is quite flexible in that it can be easily
extended to hybrid measurement cases such as the TDOA-
AOA. We have proved that for small uncorrelated noise dis-
turbances, the performance of all the proposed CWLS and
WLS algorithms attains zero bias and the Cramér-Rao lower
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Figure 4: Mean square range errors for AOA measurements in un-
correlated noise.
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Figure 5: Mean square range errors for using both TDOA and AOA
measurements.

bound (CRLB) approximately. Simulation results indicate
that these theoretical approximation results are accurate, in
that the simulated mean square error performance of the de-
veloped algorithms closely approaches the CRLBs when the
noise variance is small. It is also shown that the proposed
approach outperforms the nonlinear least squares scheme in
terms of larger optimum operation range.
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Table 2: Computational complexity of proposed and NLS methods
in terms of FLOPS.

Proposed NLS

TOA 7125 1978

RSS 6991 1393

TDOA 9892 8058

AOA 1075 2667

TDOA-AOA 11464 11994

APPENDICES

A.

A.1. TDOA

Following [15], we differentiate (27) and equate the expres-
sion to zero:

∂LTDOA(ϑ̆,η)

∂ϑ̆
= 2

(

GTΥ−1G + ηΣ
)

ϑ̆− 2GTΥ−1h = 0.

(A.1)

The solution to (A.1) is

̂ϑ = (GTΥ−1G + ηΣ
)−1

GTΥ−1h, (A.2)

where η is not yet determined. The Lagrange multiplier is
then found by substituting (A.2) into the constraint (23):

hTΥ−1G
(

GTΥ−1G + ηΣ
)−1

Σ
(

GTΥ−1G + ηΣ
)−1

GTΥh = 0.
(A.3)

Using eigenvalue factorization, the matrix GTΥ−1GΣ can be
diagonalized as

GTΥ−1GΣ = SDS−1, (A.4)

where D = diag(ζ1, ζ2, ζ3) and ζi, i = 1, 2, 3, are the eigenval-
ues of the matrix GTΥ−1GΣ. Substituting (A.4) into (A.3),
the constraint can be rewritten as

αT
(

D + ηI3
)−2

β = 0, (A.5)

where α=STΣGTΥ−1h=[α1,α2,α3]T and β = S−1GTΥ−1h =
[β1,β2,β3]T . Simplifying (A.5) gives (29).

A.2. RSS

The minimum of (44) is obtained by differentiating LRSS(θ̆,
λ) with respect to θ̆ and then equating the resultant expres-
sions to zero:

∂LRSS(θ̆, λ)

∂θ̆
= 2

(

ATΨ−1A + λP
)

θ̆ − 2ATΨ−1b + λq = 0.

(A.6)

The solution to (A.6) is

̂θ = (ATΨ−1A + λP
)−1
(

ATΨ−1b− λ

2
q
)

, (A.7)

where λ is not determined yet. To find λ, we substitute (A.7)
into the equality constraint of (36):

qT
(

ATΨ−1A + λP
)−1
(

ATΨ−1b− λ

2
q
)

+
(

bTΨ−1A− λ

2
qT
)

× (ATΨ−1A + λP
)−1

P
(

ATΨ−1A + λP
)−1

×
(

ATΨ−1b− λ

2
q
)

= 0.

(A.8)

Note that the matrix (ATΨ−1A)−1P can be diagonalized as

(

ATΨ−1A
)−1

P = UΛU−1, (A.9)

where Λ = diag(γ1, γ2, γ3), and γi, i = 1, 2, 3, are the eigen-
values of the matrix (ATΨ−1A)−1P. Substituting (A.9) into
(ATΨ−1A + λP)−1 gives

(

ATΨ−1A + λP
)−1 = U

(

I3 + λΛ
)−1

U−1
(

ATΨ−1A
)−1

.
(A.10)

Putting (A.10) into (A.8), we get

cT
(

I3 + λΛ
)−1

f − λ

2
cT
(

I3 + λΛ
)−1

g

+ eT
(

I3 + λΛ
)−1

Λ
(

I3 + λΛ
)−1

f

− λ

2
eT
(

I3 + λΛ
)−1

Λ
(

I3 + λΛ
)−1

g

− λ

2
cT
(

I3 + λΛ
)−1

Λ
(

I3 + λΛ
)−1

f

+
λ2

4
cT
(

I3 + λΛ
)−1

Λ
(

I3 + λΛ)−1g = 0,

(A.11)

where

cT = qTU = [c1, c2, c3
]

,

g = U−1
(

ATΨ−1A
)−1

q = [g1, g2, g3
]T
,

eT = bTΨ−1AU = [e1, e2, e3
]

,

f = U−1
(

ATΨ−1A
)−1

ATΨ−1b = [ f1, f2, f3
]T
.

(A.12)
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Since the matrix (ATΨ−1A)−1P is of rank 2, one of its eigen-
values, say, γ3, must be zero. After expanding (A.11) and
putting γ3 = 0, (A.11) can be simplified to (46).

B.

For notation convenience, JTDOA(ϑ̆1), JRSS(x̆), JAOA(x̆), and
JTDOA-AOA(ϑ̆1) are written as JTDOA, JRSS, JAOA, and JTDOA-AOA,
respectively.

B.1. TDOA

Differentiate (67) with respect to ϑ̆1:

∂JTDOA
∂ϑ̆1

= 2
[

ST +
(

ϑ̆
T
1 ϑ̆1

)−1/2
ϑ̆1rTTDOA

]

×Υ−1
[

Sϑ̆1 +
(

ϑ̆
T
1 ϑ̆1

)1/2
rTDOA − h

]

.

(B.1)

If the derivative of JTDOA is located at the true source posi-
tion ϑ1, assuming that the disturbance to the TDOA mea-
surements is relatively small so that {n2TDOA,i} can be ignored,
then (B.1) becomes

∂JTDOA
∂ϑ̆1

∣

∣

∣

∣

∣

ϑ̆1=ϑ1
≈2
[

ST+d−11 ϑ1
(

s1−d11M−1
)T
]

Υ−1
(

s1�nTDOA
)

= 2
[

ST + ϑ1
(

d−11 sT1 − 1TM−1
)]

Υ−1
(

s1 � nTDOA
)

.
(B.2)

Taking the expected value on both sides of (B.2) and then
applying the fact that E[nTDOA] = 0M−1 gives

E
[

∂JTDOA
∂ϑ̆1

]∣

∣

∣

∣

ϑ̆1=ϑ1

≈ 2
[

ST + ϑ1
(

d−11 sT1 − 1TM−1
)]

Υ−1
(

s1 � E
[

nTDOA
])

= 02.
(B.3)

Substituting (B.3) into (64) yields

E
[

̂ϑ1
] ≈ ϑ1 (B.4)

which indicates that the estimator is unbiased for sufficiently
small measurement errors.

Multiplying (B.2) by its transpose and then taking the ex-
pected value yields

E

[

(

∂JTDOA
∂ϑ̆1

)(

∂JTDOA
∂ϑ̆1

)T
]∣

∣

∣

∣

∣

ϑ̆1=ϑ1

≈ 4
[

ST + ϑ1
(

d−11 sT1 − 1TM−1
)]

× Υ−1
(

s1sT1 � Cn,TDOA
)

Υ−1
[

S +
(

d−11 s1 − 1M−1
)

ϑT1
]

= 4
[

ST+ϑ1
(

d−11 sT1 −1TM−1
)]

Υ−1
[

S+
(

d−11 s1−1M−1
)

ϑT1
]

.
(B.5)

Then differentiating (B.1) with respect to x̆, one of the vari-
ables in ϑ̆1, by using product rule [29], we get

∂

∂x̆

(

∂JTDOA
∂ϑ̆1

)

= 2
[

ST +
(

ϑ̆
T
1 ϑ̆1

)−1/2
ϑ̆1rTTDOA

]

×Υ−1
∂

∂x̆

[

Sϑ̆1 +
(

ϑ̆
T
1 ϑ̆1

)1/2
rTDOA − h

]

+ 2
∂

∂x̆

[

ST +
(

ϑ̆
T
1 ϑ̆1

)−1/2
ϑ̆1rTTDOA

]

×
{

Υ−1
[

Sϑ̆1 +
(

ϑ̆
T
1 ϑ̆1

)1/2
rTDOA − h

]}

= 2
[

ST +
(

ϑ̆
T
1 ϑ̆1

)−1/2
ϑ̆1rTTDOA

]

×Υ−1
⎡

⎣S

⎡

⎣

1

0

⎤

⎦ + rTDOA
(

ϑ̆
T
1 ϑ̆1

)−1/2(
x̆ − x1

)

⎤

⎦

+ 2
∂

∂x̆

[

ST +
(

ϑ̆
T
1 ϑ̆1

)−1/2
ϑ̆1rTTDOA

]

×
{

Υ−1
[

Sϑ̆1 +
(

ϑ̆
T
1 ϑ̆1

)1/2
rTDOA − h

]}

.

(B.6)

By substituting the true source location ϑ1 into (B.6) and ig-
noring the square of the measurement errors {n2TDOA,i}, we
obtain

∂

∂x̆

(

∂JTDOA
∂ϑ̆1

)∣

∣

∣

∣

ϑ̆1=ϑ1

= 2
[

ST + d−11 ϑ1rTTDOA
]

×Υ−1
⎡

⎣S

⎡

⎣

1

0

⎤

⎦ + d−11 rTDOA
(

x − x1
)

⎤

⎦

+ 2
∂

∂x̆

[

ST +
(

ϑ̆
T
1 ϑ̆1

)−1/2
ϑ̆1rTTDOA

]∣

∣

∣

ϑ̆1=ϑ1

×Υ−1
(

s1 � nTDOA
)

≈ 2
[

ST + d−11 ϑ1
(

sT1 − d11TM−1
)]

×Υ−1
⎡

⎣S

⎡

⎣

1

0

⎤

⎦ + d−11

(

s1 − d11M−1
)(

x − x1
)

⎤

⎦

+ 2
[

ST+d−11 ϑ1
(

sT1 −d11TM−1
)]

d−11 Υ−1nTDOA
(

x−x1
)

+ 2d−11 ϑ1nT
TDOAΥ

−1

×
⎡

⎣S

⎡

⎣

1

0

⎤

⎦ + d−11

(

s1 − d11M−1
)(

x − x1
)

⎤

⎦

+ 2
∂

∂x̆

[

ST +
(

ϑ̆
T
1 ϑ̆1

)−1/2
ϑ̆1rTTDOA

]∣

∣

∣

ϑ̆1=ϑ1

×Υ−1
(

s1 � nTDOA
)

.
(B.7)
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Taking the expected value on both sides of (B.7) and applying
the fact that E[nTDOA] = 0M−1 gives

E
[

∂

∂x̆

(

∂JTDOA
∂ϑ̆1

)]∣

∣

∣

∣

ϑ̆1=ϑ1

≈ 2
[

ST + d−11 ϑ1
(

sT1 − d11TM−1
)]

×Υ−1
⎡

⎣S

⎡

⎣

1

0

⎤

⎦ + d−11

(

s1 − d11M−1
)(

x − x1
)

⎤

⎦ .

(B.8)

Similarly, repeating the derivation in (B.6), (B.7), and (B.8)
with the variable y̆,

E
[

∂

∂y̆

(

∂JTDOA
∂ϑ̆1

)]∣

∣

∣

∣

ϑ̆1=ϑ1

≈ 2
[

ST + d−11 ϑ1
(

sT1 − d11TM−1
)]

×Υ−1
⎡

⎣S

⎡

⎣

0

1

⎤

⎦ + d−11

(

s1 − d11M−1
)(

y − y1
)

⎤

⎦ .

(B.9)

We also get

E

[

∂2JTDOA

∂ϑ̆1∂ϑ̆
T
1

]∣

∣

∣

∣

∣

ϑ̆1=ϑ1

=
[

E
[

∂

∂x̆

(

∂JTDOA
∂ϑ̆1

)]∣

∣

∣

∣

ϑ̆1=ϑ1
E
[

∂

∂y̆

(

∂JTDOA
∂ϑ̆1

)]∣

∣

∣

∣

ϑ̆1=ϑ1

]

.

(B.10)

Hence substituting (B.8) and (B.9) into (B.10) yields

E

[

∂2JTDOA

∂ϑ̆1∂ϑ̆
T
1

]∣

∣

∣

∣

∣

ϑ̆1=ϑ1
≈ 2

[

ST + d−11 ϑ1
(

sT1 − d11TM−1
)]

×Υ−1
[

S + d−11

(

s1 − d11M−1
)

ϑT1
]

.
(B.11)

Then by substituting (B.5) and (B.11) into (65), the covari-
ance matrix for the MS position estimate ϑ1 is obtained as

Cϑ1 ≈
{[

ST + d−11 ϑ1
(

sT1 − d11TM−1
)]

×Υ−1
[

S + d−11

(

s1 − d11M−1
)

ϑT1
]}−1

.
(B.12)

Substituting x− x1 back to ϑ1 in (B.4) and (B.12) and apply-
ing the fact that Cx = Cϑ1 gives (69) and (70).

B.2. RSS

Differentiate (77) with respect to x̆,

∂JRSS
∂x̆

= 2
(

XT
BS − x̆1TM

)

Ψ−1[XBSx̆ − 0.5
(

x̆T x̆
)

1M − b
]

.

(B.13)

Assuming that the disturbances due to the RSS measure-
ments are sufficiently small such that {n2RSS,i} can be ignored,
the derivative of JRSS evaluated at the true MS position x be-
comes

∂JRSS
∂x̆

∣

∣

∣

∣

x̆=x
≈ 2

(

XT
BS − x1TM

)

Ψ−1(s2 � nRSS
)

. (B.14)

Take the expected value on both sides of (B.14) and then ap-
ply the fact that E[nRSS] = 0M , we get

E
[

∂JRSS
∂x̆

]∣

∣

∣

∣

x̆=x
≈ 2

(

XT
BS − x1TM

)

Ψ−1(s2 � E
[

nRSS
]) = 02.

(B.15)

Substituting (B.15) into (64) yields (79).
Multiplying (B.14) by its transpose and then taking the

expected value yields

E

[

(

∂JRSS
∂x̆

)(

∂JRSS
∂x̆

)T
]∣

∣

∣

∣

∣

x̆=x

≈ 4
(

XT
BS − x̆1TM

)

Ψ−1(s2sT2 � Cn,RSS
)

Ψ−1(XBS − 1M x̆T
)

= 4
(

XT
BS − x̆1TM

)

Ψ−1(XBS − 1M x̆T
)

.
(B.16)

On the other hand, differentiating (B.13) with respect to x̆,
the first variable in x̆, and with the use of product rule [29],
we get

∂

∂x̆

(

∂JRSS
∂x̆

)

= 2
(

XT
BS − x̆1TM

)

Ψ−1 ∂

∂x̆

[

XBSx̆ − 0.5
(

x̆T x̆
)

1M − b
]

+ 2
[

∂

∂x̆

(

XT
BS − x̆1TM

)

]

Ψ−1[XBSx̆ − 0.5
(

x̆T x̆
)

1M − b
]

= 2
(

XT
BS − x̆1TM

)

Ψ−1

⎡

⎢

⎣XBS

⎡

⎢

⎣

1

0

⎤

⎥

⎦− 1Mx̆

⎤

⎥

⎦

+ 2
[

∂

∂x̆

(

XT
BS − x̆1TM

)

]

Ψ−1[XBSx̆ − 0.5
(

x̆T x̆
)

1M−b
]

.

(B.17)
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Ignoring the terms of {n2RSS,i} again, the value of (B.17) com-
puted at x is

∂

∂x̆

(

∂JRSS
∂x̆

)∣

∣

∣

∣

x̆=x
= 2

(

XT
BS − x1TM

)

Ψ−1

⎡

⎢

⎣XBS

⎡

⎢

⎣

1

0

⎤

⎥

⎦− 1Mx

⎤

⎥

⎦

+ 2
[

∂

∂x̆

(

XT
BS−x̆1TM

)

]∣

∣

∣

∣

x̆=x
Ψ−1(s2�nRSS

)

.

(B.18)

Taking the expected value on both sides of (B.18) and apply-
ing E[nRSS] = 0M gives

E
[

∂

∂x̆

(

∂JRSS
∂x̆

)]∣

∣

∣

∣

x̆=x
≈2
(

XT
BS − x1TM

)

Ψ−1
⎡

⎣XBS

⎡

⎣

1

0

⎤

⎦−1Mx
⎤

⎦ .

(B.19)

Similarly, repeating the derivations in (B.17)–(B.19) with the
second variable y̆, we obtain

E
[

∂

∂y̆

(

∂JRSS
∂x̆

)]∣

∣

∣

∣

x̆=x
≈2
(

XT
BS − x1TM

)

Ψ−1
⎡

⎣XBS

⎡

⎣

0

1

⎤

⎦−1My

⎤

⎦ .

(B.20)

We also have

E
[

∂2JRSS
∂x̆∂x̆T

]∣

∣

∣

∣

x̆=x

=
[

E
[

∂

∂x̆

(

∂JRSS
∂x̆

)]∣

∣

∣

∣

x̆=x
E
[

∂

∂y̆

(

∂JRSS
∂x̆

)]∣

∣

∣

∣

x̆=x

]

.

(B.21)

Substituting (B.19) and (B.20) into (B.21) yields

E
[

∂2JRSS
∂x̆∂x̆T

]∣

∣

∣

∣

x̆=x
≈ 2

(

XT
BS − x1TM

)

Ψ−1(XBS − 1MxT
)

.

(B.22)

Then substituting (B.16) and (B.22) into (65) gives (80).

B.3. AOA

Differentiating (86) with respect to x̆, we get

∂JAOA
∂x̆

= 2HTΩ−1(Hx̆ − k). (B.23)

Assuming that the disturbances due to the AOA measure-
ments are sufficiently small such that {n2AOA,i} can be ignored,
the derivative of JAOA evaluated at the true value of x becomes

∂JAOA
∂x̆

∣

∣

∣

∣

x̆=x
≈ 2HTΩ−1(s3 � nAOA

)

. (B.24)

Taking the expected value on both sides of (B.24) and then
applying the fact that E[nAOA] = 0M , we obtain

E
[

∂JAOA
∂x̆

]∣

∣

∣

∣

x̆=x
≈ 2HTΩ−1(s3 � E

[

nAOA
]) = 02. (B.25)

Substituting (B.25) into (64) gives (87).
Multiplying (B.24) by its transpose and then taking the

expected value yields

E

[

(

∂JAOA
∂x̆

)(

∂JAOA
∂x̆

)T
]∣

∣

∣

∣

∣

x̆=x
≈4HTΩ−1(s3sT3 �Cn,AOA

)

Ω−1H

=4HTΩ−1H.
(B.26)

Differentiating (B.23) with respect to x̆, we get

∂2JAOA
∂x̆∂x̆T

= 2HTΩ−1H. (B.27)

Since (B.27) does not contain x and nAOA, taking the expected
value on both sides of (B.27) yields

E
[

∂2JAOA
∂x̆∂x̆T

]∣

∣

∣

∣

x̆=x
= 2HTΩ−1H. (B.28)

Substituting (B.26) and (B.28) into (65) gives (88).

B.4. TDOA-AOA hybrid

Differentiate (94) with respect to ϑ̆1

∂JTDOA-AOA
∂ϑ̆1

= 2
[ [

ST HT
]

+
(

ϑ̆
T
1 ϑ̆1

)−1/2
ϑ̆1
[

rTTDOA 0TM
] ]

×W−1

⎡

⎢

⎣

⎡

⎢

⎣

S

H

⎤

⎥

⎦ ϑ̆1 +
(

ϑ̆
T
1 ϑ̆1

)1/2

⎡

⎢

⎣

rTDOA

0M

⎤

⎥

⎦−w

⎤

⎥

⎦ .

(B.29)
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If the derivative of JTDOA-AOA is located at the true source po-
sition ϑ1, assuming that the disturbances are relatively small
so that {n2TDOA,i} and {n2AOA,i} can be ignored, then (B.29)
becomes

∂JTDOA-AOA
∂ϑ̆1

∣

∣

∣

∣

ϑ̆1=ϑ1

≈ 2

⎡

⎢

⎣

[

ST HT
]

+ d−11 ϑ1

⎛

⎝

⎡

⎣

s1

0M

⎤

⎦− d1

⎡

⎣

1M−1
0M

⎤

⎦

⎞

⎠

T
⎤

⎥

⎦

×W−1(s4 � nTDOA-AOA
)

= 2

⎡

⎢

⎣

[

ST HT
]

+ ϑ1

⎛

⎝d−11

⎡

⎣

s1

0M

⎤

⎦−
⎡

⎣

1M−1
0M

⎤

⎦

⎞

⎠

T
⎤

⎥

⎦

×W−1(s4 � nTDOA-AOA
)

.
(B.30)

Taking the expected value on both sides of (B.30) and then
applying the fact that E[nTDOA] = 0M−1 and E[nAOA] = 0M
gives

E
[

∂JTDOA-AOA
∂ϑ̆1

]∣

∣

∣

∣

ϑ̆1=ϑ1

= 2

⎡

⎢

⎣

[

ST HT
]

+ ϑ1

⎛

⎝d−11

⎡

⎣

s1

0M

⎤

⎦−
⎡

⎣

1M−1
0M

⎤

⎦

⎞

⎠

T
⎤

⎥

⎦

×W−1(s4 � nTDOA-AOA
) = 02

(B.31)

which results in (96) and indicates that the estimator is un-
biased for sufficiently small measurement errors.

Multiplying (B.29) by its transpose and then taking the
expected value yields

E

[

(

∂JTDOA-AOA
∂ϑ̆1

)(

∂JTDOA-AOA
∂ϑ̆1

)T
]∣

∣

∣

∣

∣

ϑ̆1=ϑ1

≈ 4

⎡

⎢

⎣

[

ST HT
]

+ ϑ1

⎛

⎝d−11

⎡

⎣

s1

0M

⎤

⎦−
⎡

⎣

1M−1
0M

⎤

⎦

⎞

⎠

T
⎤

⎥

⎦

×W−1(s4sT4 � Cn,TDOA-AOA
)

×W−1

⎡

⎢

⎣

⎡

⎣

S

H

⎤

⎦ +

⎛

⎜

⎝d−11

⎡

⎢

⎣

s1

0M

⎤

⎥

⎦−
⎡

⎣

1M−1
0M

⎤

⎦

⎞

⎟

⎠ϑT1

⎤

⎥

⎦

= 4

⎡

⎢

⎣

[

ST HT
]

+ ϑ1

⎛

⎝d−11

⎡

⎣

s1

0M

⎤

⎦−
⎡

⎣

1M−1
0M

⎤

⎦

⎞

⎠

T
⎤

⎥

⎦

×W−1
⎡

⎣

⎡

⎣

S

H

⎤

⎦ +

⎛

⎝d−11

⎡

⎣

s1

0M

⎤

⎦−
⎡

⎣

1M−1
0M

⎤

⎦

⎞

⎠ϑT1

⎤

⎦ .

(B.32)

Then differentiating (B.29) with respect to x̆, one of the vari-
ables in ϑ̆1, by using product rule [29], we get

∂

∂x̆

(

∂JTDOA-AOA
∂ϑ̆1

)

= 2
[ [

ST HT
]

+
(

ϑ̆
T
1 ϑ̆1

)−1/2
ϑ̆1
[

rTTDOA 0TM
] ]

×W−1 ∂

∂x̆

⎡

⎣

⎡

⎣

S

H

⎤

⎦ ϑ̆1 +
(

ϑ̆
T
1 ϑ̆1

)1/2

⎡

⎣

rTDOA

0M

⎤

⎦−w

⎤

⎦

+ 2
∂

∂x̆

[ [

ST HT
]

+
(

ϑ̆
T
1 ϑ̆1

)−1/2
ϑ̆1
[

rTTDOA 0TM
] ]

×
⎧

⎨

⎩

W−1
⎡

⎣

⎡

⎣

S

H

⎤

⎦ ϑ̆1 +
(

ϑ̆
T
1 ϑ̆1

)1/2

⎡

⎣

rTDOA

0M

⎤

⎦−w

⎤

⎦

⎫

⎬

⎭

= 2
[ [

ST HT
]

+
(

ϑ̆
T
1 ϑ̆1

)−1/2
ϑ̆1
[

rTTDOA 0TM
] ]

×W−1
⎡

⎣

⎡

⎣

S

H

⎤

⎦

⎡

⎣

1

0

⎤

⎦ +

⎡

⎣

rTDOA

0TM

⎤

⎦

(

ϑ̆
T
1 ϑ̆1

)−1/2(
x̆ − x1

)

⎤

⎦

+ 2
∂

∂x̆

[ [

ST HT
]

+
(

ϑ̆
T
1 ϑ̆1

)−1/2
ϑ̆1
[

rTTDOA 0TM
] ]

×
⎧

⎨

⎩

W−1
⎡

⎣

⎡

⎣

S

H

⎤

⎦ ϑ̆1 +
(

ϑ̆
T
1 ϑ̆1

)1/2

⎡

⎣

rTDOA

0M

⎤

⎦−w

⎤

⎦

⎫

⎬

⎭

.

(B.33)

By substituting the true source location ϑ1 into (B.33) and
ignoring the square of the measurement errors {n2TDOA,i} and
{n2AOA,i}, we obtain

∂

∂x̆

(

∂JTDOA-AOA
∂ϑ̆1

)∣

∣

∣

∣

ϑ̆1=ϑ1

= 2
[ [

ST HT
]

+ d−11 ϑ1
[

rTTDOA 0TM
] ]

×W−1
⎡

⎣

⎡

⎣

S

H

⎤

⎦

⎡

⎣

1

0

⎤

⎦ + d−11

⎡

⎣

rTDOA

0M

⎤

⎦

(

x − x1
)

⎤

⎦

+ 2
∂

∂x̆

[ [

ST HT
]

+
(

ϑ̆
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(B.34)

Taking the expected value on both sides of (B.34) and apply-
ing the fact that E[nTDOA-AOA] = 02M−1 gives
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(B.35)

Similarly, repeating the derivation in (B.33), (B.34), and
(B.35) with the variable y̆ gives
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(B.36)

We also have
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(B.37)

Hence substituting (B.35) and (B.36) into (B.37), we get
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(B.38)

Then by substituting (B.32) and (B.38) into (65), the covari-
ance matrix for the MS position estimate ϑ1 is obtained as
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⎧
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(B.39)

Substituting x − x1 back to ϑ1 in (B.32) and (B.39) and ap-
plying the fact that Cx = Cϑ1 gives (96) and (97).

C.

The Cramér-Rao lower bound (CRLB) gives a lower bound
on variance attainable by any unbiased estimators and thus
it can serve as a benchmark for the mean square posi-
tion errors (MSPEs) of the positioning algorithms. To de-
termine it, the key step is to construct the Fisher infor-
mation matrix (FIM) using the probability density func-
tion of the measurements parameterized by the MS posi-
tion, and the standard procedure for obtaining the CRLB
can be found in [21]. When the measurement errors are
Gaussian distributed, the FIM for mobile positioning us-
ing TDOA measurements, denoted by ITDOA(x), is given by
[14, 15]

ITDOA(x) =
[

∂fTDOA
∂x̆

]T

C−1n,TDOA

[

∂fTDOA
∂x̆

]∣

∣

∣

∣

x̆=x
, (C.1)

where
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(C.2)

Similarly, the FIMs for RSS, AOA, and TDOA-AOA hybrid
based mobile positioning, denoted by IRSS(x), IAOA(x), and
ITDOA-AOA(x), respectively, are given by

IRSS(x) =
[
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(C.3)
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(C.6)

It is noted that ITOA(x) can be computed from IRSS(x)
in (C.3) by putting a = 1. Then the CRLBs, namely,
CRLBTDOA(x), CRLBRSS(x), CRLBAOA(x), CRLBTDOA-AOA(x),
and CRLBTOA(x) are obtained from the diagonal elements of
the inverses of the corresponding FIMs.
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