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If a signal x is known to have a sparse representation with respect to a frame, it can be estimated from a noise-corrupted observation
y by finding the best sparse approximation to y. Removing noise in this manner depends on the frame efficiently representing the
signal while it inefficiently represents the noise. The mean-squared error (MSE) of this denoising scheme and the probability
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bound on approximating a Gaussian signal as a linear combination of elements of an overcomplete dictionary is given. Further
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the MSE are given. Asymptotic expressions reveal a critical input signal-to-noise ratio for signal recovery.
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1. INTRODUCTION

Estimating a signal from a noise-corrupted observation of
the signal is a recurring task in science and engineering. This
paper explores the limits of estimation performance in the
case where the only a priori structure on the signal x ∈ RN

is that it has known sparsity K with respect to a given set of
vectors Φ = {ϕi}Mi=1 ⊂ RN . The set Φ is called a dictionary
and is generally a frame [1, 2]. The sparsity of K with respect
to Φmeans that the signal x lies in the set

ΦK =
{
v ∈ RN | v =

M∑
i=1

αiϕi with at most K nonzero αi’s

}
.

(1)

In many areas of computation, exploiting sparsity is mo-
tivated by reduction in complexity [3]; if K � N , then cer-
tain computations may be more efficiently made on α than
on x. In compression, representing a signal exactly or approx-
imately by a member of ΦK is a common first step in effi-
ciently representing the signal, though much more is known
when Φ is a basis or union of wavelet bases than is known
in the general case [4]. Of more direct interest here is that

sparsity models are becoming prevalent in estimation prob-
lems; see, for example, [5, 6].

The parameters of dimension N , dictionary size M, and
sparsity K determine the importance of the sparsity model.
Representative illustrations ofΦK are given in Figure 1. With
dimension N = 2, sparsity of K = 1 with respect to a dictio-
nary of sizeM = 3 indicates that x lies on one of three lines,
as shown in Figure 1a. This is a restrictivemodel, even if there
is some approximation error in (1).WhenM is increased, the
model stops seeming restrictive, even though the set of possi-
ble values for x has measure zero inR2. The reason is that un-
less the dictionary has gaps, all of R2 is nearly covered. This
paper presents progress in explaining the value of a sparsity
model for signal denoising as a function of (N ,M,K).

1.1. Denoising by sparse approximationwith a frame

Consider the problem of estimating a signal x ∈ RN from
the noisy observation y = x + d, where d ∈ RN has the i.i.d.
Gaussian N (0, σ2IN ) distribution. Suppose we know that x
lies in given K-dimensional subspace of RN . Then projecting
y to the given subspace would remove a fraction of the noise
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(a) (b)

Figure 1: Two sparsity models in dimension N = 2. (a) Having
sparsity K = 1 with respect to a dictionary with M = 3 elements
restricts the possible signals greatly. (b) With the dictionary size in-
creased toM = 100, the possible signals still occupy a set of measure
zero, but a much larger fraction of signals is approximately sparse.

without affecting the signal component. Denoting the pro-
jection operator by P, we would have

x̂ = Py = P(x + d) = Px + Pd = x + Pd, (2)

and Pd has only K/N fraction of the power of d.
In this paper, we consider the more general signal model

x ∈ ΦK . The set ΦK defined in (1) is the union of at most
J = (

M
K

)
subspaces of dimension K . We henceforth assume

that M > K (thus J > 1); if not, the model reduces to the
classical case of knowing a single subspace that contains x.
The distribution of x, if available, could also be exploited to
remove noise. However, in this paper the denoising operation
is based only on the geometry of the signal modelΦK and the
distribution of d.

With the addition of the noise d, the observed vector y
will (almost surely) not be represented sparsely, that is, not be
inΦK . Intuitively, a good estimate for x is the point fromΦK

that is closest to y in Euclidean distance. Formally, because
the probability density function of d is a strictly decreasing
function of ‖d‖2, this is the maximum-likelihood estimate
of x given y. The estimate is obtained by applying an optimal
sparse approximation procedure to y. We will write

x̂SA = argmin
x∈ΦK

‖y − x‖2 (3)

for this estimate and call it the optimal K-term approxima-
tion of y. Henceforth, we omit the subscript 2 indicating the
Euclidean norm.

The main results of this paper are bounds on the per-
component mean-squared estimation error (1/N)E[‖x −
x̂SA‖2] for denoising via sparse approximation.1 These
bounds depend on (N ,M,K) but avoid further dependence
on the dictionary Φ (such as the coherence of Φ); some re-
sults hold for allΦ and others are for randomly generatedΦ.

1 The expectation is always over the noise d and is over the dictionary Φ
and signal x in some cases. However, the estimator does not use the dis-
tribution of x.

To the best of our knowledge, the results differ from any in
the literature in several ways.

(a) We study mean-squared estimation error for additive
Gaussian noise, which is a standard approach to per-
formance analysis in signal processing. In contrast,
analyses such as [7] impose a deterministic bound on
the norm of the noise.

(b) We concentrate on having dependence solely on dic-
tionary size rather than more fine-grained properties
of the dictionary. In particular, most signal recov-
ery results in the literature are based on noise being
bounded above by a function of the coherence of the
dictionary [8–14].

(c) Some of our results are for spherically symmetric ran-
dom dictionaries. The series of papers [15–17] is su-
perficially related because of randomness, but in these
papers, the signals of interest are sparse with respect to
a single known, orthogonal basis and the observations
are random inner products. The natural questions in-
clude a consideration of the number of measurements
needed to robustly recover the signal.

(d) We use source-coding thought experiments in bound-
ing estimation performance. This technique may be
useful in answering other related questions, especially
in sparse approximation source coding.

Our preliminary results were first presented in [18], with fur-
ther details in [19, 20]. Probability of error results in a rather
different framework for basis pursuit appear in a manuscript
submitted while this paper was under review [21].

1.2. Connections to approximation

A signal with an exact K-term representation might arise be-
cause it was generated synthetically, for example, by a com-
pression system. A more likely situation in practice is that
there is an underlying true signal x that has a good K-term
approximation rather than an exactK-term representation. At
very least, this is the goal in designing the dictionary Φ for a
signal class of interest. It is then still reasonable to compute
(3) to estimate x from y, but there are tradeoffs in the selec-
tions of K andM.

Let fM,K denote the squared Euclidean approximation
error of the optimal K-term approximation using an M-
element dictionary. It is obvious that fM,K decreases with in-
creasing K , and with suitably designed dictionaries, it also
decreases with increasing M. One concern of approxima-
tion theory is to study the decay of fM,K precisely. (For this,
we should consider N very large or infinite.) For piecewise
smooth signals, for example, wavelet frames give exponential
decay with K [4, 22, 23].

When one uses sparse approximation to denoise, the per-
formance depends on both the ability to approximate x and
the ability to reject the noise. Approximation is improved
by increasing M and K , but noise rejection is diminished.
The dependence on K is clear, as the fraction of the original
noise that remains on average is at least K/N . For the depen-
dence on M, note that increasing M increases the number
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of subspaces, and thus increases the chance that the selected
subspace is not the best one for approximating x. Loosely,
whenM is very large and the dictionary elements are not too
unevenly spread, there is some subspace very close to y, and
thus x̂SA ≈ y. This was illustrated in Figure 1.

Fortunately, there are many classes of signals for which
M need not grow too quickly as a function of N to get good
sparse approximations. Examples of dictionaries with good
computational properties that efficiently represent audio sig-
nals were given by Goodwin [24]. For iterative design proce-
dures, see papers by Engan et al.[25] and Tropp et al.[26].

One initial motivation for this work was to give guidance
for the selection of M. This requires the combination of ap-
proximation results (e.g., bounds on fM,K ) with results such
as ours. The results presented here do not address approxi-
mation quality.

1.3. Relatedwork

Computing optimal K-term approximations is generally a
difficult problem. Given ε ∈ R+ and K ∈ Z+ determine if
there exists a K-term approximation x̂ such that ‖x− x̂‖ ≤ ε
is an NP-complete problem [27, 28]. This computational in-
tractability of optimal sparse approximation has prompted
study of heuristics. A greedy heuristic that is standard for
finding sparse approximate solutions to linear equations [29]
has been known as matching pursuit in the signal process-
ing literature since the work of Mallat and Zhang [30]. Also,
Chen, et al.[31] proposed a convex relaxation of the approx-
imation problem (3) called basis pursuit.

Two related discoveries have touched off a flurry of recent
research.

(a) Stability of sparsity. Under certain conditions, the posi-
tions of the nonzero entries in a sparse representation
of a signal are stable: applying optimal sparse approx-
imation to a noisy observation of the signal will give
a coefficient vector with the original support. Typical
results are upper bounds (functions of the norm of
the signal and the coherence of the dictionary) on the
norm of the noise that allows a guarantee of stability
[7–10, 32].

(b) Effectiveness of heuristics. Both basis pursuit and
matching pursuit are able to find optimal sparse ap-
proximations, under certain conditions on the dictio-
nary and the sparsity of signal [7, 9, 12, 14, 33, 34].

To contrast, in this paper, we consider noise with unbounded
support and thus a positive probability of failing to satisfy a
sufficient condition for stability as in (a) above; and we do
not address algorithmic issues in finding sparse approxima-
tions. It bears repeating that finding optimal sparse approx-
imations is presumably computationally intractable except
in the cases where a greedy algorithm or convex relaxation
happens to succeed. Our results are thus bounds on the per-
formance of the algorithms that one would probably use in
practice.

Denoising by finding a sparse approximation is similar
to the concept of denoising by compression popularized by

Saito [35] and Natarajan [36]. More recent works in this area
include those by Krim et al.[37], Chang et al.[38], and Liu
and Moulin [39]. All of these works use bases rather than
frames. To put the present work into a similar framework
would require a “rate” penalty for redundancy. Instead, the
only penalty for redundancy comes from choosing a sub-
space that does not contain the true signal (“overfitting”
or “fitting the noise”). The literature on compression with
frames notably includes [40–44].

This paper uses quantization and rate-distortion theory
only as a proof technique; there are no encoding rates be-
cause the problem is purely one of estimation. However,
the “negative” results on representing white Gaussian sig-
nals with frames presented here should be contrasted with
the “positive” encoding results of Goyal et al.[42]. The posi-
tive results of [42] are limited to low rates (and hence signal-
to-noise ratios that are usually uninteresting). A natural ex-
tension of the present work is to derive negative results for
encoding. This would support the assertion that frames in
compression are useful not universally, but only when they
can be designed to yield very good sparseness for the signal
class of interest.

1.4. Preview of results and outline

To motivate the paper, we present a set of numerical results
from Monte Carlo simulations that qualitatively reflect our
main results. In these experiments,N ,M, andK are small be-
cause of the high complexity of computing optimal approx-
imations and because a large number of independent trials
are needed to get adequate precision. Each data point shown
is the average of 100 000 trials.

Consider a true signal x ∈ R4 (N = 4) that has an exact
1-term representation (K = 1) with respect to M-element
dictionaryΦ. We observe y = x + d with d ∼ N (0, σ2I4) and
compute estimate x̂SA from (3). The signal is generated with
unit norm so that the signal-to-noise ratio (SNR) is 1/σ2 or
−10 log10 σ2 dB. Throughout, we use the following definition
for mean-squared error:

MSE = 1
N
E
[∥∥x − x̂SA

∥∥2]. (4)

To have tunableM, we used dictionaries that areM max-
imally separated unit vectors inRN , where separation is mea-
sured by the minimum pairwise angle among the vectors
and their negations. These are cases of Grassmannian pack-
ings [45, 46] in the simplest case of packing one-dimensional
subspaces (lines). We used packings tabulated by Sloane et
al.[47].

Figure 2 shows the MSE as a function of σ for several val-
ues ofM. Note that for visual clarity, MSE /σ2 is plotted, and
all of the same properties are illustrated forK = 2 in Figure 3.
For small values of σ , the MSE is (1/4)σ2. This is an example
of the general statement that

MSE = K

N
σ2 for small σ , (5)

as described in detail in Section 2. For large values of σ , the
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Figure 2: Performance of denoising by sparse approximation when
the true signal x ∈ R4 has an exact 1-term representation with re-
spect to a dictionary that is an optimal M-element Grassmannian
packing.
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Figure 3: Performance of denoising by sparse approximation when
the true signal x ∈ R4 has an exact 2-term representation with re-
spect to a dictionary that is an optimal M-element Grassmannian
packing.

scaled MSE approaches a constant value:

lim
σ→∞

MSE
σ2

= gK ,M , (6)

where gK ,M is a slowly increasing function of M and
limM→∞ gK ,M = 1. This limiting value makes sense because
in the limit, x̂SA ≈ y = x + d and each component of d has
variance σ2; the denoising does not do anything. The charac-
terization of the dependence of gK ,M on K andM is the main
contribution of Section 3.

Another apparent pattern in Figure 2 that we would like
to explain is the transition between low- and high-SNR be-
havior. The transition occurs at smaller values of σ for larger

values ofM. Also, MSE /σ2 can exceed 1, so in fact the sparse
approximation procedure can increase the noise. We are not
able to characterize the transition well for general frames.
However, in Section 4 we obtain results for large frames that
are generated by choosing vectors uniformly at random from
the unit sphere in RN . There, we get a sharp transition be-
tween low- and high-SNR behavior.

2. PRELIMINARY COMPUTATIONS

Recall from the introduction that we are estimating a sig-
nal x ∈ ΦK ⊂ RN from an observation y = x + d, where
d ∼ N (0, σ2IN ). ΦK was defined in (1) as the set of vectors
that can be represented as a linear combination of K vectors
from Φ = {ϕm}Mm=1. We are studying the performance of the
estimator

x̂SA = argmin
x∈ΦK

‖y − x‖. (7)

This estimator is the maximum-likelihood estimator of x in
this scenario, in which d has a Gaussian density and the esti-
mator has no probabilistic prior information on x. The sub-
script SA denotes “sparse approximation” because the esti-
mate is obtained by finding the optimal sparse approxima-
tion of y. There are values of y such that x̂SA is not uniquely
defined. These collectively have probability zero and we ig-
nore them.

Finding x̂SA can be viewed as a two-step procedure: first,
find the subspace spanned by K elements of Φ that contains
x̂SA; then, project y to that subspace. The identification of a
subspace and the orthogonality of y − x̂SA to that subspace
will be used in our analyses. Let PK = {Pi}i be the set of the
projections onto subspaces spanned by K of theM vectors in
Φ. Then, PK has at most J = (

M
K

)
elements,2 and the esti-

mate of interest is given by

x̂SA = PT y, T = argmax
i

∥∥Pi y∥∥. (8)

The distribution of the error x− x̂SA and the average per-
formance of the estimator both depend on the true signal x.
Where there is no distribution on x, the performance mea-
sure analyzed here is the conditional MSE,

e(x) = 1
N
E
[∥∥x − x̂SA

∥∥2 | x]; (9)

one could say that showing conditioning in (9) is merely for
emphasis.

In the case that T is independent of d, the projection in
(8) is to a fixed K-dimensional subspace, so

e(x) = K

N
σ2. (10)

This occurs when M = K (there is just one element in PK )
or in the limit of high-SNR (small σ2). In the latter case, the
subspace selection is determined by x, unperturbed by d.

2 It is possible for distinct subsets of Φ to span the same subspace.
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3. RATE-DISTORTION ANALYSIS AND
LOW-SNR BOUND

In this section, we establish bounds on the performance of
sparse approximation denoising that apply for any dictionary
Φ. One such bound qualitatively explains the low-SNR per-
formance shown in Figures 2 and 3, that is, the right-hand
side asymptotes in these plots.

The denoising bound depends on a performance bound
for sparse approximation signal representation developed in
Section 3.1. The signal representation bound is empirically
evaluated in Section 3.2 and then related to low-SNR denois-
ing in Section 3.3. We will also discuss the difficulties in ex-
tending this bound for moderate SNR. To obtain interesting
results for moderate SNR, we consider randomly generated
Φ’s in Section 4.

3.1. Sparse approximation of a Gaussian source

Before addressing the denoising performance of sparse ap-
proximation, we give an approximation result for Gaussian
signals. This result is a lower bound on theMSEwhen sparsely
approximating a Gaussian signal; it is the basis for an up-
per bound on the MSE for denoising when the SNR is low.
These bounds are in terms of the problem size parameters
(M,N ,K).

Theorem 1. Let Φ be an M-element dictionary, let J = (
M
K

)
,

and let v ∈ RN have the distribution N (v̄, σ2IN ). If v̂ is the
optimal K-sparse approximation of v with respect to Φ, then

1
N
E
[‖v − v̂‖2] ≥ σ2c1

(
1− K

N

)
, (11)

where

c1 = J−2/(N−K)
(
K

N

)K/(N−K)
. (12)

For v̄ = 0, the stronger bound

1
N
E
[‖v − v̂‖2] ≥ σ2 · c1

1− c1
·
(
1− K

N

)
(13)

also holds.

The proof follows from Theorem 2, see Appendix A.

Remarks. (i) Theorem 1 shows that for any Φ, there is an
approximation error lower bound that depends only on the
frame sizeM, the dimension of the signal N , and the dimen-
sion of the signal model K .

(ii) AsM →∞with K andN fixed, c1 → 0. This is consis-
tent with the fact that it is possible to drive the approximation
error to zero by letting the dictionary grow.

(iii) The decay of c1 as M increases is slow. To see this,
define a sparsity measure α = K/N and a redundancy factor
ρ = M/N . Now using the approximation (see, e.g., [48, page
530]) (

ρN
αN

)
≈
(
ρ

α

)αN( ρ

ρ − α

)(ρ−α)N
, (14)

we can compute the limit

lim
N→∞

c1 =
[(

α

ρ

)2α(
1− α

ρ

)2(ρ−α)
αα
]1/(1−α)

. (15)

Thus, the decay of the lower bound in (11) as ρ is increased
behaves as ρ−2α/(1−α). This is slow when α is small.

The theorem below strengthens Theorem 1 by having a
dependence on the entropy of the subspace selection ran-
dom variable T in addition to the problem size parameters
(M,N ,K). The entropy of T is defined as

H(T) = −
|PK |∑
i=1

pT(i) log2 pT(i) bits, (16)

where pT(i) is the probability mass function of T .

Theorem 2. Let Φ be an M-element dictionary, and let v ∈
RN have the distribution N (v̄, σ2IN ). If v̂ is the optimal K-
sparse approximation of v with respect to Φ and T is the index
of the subspace that contains v̂, then

1
N
E
[‖v − v̂‖2] ≥ σ2c2

(
1− K

N

)
, (17)

where

c2 = 2−2H(T)/(N−K)
(
K

N

)K/(N−K)
. (18)

For v̄ = 0, the stronger bound

1
N
E
[‖v − v̂‖2] ≥ σ2 · c2

1− c2
·
(
1− K

N

)
(19)

also holds.

For the proof, see Appendix A.

3.2. Empirical evaluation of approximation
error bounds

The bound in Theorem 1 does not depend on any character-
istics of the dictionary other than M and N . Thus it will be
nearest to tight when the dictionary is well suited to repre-
senting the Gaussian signal v. That the expression (11) is not
just a bound but also a useful approximation is supported by
the Monte Carlo simulations described in this section.

To empirically evaluate the tightness of the bound, we
compare it to the MSE obtained with Grassmannian frames
and certain random frames. The Grassmannian frames are
from the same tabulation described in Section 1.4 [47]. The
random frames are generated by choosing M vectors uni-
formly at random from the surface of a unit sphere. One such
vector can be generated, for example, by drawing an i.i.d.
Gaussian vector and normalizing it.

Figure 4 shows comparisons between the bound in
Theorem 1 and the simulated approximation errors as a
function ofM for several values of N and K . For all the sim-
ulations, v̄ = 0; it is for v̄ = 0 that T is the closest to being
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uniformly distributed, and hence the bound is the tightest.
Each of parts (a)–(c) cover a single value of N and combine
K = 1 and K = 2. Part (d) shows results for N = 10 and
N = 100 for K = 1. In all cases, the bound holds and gives
a qualitative match in the dependence of the approximation
error on K and M. In particular, the slopes on these log-log
plots correspond to the decay as a function of ρ discussed in
Remark (iii). We also find that the difference in approxima-
tion error between using a Grassmannian frame or a random
frame is small.

3.3. Bounds on denoisingMSE

We now return to the analysis of the performance of sparse
approximation denoising as defined in Section 2. We wish
to bound the estimation error e(x) for a given signal x and
frame Φ.

To create an analogy between the approximation prob-
lem considered in Section 3.1 and the denoising problem, let
v̄ = x, v − v̄ = d, and v = y. These correspondences fit
perfectly, since d ∼ N (0, σ2IN ) and we apply sparse approxi-
mation to y to get x̂SA. Theorem 2 gives the bound

1
N
E
[∥∥y − x̂SA

∥∥2 | x] ≥ σ2c2

(
1− K

N

)
, (20)

where c2 is defined as before. As illustrated in Figure 5, it is as
if we are attempting to represent d by sparse approximation

and we obtain d̂ = x̂SA − x. The quantity we are interested in

is e(x) = (1/N)E[‖d̂‖2 | x].
In the case that x and x̂SA are in the same subspace, d− d̂

is orthogonal to d̂ so ‖d‖2 = ‖d̂‖2 +‖d− d̂‖2. Thus knowing
E[‖d‖2 | x] = Nσ2 and having a lower bound on E[‖d̂‖2 | x]
immediately give an upper bound on e(x).

The interesting case is when x and x̂SA are not necessar-
ily in the same subspace. Recalling that T is the index of the
subspace selected in sparse, approximation orthogonally de-
compose d as d = dT ⊕ dT⊥ with dT in the selected subspace

and similarly decompose d̂. Then d̂T = dT and the expected
squared norm of this component can be bounded above as in

the previous paragraph. Unfortunately, ‖d̂T⊥‖ can be larger
than ‖dT⊥‖ in proportion to ‖x‖, as illustrated in Figure 5.

The worst case is for ‖d̂T⊥‖ = 2‖dT⊥‖, when y lies equidis-
tant from the subspace of x and the subspace of x̂SA.

From this analysis, we obtain the weak bound

e(x) = 1
N
E
[∥∥x − x̂SA

∥∥2 | x] ≤ 4σ2 (21)

and the limiting low-SNR bound

e(0) = 1
N
E
[∥∥x − x̂SA

∥∥2 | x]|x=0 ≤ σ2
(
1− c2

(
1− K

N

))
.

(22)

4. ANALYSIS FOR ISOTROPIC RANDOM FRAMES

In general, the performance of sparse approximation denois-
ing is given by

e(x) = 1
N
E
[∥∥x − x̂SA

∥∥2]

= 1
N

∫
RN

∥∥∥∥x −
(
argmin
x̂∈ΦK

‖x + η − x̂‖2
)∥∥∥∥

2

f (η)dη,
(23)

where f (·) is the density of the noise d. While this expression
does not give any fresh insight, it does remind us that the per-
formance depends on every element of Φ. In this section, we
improve greatly upon (21) with an analysis that depends on
each dictionary element being an independent random vec-
tor and on the dictionary being large. The results are expec-
tations over both the noise d and the dictionary itself. In ad-
dition to analyzing the MSE, we also analyze the probability
of error in the subspace selection, that is, the probability that
x and x̂SA lie in different subspaces. In light of the simula-
tions in Section 3.2, we expect these analyses to qualitatively
match the performance of a variety of dictionaries.

Section 4.1 delineates the additional assumptions made
in this section. The probability of error and MSE analyses
are then given in Section 4.2. Estimates of the probability of
error and MSE are numerically validated in Section 4.3, and
finally limits as N →∞ are studied in Section 4.4.

4.1. Modeling assumptions

This section specifies the precise modeling assumptions in
analyzing denoising performance with large, isotropic, ran-
dom frames. Though the results are limited to the case of
K = 1, the model is described for general K . Difficulties in
extending the results to general K are described in the con-
cluding comments of the paper. While many practical prob-
lems involve K > 1, the analysis of the K = 1 case presented
here illustrates a number of unexpected qualitative phenom-
ena, some of which have been observed for higher values of
K .

The model is unchanged from earlier in the paper except
that the dictionary Φ and signal x are random.

(a) Dictionary generation. The dictionary Φ consists of M
i.i.d. random vectors uniformly distributed on the unit
sphere in RN .

(b) Signal generation. The true signal x is a linear combi-
nation of the first K dictionary elements so that

x =
K∑
i=1

αiϕi, (24)

for some random coefficients {αi}. The coefficients
{αi} are independent of the dictionary except in that
x is normalized to have ‖x‖2 = N for all realizations of
the dictionary and coefficients.

(c) Noise. The noisy signal y is given by y = x+d, where, as
before, d ∼ N (0, σ2IN ). d is independent of Φ and x.
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Figure 4: Comparison between the bound in Theorem 1 and the approximation errors obtained with Grassmannian and spherically-
symmetric random frames: (a) N = 4, K ∈ {1, 2}, 105 trials per point, (b) N = 6, K ∈ {1, 2}, 104 trials per point, (c) N = 10, K ∈ {1, 2},
104 trials per point, and (d) N ∈ {10, 100}, K = 1, 102 trials per point. The horizontal axis in all plots isM.

We will let

γ = 1
σ2

, (25)

which is the input SNR because of the scaling of x.
(d) Estimator. The estimator x̂SA is defined as before to

be the optimal K-sparse approximation of y with re-
spect to Φ. Specifically, we enumerate the J = (MK ) K-
element subsets of Φ. The jth subset spans a subspace
denoted by Vj and Pj denotes the projection operator
onto Vj . Then,

x̂SA = PT y, T = argmin
j∈{1,2,...,J}

∥∥y − Pj y
∥∥2. (26)

For the special case when M and N are large and K = 1,
we will estimate two quantities.

Definition 1. The subspace selection error probability perr is
defined as

perr = Pr
(
T �= jtrue

)
, (27)

where T is the subspace selection index and jtrue is the index
of the subspace containing the true signal x, that is, jtrue is
the index of the subset {1, 2, . . . ,K}.
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Figure 5: Illustration of variables to relate approximation and de-
noising problems. (An undesirable case in which x̂SA is not in the
same subspace as x.)

Definition 2. The normalized expected MSE is defined as

EMSE = 1
Nσ2

E
[∥∥x − x̂SA

∥∥2] = γ

N
E
[∥∥x − x̂SA

∥∥2]. (28)

Normalized expected MSE is the per-component
MSE normalized by the per-component noise variance
(1/N)E

[‖d‖2] = σ2. The term “expected MSE” emphasizes
that the expectation in (28) is over not just the noise d, but
also the dictionary Φ and signal x.

We will give tractable computations to estimate both perr
and EMSE. Specifically, perr can be approximated from a sim-
ple line integral and EMSE can be computed from a double
integral.

4.2. Analyses of subspace selection error andMSE

The first result shows that the subspace selection error prob-
ability can be bounded by a double integral and approxi-
mately computed as a single integral. The integrands are sim-
ple functions of the problem parameters M, N , K , and γ.
While the result is only proven for the case of K = 1, K is
left in the expressions to indicate the precise role of this pa-
rameter.

Theorem 3. Consider the model described in Section 4.1.
When K = 1 and M and N are large, the subspace selection
error probability defined in (27) is bounded above by

perr < 1−
∫∞
0

∫∞
0

fr(u) fs(v)

× exp

(
−
(
CG(u, v)

)r
1−G(u, v)

)
1{G(u,v)≤Gmax}dv du,

(29)

and perr is well approximated by

p̂err(N ,M,K , γ)

= 1−
∫∞
0

fr(u) exp

(
−
(

C(N − K)σ2u
N + (N − K)σ2u

)r)
du

= 1−
∫∞
0

fr(u) exp

(
−
(

Cau

1 + au

)r)
du,

(30)

where

G(u, v) = au

au +
(
1− σ

√
Kv/N

)2 ,
Gmax =

(
rβ(r, s)

)1/(r−1)
,

(31)

C =
(

J − 1
rβ(r, s)

)1/r
, J =

(
M
K

)
, (32)

r = N − K

2
, s = K

2
, (33)

a = (N − K)σ2

N
= N − K

Nγ
, (34)

fr(u) is the probability distribution

fr(u) = rrΓ(r)ur−1e−ru, u ∈ [0,∞), (35)

β(r, s) is the beta function, and Γ(r) is the gamma function
[49].

For the proof, see Appendix B.
It is interesting to evaluate p̂err in two limiting cases. First,

suppose that J = 1. This corresponds to the situation where
there is only one subspace. In this case, C = 0 and (30) gives
p̂err = 0. This is expected since with one subspace, there is no
chance of a subspace selection error.

At the other extreme, suppose that N , K , and γ are fixed
and M → ∞. Then C → ∞ and p̂err → 1. Again, this is ex-
pected since as the size of the frame increases, the number
of possible subspaces increases and the probability of error
increases.

The next result approximates the normalized expected
MSE with a double integral. The integrand is relatively sim-
ple to evaluate and it decays quickly as ρ → ∞ and u → ∞
so numerically approximating the double integral is not dif-
ficult.

Theorem 4. Consider the model described in Section 4.1.
When K = 1 andM and N are large, the normalized expected
MSE defined in (28) is given approximately by

ÊMSE(N ,M,K , γ) = K

N
+
∫∞
0

∫∞
0

fr(u)gr(ρ)F(ρ,u)dρ du,

(36)

where fr(u) is given in (35), gr(ρ) is the probability distribution

gr(ρ) = rCrrr−1 exp
(− (Cρ)r

)
,

F(ρ,u) =
⎧⎨
⎩γ
(
au(1− ρ) + ρ

)
if ρ(1 + au) < au,

0 otherwise,

(37)

and C, r, and a are defined in (32)–(34).

For the proof, see Appendix C.

4.3. Numerical examples

We now present simulation results to examine the accuracy
of the approximations in Theorems 3 and 4. Three pairs of
(N ,M) values were used: (5,1000), (10,100), and (10,1000).
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Figure 6: Simulation of subspace selection error probability and
normalized expected MSE for isotropic random dictionaries. Cal-
culations were made for integer SNRs (in dB), with 5 × 105 inde-
pendent simulations per data point. In all cases, K = 1. The curve
pairs are labeled by (N ,M). Simulation results are compared to the
estimates from Theorems 3 and 4.

For each integer SNR from−10 dB to 35 dB, the subspace se-
lection and normalizedMSE were measured for 5×105 inde-
pendent experiments. The resulting empirical probabilities
of subspace selection error and normalized expected MSEs
are shown in Figure 6. Plotted alongside the empirical results
are the estimates p̂err and ÊMSE from (30) and (36).

Comparing the theoretical and measured values in
Figure 6, we see that the theoretical values match the sim-
ulation closely over the entire SNR range. Also note that
Figure 6b shows qualitatively the same behavior as Figures
2 and 3 (the direction of the horizontal axis is reversed). In
particular, EMSE ≈ K/N for high SNR and the low-SNR be-
havior depends onM and N as described by (22).

4.4. Asymptotic analysis

The estimates p̂err and ÊMSE are not difficult to compute nu-
merically, but the expressions (30) and (36) provide little di-
rect insight. It is thus interesting to examine the asymptotic
behavior of p̂err and ÊMSE as N and M grow. The following
theorem gives an asymptotic expression for the limiting value
of the error probability function.

Theorem 5. Consider the function p̂err(N ,M,K , γ) defined
in (30). Define the critical SNR as a function of M, N ,

and K as

γcrit = C − 1 =
(

J − 1
rβ(r, s)

)1/r
− 1, (38)

where C, r, s, and J are defined in (32) and (33). For K = 1
and any fixed γ and γcrit,

lim
N ,M→∞

γcrit constant

p̂err(N ,M,K , γ) =
⎧⎨
⎩1 if γ < γcrit,

0 if γ > γcrit,
(39)

where the limit is on any sequence of M and N with γcrit con-
stant.

For the proof, see Appendix D.
The theorem shows that, asymptotically, there is a criti-

cal SNR γcrit above which the error probability goes to one
and below which the probability is zero. Thus, even though
the frame is random, the error event asymptotically becomes
deterministic.

A similar result holds for the asymptotic MSE.

Theorem 6. Consider the function ÊMSE(M,N ,K , γ) defined
in (36) and the critical SNR γcrit defined in (38). For K = 1
and any fixed γ and γcrit,

lim
N ,M→∞

γcrit constant

ÊMSE(M,N ,K , γ) =
⎧⎨
⎩Êlim(γ) if γ < γcrit,

0 if γ > γcrit,
(40)

where the limit is on any sequence of M and N with γcrit con-
stant, and

Êlim(γ) = γ + γcrit
1 + γcrit

. (41)

For the proof, see Appendix E.

Remarks. (i) Theorems 5 and 6 hold for any values of K .
They are stated for K = 1 because the significance of
p̂err(N ,M,K , γ) and ÊMSE(M,N ,K , γ) is proven only for K =
1.

(ii) Both Theorems 5 and 6 involve limits with γcrit constant.
It is useful to examine how M, N , and K must be related
asymptotically for this condition to hold. One can use the
definition of the beta function β(r, s) = Γ(r)Γ(s)/Γ(r + s)
along with Stirling’s approximation, to show that when K �
N ,

(
rβ(r, s)

)1/r ≈ 1. (42)

Substituting (42) into (38), we see that γcrit ≈ J1/r − 1. Also,
for K � N and K �M,

J1/r =
(
M
K

)2/(N−K)
≈
(
M

K

)2K/N
, (43)
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Figure 7: Asymptotic normalized MSE as N → ∞ (from Theorem
6) for various critical SNRs γcrit.

so that

γcrit ≈
(
M

K

)2K/N
− 1 (44)

for small K and largeM and N . Therefore, for γcrit to be con-
stant, (M/K)2K/N must be constant. Equivalently, the dictio-
nary size M must grow as K(1 + γcrit)N/(2K), which is expo-
nential in the inverse sparsity N/K .

The asymptotic normalizedMSE is plotted in Figure 7 for
various values of the critical SNR γcrit. When γ > γcrit, the
normalized MSE is zero. This is expected: from Theorem 5,
when γ > γcrit, the estimator will always pick the correct sub-
space. We know that for a fixed subspace estimator, the nor-
malized MSE is K/N . Thus, as N → ∞, the normalized MSE
approaches zero.

What is perhaps surprising is the behavior for γ < γcrit.
In this regime, the normalized MSE actually increases with
increasing SNR. At the critical level, γ = γcrit, the normalized
MSE approaches its maximum value

max Êlim = 2γcrit
1 + γcrit

. (45)

When γcrit > 1, the limit of the normalized MSE Êlim(γ) sat-
isfies Êlim(γ) > 1. Consequently, the sparse approximation
results in noise amplification instead of noise reduction. In
the worst case, as γcrit → ∞, Êlim(γ) → 2. Thus, sparse ap-
proximation can result in a noise amplification by a factor as
large as 2. Contrast this with the factor of 4 in (21), which
seems to be a very weak bound.

5. COMMENTS AND CONCLUSIONS

This paper has addressed properties of denoising by sparse
approximation that are geometric in that the signal model
is membership in a specified union of subspaces, without a

probability density on that set. The denoised estimate is the
feasible signal closest to the noisy observed signal.

The first main result (Theorems 1 and 2) is a bound on
the performance of sparse approximation applied to a Gaus-
sian signal. This lower bound on mean-squared approxima-
tion error is used to determine an upper bound on denoising
MSE in the limit of low input SNR.

The remaining results apply to the expected perfor-
mance when the dictionary itself is random with i.i.d. en-
tries selected according to an isotropic distribution. Easy-to-
compute estimates for the probability that the subspace con-
taining the true signal is not selected and for the MSE are
given (Theorems 3 and 4). The accuracy of these estimates
is verified through simulations. Unfortunately, these results
are proven only for the case of K = 1. The main technical
difficulty in extending these results to general K is that the
distances to the various subspaces are not mutually indepen-
dent. (Though Lemma 2 does not extend to K > 1, we expect
that a relation similar to (B.10) holds.)

Asymptotic analysis (N →∞) of the situation with a ran-
dom dictionary reveals a critical value of the SNR (Theorems
5 and 6). Below the critical SNR, the probability of select-
ing the subspace containing the true signal approaches zero
and the expected MSE approaches a constant with a simple,
closed form; above the critical SNR, the probability of select-
ing the subspace containing the true signal approaches one
and the expected MSE approaches zero.

Sparsity with respect to a randomly generated dictionary
is a strange model for naturally occurring signals. However,
most indications are that a variety of dictionaries lead to
performance that is qualitatively similar to that of random
dictionaries. Also, sparsity with respect to randomly gener-
ated dictionaries occurs when the dictionary elements are
produced as the random instantiation of a communication
channel. Both of these observations require further investi-
gation.

APPENDIX

A. PROOF OF THEOREMS 1 AND 2

We begin with a proof of Theorem 2; Theorem 1 will follow
easily. The proof is based on analyzing an idealized encoder
for v. Note that despite the idealization and use of source-
coding theory, the bounds hold for any values of (N ,M,K)—
the results are not merely asymptotic. Readers unfamiliar
with the basics of source-coding theory are referred to any
standard text, such as [50–52], though the necessary facts are
summarized below.

Consider the encoder for v shown in Figure 8. The en-
coder operates by first finding the optimal sparse approx-
imation of v, which is denoted by v̂. The subspaces in ΦK

are assumed to be numbered, and the index of the subspace
containing v̂ is denoted by T . v̂ is then quantized with a K-
dimensional, b-bit quantizer represented by the box “Q” to
produce the encoded version of v, which is denoted by v̂Q.

The subspace selection T is a discrete random variable
that depends on v. The average number of bits needed to



Alyson K. Fletcher et al. 11

v

H(T) bits b bits

SA

v̂
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Q v̂Q

Figure 8: The proof of Theorem 2 is based on the analysis of a hy-
pothetical encoder for v. The sparse approximation box “SA” finds
the optimal K-sparse approximation of v, denoted by v̂, by com-
puting v̂ = PTv. The subspace selection T can be represented with
H(T) bits. The quantizer box “Q” quantizes v̂ with b bits, with
knowledge of T . The overall output of the encoder is denoted by
v̂Q.

communicate T to a receiver that knows the probability mass
function of T is given by the entropy of T , which is denoted
byH(T) [51]. In analyzing the encoder for v, we assume that
a large number of independent realizations of v are encoded
at once. This allows b to be an arbitrary real number (rather
than an integer) and allows the average number of bits used
to represent T to be arbitrarily close to H(T). The encoder
of Figure 8 can thus be considered to use H(T) + b bits to
represent v approximately as v̂Q.

The crux of the proof is to represent the squared error
that we are interested in, ‖v− v̂‖2, in terms of squared errors
of the overall encoder v �→ v̂Q and the quantizer v̂ �→ v̂Q. We
will show the orthogonality relationship below and bound
both terms:

E
[‖v − v̂‖2] = E

[∥∥v − v̂Q
∥∥2]︸ ︷︷ ︸

bounded below using fact (a)

− E
[‖v̂ − v̂Q‖2

]
︸ ︷︷ ︸

bounded above using fact (b)

.

(A.1)

The two facts we need from rate-distortion theory are as fol-
lows [50–52].

(a) The lowest possible per-component MSE for encoding
an i.i.d. Gaussian source with per-component variance
σ2 with R bits per component is σ22−2R.

(b) Any source with per-component variance σ2 can be
encoded with R bits per component to achieve per-
component MSE σ22−2R.

(The combination of facts (a) and (b) tells us that Gaussian
sources are the hardest to represent when distortion is mea-
sured by MSE.)

Applying fact (a) to the v �→ v̂Q encoding, we get

1
N
E
[∥∥v − v̂Q

∥∥2] ≥ σ22−2(H(T)+b)/N . (A.2)

Now we would like to define the quantizer “Q” in Figure 8 to
get the smallest possible upper bound on E[‖v̂ − v̂Q‖2].

Since the distribution of v̂ does not have a simple form
(e.g., it is not Gaussian), we have no better tool than fact (b),
which requires us only to find (or upper bound) the variance

of the input to a quantizer. Consider a two-stage quantiza-
tion process for v̂. The first stage (with access to T) applies
an affine, length-preserving transformation to v̂ such that
the result has zero mean and lies in a K-dimensional space.
The output of the first stage is passed to an optimal b-bit
quantizer. Using fact (b), the performance of such a quan-
tizer must satisfy

1
K
E
[∥∥v̂ − v̂Q

∥∥2] ≤ σ2v̂|T2
−2b/K , (A.3)

where σ2v̂|T is the per-component conditional variance of v̂,
in the K-dimensional space, conditioned on T .

From here on, we have slightly different reasoning for the
v̄ = 0 and v̄ �= 0 cases. For v̄ = 0, we get an exact expression
for the desired conditional variance; for v̄ �= 0, we use an
upper bound.

When v̄ = 0, symmetry dictates that E[v̂ | T] = 0 for
all T and E[v̂] = 0. Thus, the conditional variance σ2v̂|T and
unconditional variance σ2v̂ are equal. Taking the expectation
of

‖v‖2 = ‖v̂‖2 + ‖v − v̂‖2 (A.4)

gives

Nσ2 = Kσ2v̂ + E
[‖v − v̂‖2]. (A.5)

Thus

σ2v̂|T = σ2v̂ =
1
K

(
Nσ2 − E

[‖v − v̂‖2]) = N

K

(
σ2 −DSA

)
,

(A.6)

where we have usedDSA to denote (1/N)E[‖v− v̂‖2]—which
is the quantity we are bounding in the theorem. Substituting
(A.6) into (A.3) now gives

1
K
E
[∥∥v̂ − v̂Q

∥∥2] ≤ N
(
σ2 −DSA

)
K

2−2b/K . (A.7)

To usefully combine (A.2) and (A.7), we need one more
orthogonality fact. Since the quantizer Q operates in sub-
space T , its quantization error is also in subspace T . On the
other hand, because v̂ is produced by orthogonal projection
to subspace T , v − v̂ is orthogonal to subspace T . So

∥∥v − v̂Q
∥∥2 = ∥∥v̂ − v̂Q

∥∥2 + ‖v − v̂‖2. (A.8)

Taking expectations, rearranging, and substituting (A.2) and
(A.7) gives

E
[‖v − v̂‖2] = E

[∥∥v − v̂Q
∥∥2]− E

[∥∥v̂ − v̂Q
∥∥2]

≥ Nσ22−2(H(T)+b)/N −N
(
σ2 −DSA

)
2−2b/K .

(A.9)

Recalling that the left-hand side of (A.9) is NDSA and rear-
ranging gives

DSA ≥ σ2
(
2−2(H(T)+b)/N − 2−2b/K

1− 2−2b/K

)
. (A.10)
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Since this bound must be true for all b ≥ 0, one can max-
imize with respect to b to obtain the strongest bound. This
maximization is messy; however, maximizing the numerator
is easier and gives almost as strong a bound. The numerator
is maximized when

b = K

N − K

(
H(T) +

N

2
log2

N

K

)
, (A.11)

and substituting this value of b in (A.10) gives

DSA ≥ σ2 · 2
−2H(T)/(N−K)(1− (K/N))(K/N)K/(N−K)

1− 2−2H(T)/(N−K)(K/N)N/(N−K)
.

(A.12)

We have now completed the proof of Theorem 2 for v̄ = 0.
For v̄ �= 0, there is no simple expression for σ2v̂|T that does

not depend on the geometry of the dictionary, such as (A.6),
to use in (A.3). Instead, use

σ2v̂|T ≤ σ2v̂ ≤
N

K
σ2, (A.13)

where the first inequality holds because conditioning cannot
increase variance and the second follows from the fact that
the orthogonal projection of v cannot increase its variance,
even if the choice of projection depends on v. Now following
the same steps as for the v̄ = 0 case yields

DSA ≥ σ2
(
2−2(H(T)+b)/N − 2−2b/K

)
(A.14)

in place of (A.10). The bound is optimized over b to obtain

DSA ≥ σ2 · 2−2H(T)/(N−K)
(
1−

(
K

N

))(
K

N

)K/(N−K)
.

(A.15)

The proof of Theorem 1 now follows directly: since T is
a discrete random variable that can take at most J values,
H(T) ≤ log2 J .

B. PROOF OF THEOREM 3

Using the notation of Section 4.1, let Vj , j = 1, 2, . . . , J , be
the subspaces spanned by the J possible K-element subsets
of the dictionary Φ. Let Pj be the projection operator onto
Vj , and let T be index of the subspace closest to y. Let jtrue
be the index of the subspace containing the true signal x, so
that the probability of error is

perr = Pr
(
T �= jtrue

)
. (B.1)

For each j, let x̂ j = Pj y, so that the estimator x̂SA in (26)
can be rewritten as x̂SA = x̂T . Also, define random variables

ρj =
∥∥y − x̂ j

∥∥2
‖y‖2 , j = 1, 2, . . . , J , (B.2)

to represent the normalized distances between y and theVj ’s.
Henceforth, the ρj ’s will be called angles, since ρj = sin2 θj ,
where θj is the angle between y and Vj . The angles are well
defined since ‖y‖2 > 0 with probability one.

Lemma 1. For all j �= jtrue, the angle ρj is independent of x
and d.

Proof. Given a subspace V and vector y, define the function

R(y,V) =
∥∥y − PV y

∥∥2
‖y‖2 , (B.3)

where PV is the projection operator onto the subspace y.
Thus, R(y,V) is the angle between y and V . With this no-
tation, ρj = R(y,Vj). Since ρj is a deterministic function of
y and Vj and y = x+d, to show ρj is independent of x and d,
it suffices to prove that ρj is independent of y. Equivalently,
we need to show that for any function G(ρ) and vectors y0
and y1,

E
[
G
(
ρj
) | y = y0

] = E
[
G
(
ρj
) | y = y1

]
. (B.4)

This property can be proven with the following symmetry
argument. Let U be any orthogonal transformation. Since U
is orthogonal, PUV (Uy) = UPV y for all subspaces V and
vectors y. Combining this with the fact that ‖Uv‖ = ‖v‖ for
all v, we see that

R(Uy,UV) =
∥∥Uy − PUV (Uy)

∥∥2
‖Uy‖2 =

∥∥U(y − PV (y)
)∥∥2

‖Uy‖2

=
∥∥y − PV (y)

∥∥2
‖y‖2 = R(y,V).

(B.5)

Also, for any scalar α > 0, it can be verified that R(αy,V) =
R(y,V).

Now, let y0 and y1 be any two possible nonzero values for
the vector y. Then, there exist an orthogonal transformation
U and scalar α > 0 such that y1 = αUy0. Since j �= jtrue and
K = 1, the subspaceVj is spanned by vectors ϕi, independent
of the vector y. Therefore,

E
[
G
(
ρj
)| y= y1

] =E
[
G
(
R
(
y1,Vj

))] = E
[
G
(
R
(
αUy0,Vj

))]
= E

[
G
(
R
(
Uy0,Vj

))]
.

(B.6)

Now since the elements of Φ are distributed uniformly on
the unit sphere, the subspace UVj is identically distributed
to Vj . Combining this with (B.5) and (B.6),

E
[
G
(
ρj
) | y = y1

]
= E

[
G
(
R
(
Uy0,Vj

))] = E
[
G
(
R
(
Uy0,UVj

))]
= E

[
G
(
R
(
y0,Vj

))] = E
[
G
(
ρj
) | y = y0

]
,

(B.7)

and this completes the proof.

Lemma2. The random angles ρj , j �= jtrue, are i.i.d., each with
a probability density function given by the beta distribution

pρ(ρ) = 1
β(r, s)

ρr−1(1− ρ)s−1, 0 ≤ ρ ≤ 1, (B.8)

where r = (N − K)/2 and s = K/2 as defined in (33).
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Proof. Since K = 1, each of the subspaces Vj for j �= jtrue is
spanned by a single, unique vector in Φ. Since the vectors in
Φ are independent and the random variables ρj are the angles
between y and the spaces Vj , the angles are independent.

Now consider a single angle ρj for j �= jtrue. The angle ρj
is the angle between y and a random subspace Vj . Since the
distribution of the random vectors defining Vj is spherically
symmetric and ρj is independent of y, ρj is identically dis-
tributed to the angle between any fixed subspaceV and a ran-
dom vector z uniformly distributed on the unit sphere. One
way to create such a random vector z is to take z = w/‖w‖,
where w ∼ N (0, IN ). Let w1,w2, . . . ,wK be the components
of w in V , and let wK+1,wK+2, . . . ,wN be the components in
the orthogonal complement to V . If we define

X =
K∑
i=1

w2
i , Y =

N∑
i=K+1

w2
i , (B.9)

then the angle between z andV is ρ = Y/(X+Y). Since X and
Y are the sums of K and N − K i.i.d. squared Gaussian ran-
dom variables, they are Chi-squared random variables with
K and N − K degrees of freedom, respectively [53]. Now,
a well-known property of Chi-squared random variables is
that if X and Y are Chi-squared random variables with m
and n degrees of freedom, Y/(X + Y) will have the beta dis-
tribution with parametersm/2 and n/2. Thus, ρ = Y/(X +Y)
has the beta distribution, with parameters r and s defined in
(33). The probability density function for the beta distribu-
tion is given in (B.8).

Lemma 3. Let ρmin = min j �= jtrue ρj . Then ρmin is independent
of x and d and has the approximate distribution

Pr
(
ρmin > ε

) ≈ exp
(− (Cε)r

)
(B.10)

for small ε, where C is given in (32). More precisely,

Pr
(
ρmin>ε

)
<exp

(−(Cε)r(1−ε)s−1) for all ε ∈ (0, 1),

Pr
(
ρmin>ε

)
>exp

(
− (Cε)r

(1−ε)
)

for 0<ε
(
rβ(r, s)

)1/(r−1)
.

(B.11)

Proof. Since Lemma 1 shows that each ρj is independent of x
and d, it follows that ρmin is independent of x and d as well.
Also, for any j �= jtrue, by bounding the integrand of

Pr
(
ρj < ε

) = 1
β(r, s)

∫ ε
0
ρr−1(1− ρ)s−1dρ (B.12)

from above and below, we obtain the bounds

(1− ε)s−1
β(r, s)

∫ ε
0
ρr−1dρ < Pr

(
ρj < ε

)
<

1
β(r, s)

∫ ε
0
ρr−1dρ,

(B.13)

which simplify to

(1− ε)s−1εr
rβ(r, s)

< Pr
(
ρj < ε

)
<

εr

rβ(r, s)
. (B.14)

Now, there are J − 1 subspaces Vj where j �= jtrue,
and by Lemma 2, the ρj ’s are mutually independent. Con-
sequently, if we apply the upper bound of (B.14) and 1− δ >
exp(−δ/(1 − δ)) for δ ∈ (0, 1), with δ = εr /(rβ(r, s)), we
obtain

Pr
(
ρmin > ε

)
=

∏
j �= jtrue

Pr
(
ρj > ε

)
>
(
1− εr

rβ(r, s)

)J−1

> exp
(
− εr(J − 1)

rβ(r, s)(1− δ)

)
for 0 < ε < (rβ(r, s))1/r ,

> exp
(
− εr(J−1)
rβ(r, s)(1−ε)

)
for 0 < ε <

(
rβ(r, s)

)1/(r−1)
.

(B.15)

Similarly, using the lower bound of (B.14), we obtain

Pr
(
ρmin > ε

) = ∏
j �= jtrue

Pr
(
ρj > ε

)
<
(
1− (1− ε)s−1εr

rβ(r, s)

)J−1

< exp
(
− (1− ε)s−1εr(J − 1)

rβ(r, s)

)
.

(B.16)

Proof of Theorem 3. Let Vtrue be the “correct” subspace, that
is, Vtrue = Vj for j = jtrue. Let Dtrue be the squared distance
from y to Vtrue, and let Dmin be the minimum of the squared
distances from y to the “incorrect” subspaces Vj , j �= jtrue.
Since the estimator selects the closest subspace, there is an
error if and only if Dmin ≤ Dtrue. Thus,

perr = Pr
(
Dmin ≤ Dtrue

)
. (B.17)

To estimate this quantity, we will approximate the probability
distributions of Dmin and Dtrue.

First consider Dtrue. Write the noise vector d as d = d0 +
d1, where d0 is the component in Vtrue and d1 is in V⊥

true. Let
D0 = ‖d0‖2 and D1 = ‖d1‖2. Since y = x + d and x ∈ Vtrue,
the squared distance from y to Vtrue is D1. Thus,

Dtrue = D1. (B.18)

Now consider Dmin. For any j, x̂ j is the projection of y
onto Vj . Thus, the squared distance from y to any space Vj

is ‖y − x̂ j‖2 = ρj‖y‖2. Hence, the minimum of the squared
distances from y to the spaces Vj , j �= jtrue, is

Dmin = ρmin‖y‖2. (B.19)

We will bound and approximate ‖y‖2 to obtain the bound
and approximation of the theorem. Notice that y = x + d =
x+d0 +d1, where x+d0 ∈ Vtrue and d1 ∈ V⊥

true. Using this or-
thogonality and the triangle inequality, we obtain the bound

‖y‖2 = ∥∥x + d0
∥∥2 + ∥∥d1∥∥2 ≥ (‖x‖ − ∥∥d0∥∥)2 + ∥∥d1∥∥2

=
(√

N −
√
D0

)2
+D1.

(B.20)
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For an accurate approximation, note that since d0 is the
component of d in the K-dimensional space Vtrue, we have
D0 � N unless the SNR is very low. Thus,

‖y‖2 ≈ N +D1. (B.21)

Combining (B.17), (B.18), and (B.19) gives

perr = Pr
(
Dmin ≤ Dtrue

) = Pr
(
ρmin‖y‖2 ≤ D1

)

= Pr

(
ρmin ≤ D1

‖y‖2
)
.

(B.22)

Note that by Lemma 3, ρmin is independent of x and d. There-
fore, ρmin is independent of D0 and D1. We can now obtain a
bound and an approximation from (B.22) by taking expecta-
tions over D0 and D1.

To obtain a bound, combine the lower bound on
Pr(ρmin > ε) from (B.11) with (B.20):

perr < Pr

(
ρmin ≤ D1

D1 +
(√

N − √D0
)2
)

= Pr

(
ρmin ≤ σ2(N − K)U

σ2(N − K)U +
(√

N − σ
√
KV)2

)

= Pr

(
ρmin ≤ aU

aU +
(
1− σ

√
KV/N

)2
)

= Pr
(
ρmin ≤ G(U ,V)

)
≤ E

[
1− exp

(
−
(
CG(U ,V)

)r
1−G(U ,V)

1{G(U ,V)≤Gmax}
)]

,

(B.23)

where we have started with (B.20) substituted in (B.22); the
first equality uses U = D1/((N − K)σ2), which is a normal-
ized Chi-squared random variable with N − K = 2r degrees
of freedom and V = D0/(Kσ2), which is a normalized Chi-
squared random variable with K = 2s degrees of freedom
[53]; the last equality uses the definition of G from the state-
ment of the theorem; and the final inequality is an applica-
tion of Lemma 3. This yields (29).

To obtain an approximation, combine the approximation
of Pr(ρmin > ε) from (B.10) with (B.21):

perr ≈ Pr
(
ρmin ≤ D1

N +D1

)

= Pr
(
ρmin ≤ σ2(N − K)U

N + σ2(N − K)U

)

= Pr
(
ρmin ≤ aU

1 + aU

)

≈ E
[
1− exp

(
−
(
C

aU

1 + aU

)r)]
,

(B.24)

which yields (30). This completes the proof.

C. PROOF OF THEOREM 4

We will continue with the notation of the proof of Theorem
3. To approximate the MSE, we will need yet another prop-
erty of the random angles ρj .

Lemma 4. For any subspace j �= jtrue, E[x̂ j | ρj , y] = (1 −
ρj)y.

Proof. Define the random variable wj = x̂ j − (1 − ρj)y, and
let μj = E[wj | ρj , y]. Then,

E
[
x̂ j | ρj , y

] = (1− ρj
)
y + μj . (C.1)

So the lemma will be proven if we can show that μj = 0. To
this end, first observe that since x̂ j is the projection of y onto
the space Vj , x̂ j − y is orthogonal to x̂ j . Using this fact along
with the definition of ρj ,

w′j y =
(
x̂ j −

(
1− ρj

)
y
)′
y = x̂′j y − ‖y‖2 + ρj‖y‖2

= x̂′j y − ‖y‖2 +
∥∥x̂ j − y

∥∥2 = x̂′j
(
x̂ j − y

) = 0.
(C.2)

That is, wj is orthogonal to y. Consequently, μj = E[wj |
ρj , y] is orthogonal to y as well.

We can now show that μj = 0 from a symmetry argument
similar to that used in the proof of Lemma 1. For any vector
y and subspace V , define the function

W(y,V) = PV y −
(
1− R(y,V)

)
y, (C.3)

where, as in the proof of Lemma 1, PV is the projection op-
erator onto V , and R(y,V) is given in (B.3). Since ρj =
R(y,Vj), we can rewrite wj as

wj = x̂ j − ρj y = PVj y −
(
1− R

(
y,Vj

))
y =W

(
y,Vj

)
.

(C.4)

The proof of Lemma 1 showed that for any orthogonal trans-
formationU , PUV (Uy) = UPV y and R(Uy,UV) = R(y,V).
Therefore,

W(Uy,UV) = PUV (Uy)− (1− R(Uy,UV)
)
(Uy)

= UPV y −U
(
1− R(y,V)

)
y

= U
(
PV y −

(
1− R(y,V)

)
y
) = UW(y,V).

(C.5)

Now, fix y and let U be any fixed orthogonal transformation
of RN with the property that Uy = y. Since U is orthog-
onal and the space Vj is generated by random vectors with
a spherically symmetric distribution, UVj is identically dis-
tributed to Vj . Combining this with (C.5) and the fact that
Uy = y gives

μj = E
[
wj | ρj , y

] = E
[
W
(
y,Vj

) | ρj , y]
= E

[
W
(
Uy,Vj

) | ρj , y] (since Uy = y)

= E
[
W
(
Uy,UVj

) | ρj , y](
since UVj is distributed identically to Vj

)
= E

[
UW

(
y,Vj

) | ρj , y] = Uμj.

(C.6)

Therefore, μj = Uμj for all orthogonal transformations U
such that Uy = y. Hence, μj must be spanned by y. But, we
showed above that μj is orthogonal to y. Thus μj = 0, and
this proves the lemma.
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Proof of Theorem 4. As in the proof of Theorem 3, let D0 and
D1 be the squared norms of the components of d on the
spaces Vtrue and V⊥

true, respectively. Also, let U = D1/((N −
K)σ2). Define the random variable

E0 = 1
Nσ2

(∥∥x − x̂SA
∥∥2 −D0

)
(C.7)

and its conditional expectation

F0(ρ,u) = E
[
E0 | ρmin = ρ,U = u

]
. (C.8)

Differentiating the approximate cumulative distribution
function of ρmin in Lemma 3, we see that ρmin has an approxi-
mate probability density function of fr(ρ). Also, as argued in
the proof of Theorem 3, U has the probability density func-
tion given by gr(u). Therefore,

EMSE = 1
Nσ2

E
[∥∥x − x̂SA

∥∥2]

≈ 1
Nσ2

∫∞
0

∫∞
0

fr(ρ)gr(u)

× E
[∥∥x − x̂SA

∥∥2 | ρmin = ρ,U = u
]
dudρ

=
∫∞
0

∫∞
0

fr(ρ)gr(u)

×
(
F0(ρ,u)+

1
Nσ2

E
[
D0 |ρmin=ρ,U=u

])
dudρ

= 1
Nσ2

E
[
D0
]
+
∫∞
0

∫∞
0

fr(ρ)gr(u)F0(ρ,u)dudρ

= K

N
+
∫∞
0

∫∞
0

fr(ρ)gr(u)F0(ρ,u)dudρ.

(C.9)

In the last step, we have used the fact that D0 = ‖d0‖2, where
d0 is the projection of d onto the K-dimensional subspace
Vtrue. Since d has variance σ2 per dimension, E

[
D0
] = Kσ2.

Comparing (C.9) with (36), the theorem will be proven if we
can show that

F0(ρ,u) ≈ F(ρ,u), (C.10)

where F(ρ,u) is given in (37).
We consider two cases: when T = jtrue and T �= jtrue.

First, consider the case T = jtrue. In this case, x̂SA is the pro-
jection of y onto the true subspace Vtrue. The error x − x̂SA
will be precisely d0, the component of the noise d on Vtrue.
Thus,

∥∥x − x̂SA
∥∥2 = ∥∥d0∥∥2 = D0. (C.11)

Consequently, when T = jtrue,

E0 = 1
Nσ2

(∥∥x − x̂SA
∥∥2 −D0

)
= 0. (C.12)

Taking the conditional expectation with respect to ρmin, U ,
and the event that T = jtrue,

E
[
E0 | T = jtrue, ρmin,U

] = 0. (C.13)

Next consider the case T �= jtrue. In this case, we divide
the approximation error into three terms:

∥∥x − x̂SA
∥∥2 = ‖y − x‖2 + ∥∥y − x̂SA

∥∥2 − 2(y − x)′
(
y − x̂SA

)
.

(C.14)

We take the conditional expectation of the three terms in
(C.14) given T �= jtrue, D0, D1, and ρmin.

For the first term in (C.14), observe that since y − x = d
and ‖d‖2 = D0 +D1,

‖y − x‖2 = ‖d‖2 = D0 +D1. (C.15)

Therefore, since ρmin is independent of d,

E
[‖y − x‖2 | T �= jtrue,D0,D1, ρmin

] = D0 +D1. (C.16)

For the second term in (C.14), let x̂ j be the projection of
y onto the jth subspace Vj . By the definition of ρj ,

∥∥y − x̂ j
∥∥2 = ρj‖y‖2. (C.17)

Therefore, when T �= jtrue,

∥∥y − x̂SA
∥∥2 = ρmin‖y‖2. (C.18)

Using the approximation in the proof of Theorem 3 that
‖y‖2 ≈ N +D1,

∥∥y − x̂SA
∥∥2 ≈ ρmin

(
N +D1

)
. (C.19)

Hence,

E
[∥∥y − x̂SA

∥∥2 | T �= jtrue, ρmin,D0,D1
] ≈ ρmin

(
N +D1

)
.

(C.20)

Evaluating the last term in (C.14) with Lemma 4, we ob-
tain

E
[
(y − x)′

(
y − x̂ j

) | x,d, ρj] = E
[
d′
(
y − x̂ j

) | x,d, ρj]
= d′y − d′E

[
x̂ j | x,d, ρj

] = d′y − (1− ρj
)
d′y

= ρjd
′y = ρjd

′(x + d).
(C.21)

Therefore,

E
[
(y − x)′

(
y − x̂SA

) | T �= jtrue, x,d, ρj
] = ρmind

′(x + d).
(C.22)

Since d is independent of x and d′d = ‖d‖2 = D0 +D1,

E
[
(y − x)′

(
y − x̂SA

) | T �= jtrue, ρmin,D0,D1
]

= ρmin
(
D0 +D1

) ≈ ρminD1
(C.23)

since D1 � D0. Substituting (C.16), (C.20), and (C.23) into
(C.14),

E
[∥∥x − x̂SA

∥∥2 | T �= jtrue,D0,D1, ρmin
]

≈ D0 +D1 + ρmin
(
N +D1

)− 2ρminD1

= D0 +D1
(
1− ρmin

)
+ ρminN.

(C.24)
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Combining this with the definitions U = D1/σ2(N −K), a =
(N − K)/Nγ, and γ = 1/σ2,

E
[
E0 | T �= jtrue,D0,D1, ρmin

]
= 1

Nσ2
E
[∥∥x − x̂SA

∥∥2 −D0 | T �= jtrue,D0,D1, ρmin
]

= 1
Nσ2

(
D1
(
1− ρmin

)
+Nρmin

)
= γ

(
aU
(
1− ρmin

)
+ ρmin

)
.

(C.25)

Hence,

E
[
E0 | T �= jtrue,U , ρmin

] ≈ γ
(
aU
(
1− ρmin

)
+ ρmin

)
.

(C.26)

Now, from the proof of Theorem 3, we saw that T �= jtrue
is approximately equivalent to the condition that

ρmin <
D1(

N +D1
) = aU

(1 + aU)
. (C.27)

Combining this with (C.13) and (C.26),

F0(ρ,u) = E
[
E0 | ρmin = ρ,U = u

]

≈
⎧⎪⎨
⎪⎩
γ
(
au(1− ρ) + ρ

)
if ρ <

au

(1 + au)
,

0 otherwise,

= F(ρ,u).

(C.28)

This shows that F0(ρ,u) ≈ F(ρ,u) and completes the proof.

D. PROOF OF THEOREM 5

The function gr(u) is the pdf of a normalized Chi-squared
random variable with 2r degrees of freedom [53]. That is,
gr(u) is the pdf of a variable of the form

Ur = 1
2r

2r∑
i=1

X2
i , (D.1)

where the Xi’s are i.i.d. Gaussian random variables with zero
mean and unit variance. Therefore, we can rewrite p̂err as

p̂err = 1− E

[
exp

(
−
(

aCUr

1 + aUr

)r)]
, (D.2)

where the expectation is over the variable Ur . Now, by the
strong law of large numbers,

lim
r→∞Ur = 1, a.s. (D.3)

Also, if K = 1 and γ are fixed,

lim
N→∞

a = lim
N→∞

N − K

γN
= γ−1. (D.4)

Taking the limit N ,M →∞, with K = 1 and C constant,

lim
N ,M→∞

p̂err = lim
r→∞

[
1− exp

(
−
(

C

1 + γ

)r)]

=
⎧⎨
⎩1 if γ + 1 < C,

0 if γ + 1 > C,

=
⎧⎨
⎩1 if γ < γcrit,

0 if γ > γcrit.

(D.5)

E. PROOF OF THEOREM 6

As in the proof of Theorem 5, let Ur be a normalized Chi-
squared variable with pdf gr(u). Also let ρr be a random vari-
able with pdf fr(ρ). Then, we can write ÊMSE as

ÊMSE = K

N
+ E

[
F
(
ρr ,Ur

)]
, (E.1)

where the expectation is over the random variablesUr and ρr .
As in the proof of Theorem 5, we saw Ur → 1 almost surely
as r →∞. Integrating the pdf fr(ρ), we have the cdf

Pr
(
ρr < x

) = exp
(− (Cx)r

)
. (E.2)

Therefore,

lim
r→∞Pr

(
ρr < x

) =
⎧⎪⎪⎨
⎪⎪⎩
1 if x <

1
C
,

0 if x >
1
C
.

(E.3)

Hence, ρr → 1/C in distribution. Therefore, taking the limit
of (E.1) with K = 1 and C constant, and N ,M →∞,

lim
N ,M→∞

ÊMSE= lim
N ,M→∞

K

N
+ F

(
1
C
, 1
)

= lim
N ,M→∞

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
γ
(
a
(
1− 1

C

)
+
1
C

)
if
(1 + a)

C
< a,

0 if
(1 + a)

C
> a.

(E.4)

Now, using the limit (D.4) and the definition γcrit = C − 1,

lim
N ,M→∞

γ
(
a
(
1− 1

C

)
+

1
C

)
=
(
1− 1

C

)
+

γ

C
= (C − 1 + γ)

C

=
(
γcrit + γ

)
(
γcrit + 1

) = Êlim(γ).

(E.5)

Also, as in the proof of Theorem 5, in the limit as N → ∞,
(1 + a)/C < a is equivalent to γ < γcrit. Therefore,

lim
N ,M→∞

ÊMSE =
⎧⎨
⎩Êlim(γ) if γ < γcrit,

0 if γ > γcrit.
(E.6)
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