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Support vector machines (SVMs), a classification algorithm for the machine learning community, have been shown to provide
higher performance than traditional learning machines. In this paper, the technique of SVMs is introduced into the design of
weighted order statistics (WOS) filters. WOS filters are highly effective, in processing digital signals, because they have a simple
window structure. However, due to threshold decomposition and stacking property, the development of WOS filters cannot sig-
nificantly improve both the design complexity and estimation error. This paper proposes a new designing technique which can
improve the learning speed and reduce the complexity of designing WOS filters. This technique uses a dichotomous approach
to reduce the Boolean functions from 255 levels to two levels, which are separated by an optimal hyperplane. Furthermore, the
optimal hyperplane is gotten by using the technique of SVMs. Our proposed method approximates the optimal weighted order
statistics filters more rapidly than the adaptive neural filters.
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1. INTRODUCTION

Support vector machines (SVMs), a classification algorithm
for the machine learning community, have attracted much
attention in recent years [1–5]. In many applications, SVMs
have been shown to provide higher performance than tradi-
tional learning machines [6–8].

The principle of SVMs is based on approximating struc-
tural risk minimization. It shows that the generalization er-
ror is bounded by the sum of the training set error and a
term dependent on the Vapnik-Chervonenkis dimension of
the learning machines [2]. The idea of SVMs originates from
finding an optimal separating hyperplane which separates
the largest possible fraction of training set of each class of
data while maximizing the distance from either class to the
separating hyperplane. According to Vapnik [9], this hyper-
plane minimizes the risk of misclassifying not only the exam-
ples in the training set, but also the unseen examples of the
test set.

SVMs performance versus traditional learning machines
suggested that a redesign approach could overcome signifi-
cant problems under study [10–15]. In this paper, a new di-
chotomous technique for designing WOS filter by SVMs is
proposed. WOS filters are a special subset of stack filters, and

are used in a lot of applications including noise cancellation,
image restoration, and texture analysis [16–21].

Each stack filter based on a positive Boolean function can
be characterized by two properties—threshold decomposi-
tion and stacking property [11, 22]. The Boolean function
on which each WOS filter is based is a threshold logic which
needs an n-dimensional weight vector and a threshold value.
The representation ofWOS filters based on threshold decom-
position involves K − 1 Boolean functions while input data
are decomposed into K − 1 levels. Note that K is the number
of gray levels of the input data. This architecture has been re-
alized in multilayer neural networks [20]. However, based on
stacking property, the boolean function can be reduced from
K − 1 levels to two levels without loss of accuracy.

Several research studies into WOS filters have also been
proposed recently [23–27]. Due to threshold decomposition
and stacking property, these studies cannot significantly im-
prove the design complexity and estimation error of WOS
filters. This task can be accomplished, however, when the
concept of SVMs is involved to reduce the Boolean func-
tions. This paper compares our algorithm with adaptive neu-
ral filters, first proposed by Yin et al. [20], approximating the
solution of minimum estimation error. Yin et al. applied a
backpropagation algorithm to develop adaptive neural filters
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with sigmoidal neuron functions as their nonlinear threshold
functions [20]. The learning process of adaptive neural filters
has a long computational time since the learning structure is
based on the architecture of threshold decomposition; that
is, the learning data at each level of threshold decomposition
must be manipulated. One contribution of this paper is to
design an efficient algorithm for approximating an optimal
WOS filter. In this algorithm, the total computational time is
only 2T (time units), whereas the adaptive neural filter has
a computational time of 255T (time units), given training
data of 256 gray levels. Our experimental results are superior
to those obtained using adaptive neural filters. We believe
that the design methodology in our algorithm will reinvigo-
rate research into stack filter, including morphological filters
which have languished for a decade.

This paper is organized as follows. In Section 2, the ba-
sic concepts of SVMs, WOS filters, and adaptive neural filters
are reviewed. In Section 3, the concept of dichotomous WOS
filters is described. In Section 4, a fast algorithm for gener-
ating an optimal WOS filter by SVMs is proposed. Finally,
some experimental results are presented in Section 5 and our
conclusions are offered in Section 6.

2. BASIC CONCEPTS

This section reviews three concepts: the basic concept of
SVMs, the definition of WOS filters with reference to both
the multivalued domain and binary domain approaches, and
finally adaptive neural filters proposed by Yin et al. [2, 20].

2.1. Linear support vectormachines

Consider the training samples {(xi, yi)}Li=1, where xi is the in-
put pattern for the ith sample and yi is the corresponding
desired response; xi ∈ Rm and yi ∈ {−1, 1}. The objective
is to define a separating hyperplane which divides the set of
samples such that all the points with the same class are on the
same sides of the hyperplane.

Let wo and bo denote the optimum values of the weight
vector and bias, respectively. The optimal separating hyper-
plane, representing a multidimensional linear decision sur-
face in the input space, is given by

wT
o x + bo = 0. (1)

The set of vectors is said to be optimally separated by the
hyperplane if it is separated without error and the margin
of separation is maximal. Then, the separating hyperplane
wTx + b = 0 must satisfy the following constraints:

yi
(
wTxi + b

)
> 0, i = 1, 2, . . . ,L. (2)

Equation (2) can be redefined without losing accuracy,

yi
(
wTxi + b

) ≥ 1, i = 1, 2, . . . ,L. (3)

When the nonseparable case is considered, a slack variable ξi
is introduced to measure the deviation of a data point from
an ideal value which would yield pattern separability. Hence,

the constraint of (3) is modified to

yi
(
wTxi + b

) ≥ 1− ξi, i = 1, 2, . . . ,L, (4)

ξi ≥ 0. (5)

Two support hyperplaneswTxi+b = 1 andwTxi+b = −1,
which define the two borders of margin of separation, are
specified on (4). According to (4), the optimal separating hy-
perplane is themaximalmargin hyperplane with the geomet-
ric margin 2/‖w‖. Hence, the optimal separating hyperplane
is the one that satisfies (4) and minimizes the cost function,

Φ(w) = 1
2
wTw + C

L∑

i=1
ξi. (6)

The parameter C controls the tradeoff between the complex-
ity of the machine and the number of nonseparable points.
The parameter C is selected by the user. A larger C assigns a
higher penalty to errors.

Since the cost function is a convex function, a Lagrange
function can be used to minimize the constrained optimiza-
tion problem:

L(w, b,α)

= 1
2
wTw+C

L∑

i=1
ξi−

L∑

i=1
αi
[
yi
(
wTxi+b

)−1 + ξi
]−

L∑

i=1
βiξi,

(7)

where αi, βi, i = 1, 2, . . . ,L, are the Lagrange multipliers.
Once the solution αo = (αo1,α

o
2, . . . ,α

o
L) of (7) has been

found, the optimal weight vector is given by

wo =
L∑

i=1
αoi yixi. (8)

Classical Lagrangian duality enables the primal problem
to be transformed to its dual problem. The dual problem of
(7) is reformulated as

Q(α) =
L∑

i=1
αi − 1

2

L∑

i=1

L∑

j=1
αiαj yi y jx

T
i xj , (9)

with constraints

L∑

i=1
αi yi = 0, 0 ≤ αi ≤ C, i = 1, 2, . . . ,L. (10)

2.2. Nonlinear support vectormachines

Input data can be mapped onto an alternative, higher-di-
mensional space, called feature space through a replacement
to improve the representation,

xi · xj −→ ϕ
(
xi
)T
ϕ
(
xj
)
. (11)

The functional form of the mapping ϕ(·) does not need to be
known since it is implicitly defined by selected kernel func-
tion K(xi, xj) = ϕ(xi)Tϕ(xj), such as polynomials, splines,
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radial basis function networks, or multilayer perceptrons. A
suitable choice of kernel can make the data separable in fea-
ture space despite being nonseparable in the original input
space. For example, the XOR problem is nonseparable by a
hyperplane in input space, but it can be separated in the fea-
ture space defined by the polynomial kernel,

K
(
x, xi

) = (xTxi + 1
)p
. (12)

When xi is replaced by its mapping in the feature space
ϕ(xi), (9) becomes

Q(α) =
L∑

i=1
αi − 1

2

L∑

i=1

L∑

j=1
αiαj yi y jK

(
xi, xj

)
. (13)

2.3. WOS filters

In the multivalued domain {0, 1, . . . ,K − 1}, the output of
a WOS filter can be easily obtained by a sorting opera-
tion. Let the K-valued input sequence or signal be X̌ =
(X1,X2, . . . ,XL) and let theK-valued output sequence be Y̌ =
(Y1,Y2, . . . ,YL), where Xi, Yi ∈ {0, 1, . . . ,K − 1}, i ∈ {1, 2,
. . . ,L}. Then, the output Yi = FW (�Xi) can be obtained ac-

cording to the following equation, where �Xi = (Xi−N , . . . ,
Xi, . . . ,Xi+N ) and FW (·) denotes the filtering operation of the
WOS filter associated with the corresponding vectorW con-
sisting of weights and threshold:

Yi = FW (�Xi) = the tth largest value of the samples

{ w1 times
︷ ︸︸ ︷
Xi−N , . . . ,Xi−N ,

w2 times
︷ ︸︸ ︷
Xi−N+1, . . . ,Xi−N+1, . . . ,

w2N+1 times
︷ ︸︸ ︷
Xi+N , . . . ,Xi+N

}

,

(14)

where W = [w1,w2, . . . ,w2N+1; t]T and T denotes trans-
pose. The terms w1,w2, . . . ,w2N+1 and t are all nonnegative
integers. Then, a necessary and sufficient condition for Xk,
i−N ≤ k ≤ i +N , being the output of a WOS filter, is

k = min

{

j |
j∑

i=1
wi ≥ t

}

. (15)

The WOS filter is defined, using (15). In such a definition,
the weights and threshold value need not be nonnegative in-
tegers. They can be any nonnegative real numbers [15, 28].

Using (15), the output f (�x) of a WOS filter for a binary
input vector �x = {xi−N , xi−N+1, . . . , xi, . . . , xi+N} is written as

f (�x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if
i+N∑

j=i−N
wjxj ≥ t,

0 otherwise.

(16)

The function f (�x) is a special case of Boolean functions,
and is called the threshold function. Since WOS filters have
nonnegative weights and threshold, they are stack filters.

As a subclass of stack filters, WOS filters have representa-
tions in the threshold decomposition architecture. Assuming

that Xi ∈ {0, 1, . . . ,K − 1} for all i, it can be decomposed
into K − 1 binary sequence {Xm

i }K−1m=1 by thresholding. This
thresholding operation is called Tm and is defined as

Xm
i = Tm

(
Xi
) = U

(
Xi −m

) =
⎧
⎨

⎩
1 if Xi ≥ m,

0 otherwise,
(17)

where U(·) is a unit step function; U(x) = 1 if x ≥ 0 and
U(x) = 0 if x < 0. Note that

Xi =
K−1∑

m=1
Tm
(
Xi
) =

K−1∑

m=1
Xm
i . (18)

By using the threshold decomposition architecture, WOS
filters can be implemented by threshold logic. That is, the
output of WOS filters is defined as

Yi =
K−1∑

m=1
U
(
WTXm

i

)
, i = 1, 2, . . . ,L, (19)

where Xm
i = [Xm

i−N ,X
m
i−N+1, . . . ,X

m
i , . . . ,X

m
i+N ,−1]T .

2.4. Adaptive neural filters

Let X̌ = (X1,X2, . . . ,XL) and Ž = (Z1,Z2, . . . ,ZL) ∈ {0, 1,
. . . ,K − 1}L be the input and the desired output of the adap-
tive neural filter, respectively. If Xi and Zi are jointly station-
ary, then the MSE to be minimized is

J
(
W
) = E

[(
Zi − FW

(
�Xi

))2]

= E

⎡

⎣
( K−1∑

n=1

(
Tn
(
Zi
)− σ

(
WT �Xn

i

)))2
⎤

⎦ .
(20)

Note that σ(x) = 1/(1 + e−x) is the sigmoid function
instead of the unit step function U(·). Analogous to the
backpropagation algorithm, the optimal adaptive neural fil-
ter can be derived by applying the following update rule [20]:

W ←−W + μΔW =W+2μ
(
Zi−FW

(
�Xi

)) K−1∑

n=1
sni
(
1− sni

)
Xn

i ,

(21)

where μ is a learning rate and sni = σ(WTXn
i ) ∈ [0, 1], that is,

sni is the approximate output of FW (�Xi) at level n. The learn-
ing process can be repeated from i = 1 to L or with more
iterations.

These filters use a sigmoid function as a neuron activa-
tion function, which can approximate linear functions and
unit step functions. Therefore, they can approximate both
FIR filters and WOS filters. However, the above algorithm
takes much computational time to sum up the (K − 1) bi-
nary signals, and it is difficult to understand the correlated
behaviors among signals. This motivates the development of
another approach which is presented in the next section to
reduce the computational cost and clarify the correlated be-
haviors of signals with the viewpoint of support vector.
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100 58 78 120 113 98 105 110 95 98

Threshold at 1, 2, . . . , 98, 99, . . . ,

113, . . . , 255

WOS filters
WT = [1, 1, 2, 1, 2, 5, 3, 2, 1 : 12]

Summation

0 0 0 0 0 0 0 0 0...
0 0 0 1 1 0 0 0 0...

1 0 0 1 1 0 1 1 0

1 0 0 1 1 1 1 1 0
...

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

U(WTX255
i )...

U(WTX113
i )...

U(WTX99
i )

U(WTX98
i )

...
U(WTX2

i )

U(WTX1
i )

0
...
0
...
0

1
...
1

1

Figure 1: The filtering behavior of WOS filters when Xi = 113.

3. A NEWDICHOTOMOUS TECHNIQUE FOR
DESIGNINGWOS FILTERS

This section proposes a new approach which adopts the con-
cept of dichotomy and reduces Boolean functions with K −1
levels into Boolean functions with only two levels, thus sav-
ing considerable computational time.

Recall the definition ofWOS filters from the previous sec-
tion. Let Xn

i = [xi−N , xi−N+1, . . . , xi, . . . , xi+N ,−1]T ; xi = 1 if
Xi ≥ n and xi = 0 if Xi < n; and WT = [wi−N ,wi−N+1, . . . ,
wi, . . . ,wi+N , t]. Using (16), the output of a WOS filter for
a binary input vector (xi−N , xi−N+1, . . . , xi, . . . , xi+N ) is writ-
ten as

U
(
WTXn

i

) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if
i+N∑

k=i−N
wkxk ≥ t,

0 if
i+N∑

k=i−N
wkxk < t.

(22)

In the multivalued domain {0, 1, . . . ,K − 1}, the archi-
tecture of threshold decomposition has K − 1 unit step func-
tions. Suppose the output value of Yi is m, and then Yi can
be decomposed as (23) by threshold decomposition,

Yi = m =⇒ decomposition of Yi =
{ m times
︷ ︸︸ ︷
1, . . . , 1,

K−1−m times
︷ ︸︸ ︷
0, . . . , 0

}

.

(23)

Besides, Xi is also decomposed into K − 1 binary vectors
X1

i ,X
2
i , . . . ,X

K−1
i . Then, those K − 1 outputs of the unit

step function are listed as follows: U(WTX1
i ),U(WTX2

i ), . . . ,
U(WTXK−1

i ). According to the stacking property [22],

X1
i ≥ X2

i ≥ · · · ≥ XK−1
i =⇒ U

(
WTX1

i

) ≥ U
(
WTX2

i

)

≥ · · · ≥ U
(
WTXK−1

i

)
.

(24)

It impliesU(WTX1
i ) = 1,U(WTX2

i ) = 1, . . . ,U(WTXm
i )=1,

U(WTXm+1
i ) = 0, . . . ,U(WTXK−1

i ) = 0. Then, two conclu-

sions are formulated: (a) for all j ≤ m, U(WTX
j
i ) = 1 and

(b) for all j ≥ m + 1, U(WTX
j
i ) = 0. Consequently, if the

output Yi equals m, the definition of the WOS filters can be
rewritten as

Yi = m =
K−1∑

n=1
U
(
WTXn

i

) =
m∑

n=1
U
(
WTXn

i

)
. (25)

Figure 1 illustrates this concept. It shows the filtering be-
havior of a window width 3× 3 WOS filter, based on the ar-
chitecture of threshold decomposition. The data in the up-
per left are input signals and the data in the upper right are
the output, after WOS filtering. The 256-valued input signals
are decomposed into a set of 255 binary signals. After thresh-
olding, each binary signal is independently processed accord-
ing to (22). Finally, the outputs of the unit step function are
summed.

In Figure 1, the threshold value t is 12; this means that the
12th largest value from the set {100, 58, 78, 78, 120, 113, 113,
98, 98, 98, 98, 98, 105, 105, 105, 110, 110, 95} is chosen. The
physical output of the WOS filter is then 98. Figure 1 indi-
cates that

(i) for all n ≤ 98, where n is an integer, Xn
i ≥ X98

i and
WTXn

i ≥ WTX98
i . When WTX98

i = 1, then WTXn
i

must equal one;
(ii) for all n ≥ 99, where n is an integer, Xn

i ≤ X99
i and

WTXn
i ≤ WTX99

i . When WTX99
i = 0, then WTXn

i

must equal zero.

In the supervised learning mode, if the desired output is
m, then the goal in designing a WOS filter is to adjust the
weight vector such that it satisfies U(WTXm+1

i ) = 0 and
U(WTXm

i ) = 1, implying that the input signal need not be
considered at levels other than Xm+1

i and Xm
i . This concept is

referred to as dichotomy.
Accordingly, the binary input signals Xk

i , k ∈ {1, 2,
. . . , 255}, are classified into 1-vector and 0-vector signals.
The input signals Xk

i are 1-vector if they satisfy U(WTXk
i ) =

1. They are 0-vector if they satisfy U(WTXk
i ) = 0. In vector

space, these two classes are separated by an optimal hyper-
plane, which is bounded by WTXm

i ≥ 0 and WTXm+1
i < 0,

when the output value ism. Hence, the vectorXm
i is called the

1-support vector and the vector Xm+1
i is called the 0-support



C.-C. Yao and P.-T. Yu 5

vector, because Xm
i and Xm+1

i are helpful in determining the
optimal hyperplane.

4. SUPPORT VECTORMACHINES FOR
DICHOTOMOUSWOS FILTERS

4.1. Linear support vectormachines for
dichotomousWOS filters

In the above section, the new approach of designing WOS
filter has reduced the Boolean functions with K − 1 levels
into two levels. In this section, the support vector machines
are introduced on the design of dichotomous WOS filters.
The new technique is illustrated as follows.

If the input vector is Xn
i = [xi−N , xi−N+1, . . . , xi, . . . ,

xi+N ,−1]T , n = 0, 1, . . . , 255, and the desired output is m,
then an appropriate WT can be found, such that two con-
straints are satisfied: WTXm

i ≥ 0 and WTXm+1
i < 0. For in-

creasing tolerance, WTXm
i ≥ 0 and WTXm+1

i < 0 are rede-
fined as follows:

i+N∑

k=i−N
wkx1k − t ≥ 1, x1k is the kth component of Xm

i ,

i+N∑

k=i−N
wkx2k − t ≤ −1, x2k is the kth component of Xm+1

i .

(26)

The corresponding outputs y1i, y2i of (26) are y1i =
U(WTXm

i ) = 1 and y2i = U(WTXm+1
i ) = 0. When y1i and

y2i are considered, (27) is obtained as follows:

(
2y1i − 1

)
( i+N∑

k=i−N
wkx1k − t

)

≥ 1,

x1k is the kth component of Xm
i ,

(
2y2i − 1

)
( i+N∑

k=i−N
wkx2k − t

)

≥ 1,

x2k is the kth component of Xm+1
i .

(27)

Let �x1i = [x1(i−N), x1(i−N+1), . . . , x1i, . . . , x1(i+N)]T and �x2i =
[x2(i−N), x2(i−N+1), . . . , x2i, . . . , x2(i+N)]T . Then, (27) can be ex-
pressed in vector form as follows:

(
2y1i − 1

)(
wT�x1i − t

) ≥ 1,
(
2y2i − 1

)(
wT�x2i − t

) ≥ 1,
(28)

where wT = [wi−N , wi−N+1, . . . ,wi, . . . ,wi+N ]. Equation (28)
is similar to the constraint which is used in SVMs. Moreover,
when misclassified data are considered, (28) is modified as
follows:

(
2y1i − 1

)(
wT�x1i − t

)
+ ξ1i ≥ 1,

(
2y2i − 1

)(
wT�x2i − t

)
+ ξ2i ≥ 1,

ξ1i, ξ2i ≥ 0.

(29)

Now, we formulate the optimal design of WOS filters as
the following constrained optimization problem.

Given the training samples {(�Xi,mi)}Li=1, find an optimal
value of the weight vector w and threshold t such that they
satisfy the constraints
(
2y1i − 1

)(
wT�x1i − t

)
+ ξ1i ≥ 1, for i = 1, 2, . . . ,L, (30)

(
2y2i − 1

)(
wT�x2i − t

)
+ ξ2i ≥ 1, for i = 1, 2, . . . ,L, (31)

w ≥ 0, (32)

t ≥ 0, (33)

ξ1i, ξ2i ≥ 0, for i = 1, 2, . . . ,L, (34)

and such that the weight vector w and the slack variables ξ1i,
ξ2i can minimize the cost function:

Φ
(
w, ξ1, ξ2

) = 1
2
wTw + C

L∑

i=1

(
ξ1i + ξ2i

)
, (35)

where C is a user-specified positive parameter and �x1i =
[Xmi

i−N ,X
mi
i−N+1, . . . ,X

mi
i , . . . ,Xmi

i+N ]
T and �x2i = [Xmi+1

i−N ,Xmi+1
i−N+1,

. . . ,Xmi+1
i , . . . ,Xmi+1

i+N ]T . Note that the inequality constraint
“w ≥ 0” defines that all elements in binary vector are equal
to or bigger than 0. Since the cost function φ(w, ξ1, ξ2) is a
convex function of w and the constraints are linear in w, the
above constrained optimization problem can be solved by us-
ing the method of Lagrange multipliers [29].

The Lagrangian function is introduced to solve the above
problem. Let

L
(
w, t, ξ1, ξ2

) = 1
2
wTw + C

L∑

i=1

(
ξ1i + ξ2i

)−
L∑

i=1
αi

× [(2y1i − 1
)(
wT�x1i − t

)
+ ξ1i − 1

]

−
L∑

i=1
βi
[(
2y2i − 1

)(
wT�x2i − t

)
+ ξ2i − 1

]

− γTw − ηt −
L∑

i=1
μ1iξ1i −

L∑

i=1
μ2iξ2i,

(36)

where the auxiliary nonnegative variables αi, βi, γ, η, μ1i, and
μ2i are called Lagrange multipliers, where γ ∈ R2N+1. The
saddle point of the Lagrangian function L(w, t, ξ1, ξ2) deter-
mines the solution to the constrained optimization problem.

Differentiating L(w, t, ξ1, ξ2) with respect to w, t, ξ1i, ξ2i
yields the following four equations:

∂L
(
w, t, ξ1i, ξ2i

)

∂w
= w − γ −

L∑

i=1
αi
(
2y1i − 1

)
�x1i

−
L∑

i=1
βi
(
2y2i − 1

)
�x2i,

∂L
(
w, t, ξ1i, ξ2i

)

∂t
=

L∑

i=1
αi
(
2y1i − 1

)
+

L∑

i=1
βi
(
2y2i − 1

)− η,

∂L
(
w, t, ξ1i, ξ2i

)

∂ξ1i
= C − αi − μ1i,

∂L
(
w, t, ξ1i, ξ2i

)

∂ξ2i
= C − βi − μ2i.

(37)
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The optimal value is obtained by setting the results of differ-
entiating L(w, t, ξ1, ξ2) with respect to w, t, ξ1i, ξ2i equal to
zero. Thus,

w = γ +
L∑

i=1
αi
(
2y1i − 1

)
�x1i +

L∑

i=1
βi
(
2y2i − 1

)
�x2i, (38)

0 =
L∑

i=1
αi
(
2y1i − 1

)
+

L∑

i=1
βi
(
2y2i − 1

)− η, (39)

C = αi + μ1i, (40)

C = βi + μ2i. (41)

At each saddle point, for each Lagrange multiplier, the
product of that multiplier with its corresponding constraint
vanishes, as shown by

αi
[(
2y1i − 1

)(
wT�x1i − t

)
+ ξ1i − 1

] = 0, for i = 1, 2, . . . ,L,
(42)

βi
[(
2y2i − 1

)(
wT�x2i − t

)
+ ξ2i − 1] = 0, for i = 1, 2, . . . ,L,

(43)

μ1iξ1i = 0, for i = 1, 2, . . . ,L, (44)

μ2iξ2i = 0, for i = 1, 2, . . . ,L. (45)

By combining (40), (41), (44), and (45), (46) is gotten:

ξ1i = 0 if αi < C,

ξ2i = 0 if βi < C.
(46)

The corresponding dual problem is generated by intro-
ducing (38)–(41) into (36). Accordingly, the dual problem is
formulated as follows.

Given the training samples {(�Xi,mi)}Li=1, find the La-
grange multipliers {αi}Li=1 that maximize the objective func-
tion

Q(α,β) =
L∑

i=1

(
αi + βi

)− 1
2
γTγ − 1

2

L∑

i=1

L∑

j=1
αiαj

× (2y1i − 1
)(
2y1 j − 1

)
�xT1i�x1 j

− 1
2

L∑

i=1

L∑

j=1
βiβj

(
2y2i − 1

)(
2y2 j − 1

)
�xT2i�x2 j

− γ
L∑

i=1
αi
(
2y1i − 1

)
�x1i

− γT
L∑

i=1
βi
(
2y2i − 1

)
�x2i −

L∑

i=1

L∑

j=1
αiβj

× (2y1i − 1
)(
2y2 j − 1

)
�xT1i�x2 j

(47)

subject to the constraints

L∑

i=1
αi
(
2y1i − 1

)
+

L∑

i=1
βi
(
2y2i − 1

)− η = 0,

0 ≤ αi ≤ C for i = 1, 2, . . . ,L,

0 ≤ βi ≤ C for i = 1, 2, . . . ,L,

η ≥ 0, γ ≥ 0,

(48)

where C is a user-specified positive parameter and �x1i =
[Xmi

i−N ,X
mi
i−N+1, . . . ,X

mi
i , . . . ,Xmi

i+N ]
T and �x2i = [Xmi+1

i−N ,Xmi+1
i−N+1,

. . . ,Xmi+1
i , . . . ,Xmi+1

i+N ]T .

4.2. Nonlinear support vectormachines for
dichotomousWOS filters

When the number of training samples is large enough, (32)
can be replaced as wT�x1i ≥ 0 because (1) �x1i is a binary vec-
tor and (2) all possible cases of �x1i are included by training
samples. Then the problem is reformulated as follows.

Given the training samples {(�Xi,mi)}Li=1, find an optimal
value of the weight vector w and threshold t such that they
satisfy the constraints
(
2y1i − 1

)(
wT�x1i − t

)
+ ξ1i ≥ 1, for i = 1, 2, . . . ,L,

(
2y2i − 1

)(
wT�x2i − t

)
+ ξ2i ≥ 1, for i = 1, 2, . . . ,L,

wT�x1i ≥ 0, t ≥ 0,

ξ1i, ξ2i ≥ 0, for i = 1, 2, . . . ,L,
(49)

and such that the weight vector w and the slack variables ξ1i,
ξ2i can minimize the cost function:

Φ
(
w, ξ1, ξ2

) = 1
2
wTw + C

L∑

i=1

(
ξ1i + ξ2i

)
. (50)

Using the method of Lagrange multipliers and proceed-
ing in a manner similar to that described in Section 4.1, the
solution is gotten as follows:

w =
L∑

i=1
γi�x1i +

L∑

i=1
αi
(
2y1i − 1

)
�x1i +

L∑

i=1
βi
(
2y2i − 1

)
�x2i,

0 =
L∑

i=1
αi
(
2y1i − 1

)
+

L∑

i=1
βi
(
2y2i − 1

)− η,

C = αi + μ1i,

C = βi + μ2i.
(51)

Then the dual problem is generated by introducing (51),

Q(α,β, γ) =
L∑

i=1

(
αi + βi

)− 1
2

L∑

i=1

L∑

j=1
αiαj

(
2y1i − 1

)

× (2y1 j − 1
)
�xT1i�x1 j −

1
2

L∑

i=1

L∑

j=1
γiγj�xT1i�x2 j

− 1
2

L∑

i=1

L∑

j=1
βiβj

(
2y2i − 1

)(
2y2 j − 1

)
�xT2i�x2 j

−
L∑

i=1

L∑

j=1
γiαj

(
2y1 j − 1

)
�xT1i�x1 j

−
L∑

i=1

L∑

j=1
γiβj

(
2y2 j − 1

)
�xT1i�x2 j −

1
2

L∑

i=1

L∑

j=1
αiβj

× (2y1i − 1
)(
2y2 j − 1

)
�xT1i�x2 j .

(52)
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The input data are mapped into a high-dimensional fea-
ture space by some nonlinear mapping chosen a priori. Let
ϕ denote a set of nonlinear transformations from the input
space Rm to a higher-dimensional feature space. Then (47)
becomes

Q(α,β, γ) =
L∑

i=1

(
αi + βi

)− 1
2

L∑

i=1

L∑

j=1
αiαj

(
2y1i − 1

)

× (2y1 j − 1
)
ϕT
(
�x1i
)
ϕ
(
�x1 j
)

− 1
2

L∑

i=1

L∑

j=1
γiγjϕ

T
(
�x1i
)
ϕ
(
�x2 j
)

− 1
2

L∑

i=1

L∑

j=1
βiβj

(
2y2i − 1

)

× (2y2 j − 1
)
ϕT
(
�x2i
)
ϕ
(
�x2 j
)

−
L∑

i=1

L∑

j=1
γiαj

(
2y1 j − 1

)
ϕT
(
�x1i
)
ϕ
(
�x1 j
)

−
L∑

i=1

L∑

j=1
γiβj

(
2y2 j − 1

)
ϕT
(
�x1i
)
ϕ
(
�x2 j
)

−
L∑

i=1

L∑

j=1
αiβj

(
2y1i − 1

)(
2y2 j − 1

)
ϕT(�x1i)ϕ

(
�x2 j
)
.

(53)

The inner product of the two vectors induced in the fea-
ture space can be replaced by the inner-product kernel de-
noted by K(x, xi) and defined by

K
(
x, xi

) = ϕ(x) · ϕ(xi
)
. (54)

Once a kernel K(x, xi) which satisfies Mercer’s condition
has been selected, the nonlinear model is stated as follows.

Given the training samples {(�Xi,mi)}Li=1, find the La-
grange multipliers {αi}Li=1 that maximize the objective func-
tion

Q(α,β, γ) =
L∑

i=1

(
αi + βi

)− 1
2

L∑

i=1

L∑

j=1
αiαj

(
2y1i − 1

)

× (2y1 j − 1
)
K
(
�x1i,�x1 j

)

− 1
2

L∑

i=1

L∑

j=1
γiγjK

(
�x1i,�x2 j

)− 1
2

L∑

i=1

L∑

j=1
βiβj

× (2y2i − 1
)(
2y2 j − 1

)
K
(
�x2i,�x2 j

)

−
L∑

i=1

L∑

j=1
γiαj

(
2y1 j − 1

)
K
(
�x1i,�x1 j

)−
L∑

i=1

L∑

j=1
γiβj

× (2y2 j − 1
)
K
(
�x1i,�x2 j

)

−
L∑

i=1

L∑

j=1
αiβj

(
2y1i − 1

)(
2y2 j − 1

)
K
(
�x1i,�x2 j

)

(55)

subject to the constraints

L∑

i=1
αi
(
2y1i − 1

)
+

L∑

i=1
βi
(
2y2i − 1

)− η = 0,

0 ≤ αi ≤ C for i = 1, 2, . . . ,L,

0 ≤ βi ≤ C for i = 1, 2, . . . ,L,

0 ≤ γi for i = 1, 2, . . . ,L,

(56)

where C is a user-specified positive parameter and �x1i =
[Xmi

i−N ,X
mi
i−N+1, . . . ,X

mi
i , . . . ,Xmi

i+N ]
T and �x2i = [Xmi+1

i−N ,Xmi+1
i−N+1,

. . . ,Xmi+1
i , . . . ,Xmi+1

i+N ]T .

5. EXPERIMENTAL RESULTS

The “Lenna” and “Boat” images were used as training sam-
ples for a simulation. Dichotomous WOS filters were com-
pared with adaptive neural filters, rank-order filter, and Lp

norm WOS filter for the restoration of noisy images [20, 30,
31].

In the simulation, the proposed dichotomous WOS fil-
ters were used to restore images corrupted by impulse noise.
The training results were used to filter the noisy images. With
image restoration, the object function was modified in order
to get an optimal solution. The learning steps are illustrated
as follows.

Step 1. In ith training step, choose the input signal �Xi from a
corrupted image and compare signalDi from an uncorrupted
image, where Di ∈ {0, 1, . . . ,K − 1}. The desired output Yi

is selected from input signal vector �Xi and Yi = {Xj | |Xj −
Di| ≤ |Xk −Di|, Xj ,Xk ∈ �Xi}.

Step 2. The training patterns �x1i and �x2i are gotten from in-

put signal vector �Xi by using desired output Yi.

Step 3. Calculating the distances Spi and Sqi, where Spi and Sqi
are the distances between Xp, Yi and Xq, Yi. Note that Xp =
{Xj | Yj − Xj ≤ Yi − Xk, Xj ,Xk ∈ �Xi, and Xj ,Xk < Yi} and
Xq = {Xj | Xj−Yj ≤ Xk−Yi, Xj ,Xk ∈ �Xi, and Xj ,Xk > Yi}.

Step 4. The object function is modified by replacing ξ1i and
ξ2i with Spiξ1i and Sqiξ2i, where Spi and Sqi are taken as the
weight of the error.

Step 5. Applying the model of SVMs which is stated in
Section 4 to get optimal solution.

A large dataset is generated when training data are
obtained from a 256 × 256 image. Nonlinear SVMs cre-
ate unwieldy storage problems. There are various ways to
overcome this including sequential minimal optimization
(SMO), projected conjugate gradient chunking (PCGC), re-
duced support vector machines (RSVMs), and so forth [32–
34]. In this paper, SMO was adopted because it has demon-
strated outstanding performance.

Consider an example to illustrate how to generate the
training data from the input signal. Let the input signal inside
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(a) (b)

(c) (d)

Figure 2: (a) Original “Lenna” image; (b) “Lenna” image corrupted by 5% impulse noise; (c) “Lenna” image corrupted by 10% impulse
noise; (d) “Lenna” image corrupted by 15% impulse noise.

the window of width 5 be �Xi = [240, 200, 90, 210, 180]T .
Suppose that the compared signal Di which is selected from
uncorrupted image is 208. The desired output Yi is selected

from input signal �Xi. According to the principle of WOS fil-
ters, the desired output is 210. Then,

�x1i =
[
T210(240),T210(200),T210(90),T210(210),T210(180)

]T

= [1, 0, 0, 1, 0]T ,

�x2i =
[
T211(240),T211(200),T211(90),T211(210),T211(180)

]T

= [1, 0, 0, 0, 0]T ,
(57)

and y1i = 1, y2i = 0. The balance of training data is generated
in the same way.

This section compares the dichotomousWOS filters with
the adaptive neural filters in terms of three properties: time
complexity, MSE, and convergence speed. Figures 2 and 3
present the training pairs, and Figures 4 and 6 present the
images restored by the dichotomous WOS filters. Figures 5
and 7 show the images restored by the adaptive neural filters.
Using SVMs on the dichotomous WOS filters with 3×3 win-
dow width, the best near-optimal weight values for the test

images, which are corrupted by 5% impulse noise, are listed
as follows:

“Lenna” =⇒

⎛

⎜
⎜
⎜
⎝

0.1968 0.2585 0.1646

0.1436 0.5066 0.1322

0.2069 0.2586 0.1453

⎞

⎟
⎟
⎟
⎠

“Boat” =⇒

⎛

⎜
⎜
⎜
⎝

0.1611 0.2937 0.1344

0.0910 0.5280 0.2838

0.1988 0.1887 0.1255

⎞

⎟
⎟
⎟
⎠
.

(58)

Notably, the weight matrix was translated row-wise in the
simulation, that is, w1 = w11, w2 = w12, w3 = w13, w4 = w21,
w5 = w22, w6 = w23, w7 = w31, w8 = w32, w9 = w33.

Three different kernel functions adopted in our experi-
ments are polynomial function: (gamma ∗u′∗v+coef)degree,
radial basis function: exp(−gamma ∗ ‖u − v‖2), and sig-
moid function: tanh(gamma ∗ u′ ∗ v + coef), respec-
tively. In our experiments, each element on training pat-
tern is either 1 or 0. Suppose that three training patterns
are �xk1 = [0, 0, 0, 0, 0, 0, 0, 0, 0], �xk2 = [0, 1, 0, 0, 0, 0, 0, 0, 0],
and �xk3 = [0, 0, 0, 1, 0, 0, 0, 0, 0]. Obviously, the difference
between �xk1,�xk2 and �xk1, �xk3 cannot be distinguished when
polynomial function or sigmoid function is adopted as
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(a) (b)

(c) (d)

Figure 3: (a) Original “Boat” image; (b) “Boat” image corrupted by 5% impulse noise; (c) “Boat” image corrupted by 10% impulse noise;
(d) “Boat” image corrupted by 15% impulse noise.

(a) (b) (c)

Figure 4: Using 3× 3 dichotomous WOS filter to restore (a) 5% impulse noise image; (b) 10% impulse noise image; (c) 15% impulse noise
image.

kernel function. So in our experiments, only the radial ba-
sis function is considered. Besides, after testing with differ-
ent values of gamma, 1 is adopted as the value of gamma in
this experiment. Better classified ability and filtering perfor-
mance are provided when the value of gamma is bigger than
0.5.

Time

If the computational time was T (time units) on each level,
then the dichotomous WOS filters took only 2T (time units)
to filter 256 gray levels of data. However, the adaptive neural
filters took 255T (time units).
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(a) (b) (c)

Figure 5: Using 3 × 3 adaptive neural filter to restore (a) 5% impulse noise image; (b) 10% impulse noise image; (c) 15% impulse noise
image.

(a) (b) (c)

Figure 6: Using 3× 3 dichotomous WOS filter to restore (a) 5% impulse noise image; (b) 10% impulse noise image; (c) 15% impulse noise
image.

(a) (b) (c)

Figure 7: Using 3 × 3 adaptive neural filter to restore (a) 5% impulse noise image; (b) 10% impulse noise image; (c) 15% impulse noise
image.
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Table 1: The comparisons of different filters’ performance on impulsive noise image.

Measured error

MSE errors
WOS filter by Adaptive Rank-order Lp norm

SVMs neural filter filter WOS filter

“Lenna” 5% noise 45 45 67.1 50.8

“Lenna” 10% noise 80.2 80 90.7 82.8

“Lenna” 15% noise 120.8 119 139.9 125.6

“Boat” 5% noise 95 95.6 155.7 105.1

“Boat” 10% noise 150.2 149 192.8 160.5

“Boat” 15% noise 208.8 206 256.9 218.4

0

500

1000

1500

2000

2500

3000

3500

M
SE

0 10 20 30 40 50 60 70 80 90 100

Training epochs

Figure 8: Converging speed of dichotomy WOS filter and adaptive
neural filter: “-” indicates adaptive neural filter: “x” indicates di-
chotomous WOS filter.

MSE

Table 1 lists the MSE values of the images restored with dif-
ferent filters. In this experiment, the adaptive neural filters
used 256 levels to filter the data. In the simulation, nine-
fold cross-validation was performed on the dataset to eval-
uate how well the algorithm generalizes to future data [35].
The ninefold cross-validation method extracts a certain pro-
portion, typically 11%, of the training set as the tuning set,
which is a surrogate of the testing set. For each training, the
proposed method was applied to the rest of the training data
to obtain a filter and the tuning set correctness of this filter
was computed. Table 1 indicates that the dichotomous WOS
filters performed as well as the adaptive neural filters. Both
outperformed the rank-order filters and the Lp norm WOS
filter.

Figure 8 compares convergence speeds. In Figure 8, the
vertical axis represents MSE, while the horizontal axis repre-
sents the number of training epochs. Each unit of the hor-
izontal axis represents 10 training epochs. Figure 8 reveals

that the dichotomous WOS filter converged steadily and
more quickly than the adaptive neural filter.

In summary, the above comparisons revealed that di-
chotomousWOS filters outperformed adaptive neural filters,
rank-order filters, and Lp normWOS filter.

6. CONCLUSION

Support vector machines (SVMs), a classification algorithm
for the machine learning community, have been shown to
provide excellent performance on many applications. In this
paper, SVMs are introduced into the design of WOS filters in
order to improve performance.

WOS filters are special subset of stack filters. Each stack
filter is based on a positive Boolean function and needs much
computation time to achieve its Boolean computing. This
makes the stack filter uneasy to use on application. Until
now, the computation time has been only marginally im-
proved by using the conventional design approach of stack
filter or neural network. Although the adaptive neural fil-
ter can effectively remove noise of various kinds, including
Gaussian noise and impulsive noise, its learning process in-
volves a great deal of computational time. This work has
proposed a new designing technique to approximate opti-
mal WOS filters. The proposed technique, based on thresh-
old composition, uses a dichotomous approach to reduce the
Boolean computing from 255 levels to two levels. Then the
technique of SVMs is used to get an optimal hyperplane to
separate those two levels. The advantage of SVMs is that the
risk of misclassifying is minimized not only with the exam-
ples in the training set, but also with the unseen examples of
the test set. Our experimental results have showed that im-
ages were processed more efficiently than with an adaptive
neural filter.

The proposed algorithm is designed to handle impulse
noise and provided excellent performance on the images
which contain impulse noise.We have experimented with the
images which contain Gaussian noise, but the experimental
results are unsatisfied. This reveals that a universal adaptive
filter which can deal with any kind of noises simultaneously
does not yet exists in the field of rank-ordered filters. This ex-
perimental result is consistent with the conclusion proposed
by [36].
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