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We propose two nonmyopic sensor scheduling algorithms for target tracking applications. We consider a scenario where a bearing-
only sensor is constrained to move in a finite number of directions to track a target in a two-dimensional plane. Both algorithms
provide the best sensor sequence by minimizing a predicted expected scheduler cost over a finite time-horizon. The first algorithm
approximately computes the scheduler costs based on the predicted covariance matrix of the tracker error. The second algorithm
uses the unscented transform in conjunction with a particle filter to approximate covariance-based costs or information-theoretic
costs. We also propose the use of two branch-and-bound-based optimal pruning algorithms for efficient implementation of the
scheduling algorithms. We design the first pruning algorithm by combining branch-and-bound with a breadth-first search and a
greedy-search; the second pruning algorithm combines branch-and-bound with a uniform-cost search. Simulation results demon-
strate the advantage of nonmyopic scheduling over myopic scheduling and the significant savings in computational and memory
resources when using the pruning algorithms.
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1. INTRODUCTION

In recent years, advances in sensor technology coupled with
embedded systems and wireless networking has made it pos-
sible to deploy sensors in numerous applications including
environmental science, defense information, and security.
A critical component of sensor technology is maximizing
the sensing utility while minimizing the cost of sensing
resources. Sensor scheduling, a method to allocate future
sensing resources by optimizing a performance metric over
a finite time-horizon, can be an effective solution to this
problem. The performance metric may differ depending on
the system application: tracking accuracy in target tracking,
battery power or communication bandwidth in a network
of low-power sensor motes, or an amount of information
gained in surveillance.

The sensor scheduling problem can be formulated as a
stochastic control problem that involves optimization of an
expected scheduler cost over time. Although dynamic pro-
graming can be used to obtain optimal closed-loop solutions
[1, 2], computing these solutions is often prohibitively ex-
pensive, and suboptimal open-loop or greedy approaches are
used instead [3, 4]. Previous work on sensor scheduling for
target tracking can be found in [4–7]. In [4], the scheduling

is myopic (one step ahead) and maximizes the Rényi infor-
mation for binary-valued measurements. In [5], the sensors
are scheduled by maximizing the mutual information be-
tween the state estimate and the measurement sequence. The
scheduling is performed over a continuous state space using
a stochastic approximation approach in [6], whereas in [7],
the scheduling chooses the least number of sensors necessary
to reduce the covariance matrix of estimate error to a de-
sired value. Recently, a posterior Cramér-Rao lower bound-
(PCRLB) based scheduling method was applied to multisen-
sor resource deployment [8] and sensor trajectory planning
[9]. The objective was to deploy fixed multiple sensors and
determine sensor trajectories in a bearing-only tracking sce-
nario by optimizing scheduler costs based on the predicted
Fisher information matrix.

Sensor scheduling is nonmyopic if it is performed mul-
tiple steps ahead in the future. As we will demonstrate, al-
though myopic scheduling has lower computational costs
than nonmyopic scheduling, in some cases it performs worse
than nonmyopic scheduling. For example, in [10], nonmy-
opic scheduling significantly improved the performance for
target tracking in a sensor network.

For sensor scheduling problems in which the configura-
tion at any given time epoch is selected from one of a finite



2 EURASIP Journal on Applied Signal Processing

number of options, the use of nonmyopic sensor schedul-
ing can be difficult. This is because the computational time
and memory requirements of the optimal scheduler can in-
crease exponentially with the time horizon. The computa-
tional burden could be reduced using pruning algorithms.
Such algorithms have been studied extensively in artificial in-
telligence and operations research in [11–13] and in the con-
text of sensor scheduling in [5, 14]. In [5], an information-
theoretic-based pruning algorithm was derived for linear
Gaussian systems and applied suboptimally to nonlinear
Gaussian systems. In [14], sliding-window and threshold
methods were proposed to increase search efficiency. Note,
however, that these scheduling approaches are not guaran-
teed to find the best sensor sequence.

In this paper, we consider sensor scheduling problems in
which there is a finite set of possible sensor configurations
at each time epoch. We make two main contributions to this
problem. First, we propose two nonmyopic sensor schedul-
ing algorithms for target tracking applications that can be
implemented with different scheduler costs. Second, we pro-
pose the use of two branch-and-bound- (B&B) based prun-
ing algorithms to significantly reduce the computational bur-
den of the scheduling algorithms without sacrificing the op-
timality of the sensor selection.

Although our approaches have general application, we
present our algorithms in the context of a scenario in
which a surface ship is tracked by an acoustic homing tor-
pedo. Specifically, we consider the target-acquisition phase
in which the torpedo uses electroacoustic transducers and
passive beamforming to obtain bearing measurements from
the target and estimate the target’s position and velocity. In
the acquisition phase, the torpedo must move slowly to min-
imize the acoustic interference at the torpedo’s transducers
[15]. The torpedomaneuvers relative to the target to improve
the target observability. The objective of the sensor schedul-
ing problem is thus to obtain a sequence of torpedo head-
ings that minimize the predicted squared error in the tar-
get position estimate over a future time-horizon. As stated,
this sensor scheduling problem has a continuous-valued con-
figuration variable (the torpedo heading), and could po-
tentially be addressed using stochastic approximation tech-
niques (e.g., [6]). However, these techniques are extremely
computationally demanding and often require careful tuning
for successful application. As an alternative, we quantize the
continuous-valued control variable into a finite set of possi-
ble headings and apply discrete optimization techniques over
these values.

Our two proposed scheduling algorithms use different
approximation techniques to predict the expected future
cost. The first scheduling algorithm is a covariance-based
(CB) algorithm which can be applied when the scheduler
cost is a function of the state estimate error covariance ma-
trix. The second algorithm is an unscented transform-based
(UTB) algorithm that uses an unscented transform in con-
junction with Monte Carlo sequential sampling to compute
general costs (e.g., covariance-based costs or information-
theoretic costs) that depend on the future system state and
measurements. As we will demonstrate, the UTB algorithm

performs better than the CB algorithm; however, the compu-
tational efficiency of the CB algorithm makes it an attractive
choice for computationally constrained tracking systems.

To reduce the computational burden in nonmyopic
scheduling with both the CB and the UTB algorithms, we
propose the use of two B&B based pruning algorithms to
efficiently obtain the optimal sensor sequence. We designed
the first algorithm by combining a breadth-first search (BFS)
and greedy search (GS) with the B&B method. The second
algorithm is a uniform-cost search (UCS) B&B algorithm.
The UCS-based pruning algorithm is more efficient in terms
of processing time, while the BFS-GS algorithm is better in
memory usage.

This paper is organized as follows. In Section 2, we for-
mulate the tracking scenario and describe the tracking algo-
rithm. In Section 3, we present the optimization framework
for sensor scheduling, and propose the two sensor scheduling
algorithms for nonmyopic scheduling. In Section 4, we dis-
cuss the two optimal pruning algorithms, and in Section 5,
we demonstrate the improved performance of our algo-
rithms using Monte Carlo methods. Note that our adopted
notation is summarized in Table 1.

2. TARGET TRACKING SCENARIO

For the sake of concreteness, we formulate the sensor sched-
uling problem in the context of a scenario in which an acous-
tic homing torpedo tracks a surface target (Figure 1) [15].
Note however, that our scheduling algorithms can be readily
adapted to other problems with discrete configuration op-
tions including tracking an airborne target with a missile or
optimizing the tracking performance in a network of sensors
where the target belief transfer (between two sensors) is con-
strained by network energy and bandwidth costs [16].

2.1. Problem formulation

We consider a target moving in two-dimensions. The target

state at time k is xk =
[
xk ẋk yk ẏk

]T
, where xk and yk

represent the target position in Cartesian coordinates, and ẋk
and ẏk represent the corresponding velocity. We model the
target dynamics with a constant-velocity model given by

xk = Fxk−1 +wk−1. (1)

Here, F is the state transition matrix, and wk is a zero-mean
white Gaussian sequence with covariance Q.

At each time k, the torpedo’s acoustic sensors obtain the
noisy bearing measurement zk:

zk = h
(
xk; xsk, y

s
k

)
+ vk � tan−1

(
yk − ysk
xk − xsk

)
+ vk, (2)

where vk is zero-mean white Gaussian noise with variance σ2,
xsk and ysk denote the torpedo’s x and y coordinates at time
k, and h(xk; xsk, y

s
k) is the measurement function. Zk � z1:k

denotes the sequence of sensor measurements from 1 to k.
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Table 1: Adopted notation.

Notation Definition

x0:k � Xk The state sequence from time 0 to k: x0, x1, . . . , xk

z1:k � Zk The measurement sequence from time 1 to k: z1, z2, . . . , zk

zk+1:k+m � Zk+m The measurement sequence from time k + 1 to k +m

s1:k � Sk The configured sensor-position sequence from time 1 to k: s1, s2, . . . , sk

sk+1:k+m � Sk+m The configured sensor-position sequence from time k + 1 to k +m

x̂k|k State estimate at time k based on Zk

x̂k+m|k State estimate at time k +m based on Zk

xk+m|k+m State estimate at time k +m based on Zk and Zk+m

Pk|k Covariance matrix of estimate error at time k based on Zk

P̂k|k Approximate covariance matrix of estimate error at time k based on Zk

P̂k+m|k Approximate covariance matrix of estimate error at time k +m based on Zk

P̌k+m|k+r
Approximate covariance matrix of estimate error at time k +m based on Zk

and the effect using sensor sequence Sk+r , 1 ≤ r ≤ m

Pk+m|k+r
Approximate covariance matrix of estimate error at time k +m based on Zk

and Zk+r , 1 ≤ r ≤ m

(0, 0)

x

y

Available torpedo
maneuvering options

�

Torpedo

bmeters

Current sensor
direction

Target
trajectoryTarget

Figure 1: Tracking scenario: a sea target is tracked by a torpedo. At
each time epoch, the torpedo can change heading by one of nine
possible values and then move bmeters.

At a given time k, the torpedo can change heading by one
of the nine possible values {iπ/16, i = −4, . . . , 4} as shown in
Figure 1; it thenmoves bmeters along its new heading. These
possible torpedo motions define the set of possible sensor
configuration options for this problem; in the following, we
will refer to these as sensor motion or sensor configuration
options.

We denote the configured sensor position at time k by
sk � (xsk, y

s
k), and the sequence of positions from 1 to k by

Sk � s1:k. The sensor configuration at k is denoted by gk. We
denote the set of allowable sensor configurations as G and
the number of configurations as U . For example, in Figure 1,

there are U = 9 allowable sensor configurations at each time
k: move along the current heading or change to one of eight
possible new directions. The configured sensor position sk+1
at time k + 1 is a deterministic function of gk+1 and sk; we
assume that there is no uncertainty or error in the sensor
movement. Thus, given the initial sensor position s0 and the
sequence of sensor configurations g1, . . . , gk, we can obtain
the configured sensor position sk at time k.

2.2. Target tracking using a particle filter

The extended Kalman filter is often not robust in bearing-
only tracking because of target observability problems; for
this reason, we use a particle filter to track the target [17]. In a
particle filter, the posterior probability density p(xk | Zk, Sk)
is approximated by N particles xik and associated importance
weights wi

k, i = 1, . . . ,N , as p(xk | Zk, Sk) ≈
∑N

i=1w
i
kδ(xk −

xik). The minimum mean-square error (MMSE) estimate of
the target state is the mean x̂k|k = Exk|Zk ,Sk [xk | Zk, Sk] ≈∑N

i=1w
i
kx

i
k of this density, where E[·] denotes expectation;1

the covariance matrix of the estimate error is approximated
as P̂k|k ≈

∑N
i=1w

i
k(x

i
k − x̂k|k)(xik − x̂k|k)T .

At each time k, the particles xik are drawn from the prior
density p(xk | xk−1); after obtaining a measurement zk,
the weights are updated recursively using wi

k = wi
k−1p(zk |

xik, sk)/(
∑N

j=1w
j
k−1p(zk | x j

k, sk)). Resampling is performed to
avoid degeneracy of the particles [17].

3. NONMYOPIC SENSOR SCHEDULING

Nonmyopic scheduling is important when myopic deci-
sions result in poor estimation performance. In the current

1 Note that when necessary, we use the notation Ex[·] to clarify that the
expectation is with respect to the density of x.
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tracking scenario, the need for nonmyopic scheduling arises
due to the constrained maneuverability of the sensor. Non-
myopic sensor scheduling can be realized in two ways. The
first is open-loop (OL) scheduling, in which the scheduling
is performed only after all multistep decisions are exhausted
[18]. The second is open-loop feedback (OLF) scheduling,
in which only the first scheduling decision is executed, and
the nonmyopic scheduling is repeated at each time step [18–
22]. Although our algorithm description is based on OL
scheduling, the optimization framework for both scheduling
schemes is the same [18]. We will demonstrate through our
results that OLF scheduling is better than OL scheduling due
to the feedback obtained in scheduling decisions at each time
step. Next, we describe the optimization framework before
presenting our new sensor scheduling algorithms.

3.1. Optimization framework

Following the scenario in Figure 1, the sensor can be config-
ured in U distinct ways at each time step k. At any given time
k, our objective is to obtain the best sensor-configuration se-
quence over the next M time-steps in order to minimize the
scheduler cost. We denote a sensor-configuration sequence

by an M-tuple: Sk+M �
[
sk+1 sk+2 · · · sk+M

]T
, where sk+m

is the configured sensor position at time k + m (m steps in
the future). Note that there is a total of UM distinct sensor
sequences of lengthM.

We denote the scheduler cost at time k + m by J(sk+m).
We define the total scheduler cost for a particular sensor se-
quence Sk+M as

J
(
Sk+M

) =
M∑

m=1
J
(
sk+m

)
. (3)

We seek the optimal sequence S
opt
k+M that minimizes J(Sk+M):

S
opt
k+M = argmin

Sk+M

{
J
(
Sk+M

)}
. (4)

Equation (4) is a discrete optimization problem, where the
scheduler cost is optimized over the finite set of possible sen-
sor sequences. Note that our rationale for using the additive
scheduler-cost structure2 in (3) is that the costs in this paper
are both stochastic and predictive; the scheduler costs are ob-
tained by computing an expectation over the predicted state
distribution. AsM increases, the accuracy with which track-
ing performance can be predicted decreases. Thus, we do not
rely only on the terminal cost of a sensor sequence, but also
on the costs at intermediate points in time.

We consider two different scheduler costs J(sk+m) in this
paper. The first is the determinant of the predicted state

2 Note that in the current application scenario, both additive scheduler-
cost in (3) and terminal scheduler-cost (in which we minimize J(Sk+M) to
obtain the best sensor sequence) resulted in similar tracking performance.

estimate error covariance matrix at time k + m. Specifically
with Zk+m � zk+1:k+m,

J
(
sk+m

)=∣∣P
(
sk+m

)∣∣

=
∣
∣
∣Exk+m,Zk+m

[(
xk+m−x̂k+m|k+m

)(
xk+m−x̂k+m|k+m

)T]∣∣
∣.

(5)

Minimizing this cost implies reducing the volume of the co-
variance ellipsoid [23].

The second cost is the Kullback-Leibler (KL) distance be-
tween the approximate predicted and filtered state densities.
This is an information-theoretic metric that can be used to
measure the average information gain in using each sensing
action [24–26]. The KL distance cost is defined as J(sk+m) =
EZk+m|sk+m[C(Zk+m, sk+m)], where C(Zk+m, sk+m) is a condi-
tional cost function [27]:

C
(
Zk+m, sk+m

)

= −
∫

xk+m
p̂
(
xk+m | Zk+m,Sk+m

)

× log

[
p̂
(
xk+m | Zk+m,Sk+m

)

p̂
(
xk+m | Zk+m−1,Sk+m−1

)

]

dxk+m.

(6)

Here, p̂(xk+m | Zk+m−1,Sk+m−1) and p̂(xk+m | Zk+m,Sk+m)
are approximations of the predicted and filtered densities at
time k + m. Note the negative sign in (6); minimizing the
conditional cost maximizes the KL distance, as desired.

The determinant cost approximates the target uncer-
tainty using only the first- and second-order statistics of the
posterior distribution. This cost can be approximately com-
puted efficiently using the recursive Riccati equation, as im-
plemented by the CB algorithm in Section 3.2.1. The KL
distance cost depends on the entire posterior distribution
and directly measures the average information contributed
by each sensor configuration about the target state. How-
ever, the KL distance cost is computationally more expensive
than the determinant cost as the KL distance cost cannot be
computed using closed-form Riccati-like recursive formula-
tions.

3.2. Proposed nonmyopic scheduling algorithms

We propose two nonmyopic sensor scheduling algorithms:
the CB algorithm and the UTB algorithm. Both algorithms
find the optimal sequence of sensor uses by searching ex-
haustively over all possible sequences. In principle, this re-
quires the computation of J(Sk+m) for each possible sequence
Sk+m. We note that for any two sequences, S1

k+m+1 and S
2
k+m+1

(1 ≤ m < M), that have the same initial subsequence Sk+m,
the computation of J(Sk+m) is redundant when concurrently
computing J(S1

k+m+1) and J(S2
k+m+1); this redundancy could
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For each possible sequence of sensors Sk+M = sk+1:k+M

(1) Initialize: x̂k|k =
∑N

i=1 w
i
kx

i
k , P̌k|k = P̂k|k =

∑N
i=1 w

i
k(x

i
k − x̂k|k)(xik − x̂k|k)T

(2) Form=1 toM,

– Project the state estimate and covariance matrix of estimate error:

(i)
x̂k+m|k = Fx̂k+m−1|k (7)

(ii)

P̌k+m|k+m−1 = FP̌k+m−1|k+m−1FT +Q (8)

– Compute the Jacobian matrixHk+m:

(iii)

Hk+m =
[
∂θ

∂x

∂θ

∂ẋ

∂θ

∂y

∂θ

∂ẏ

]T ∣∣
∣
∣
∣
x=x̂k+m|k

where θ = h
(
x; xs, ys

)
(9)

– Update the predicted covariance matrix of estimate error:

(iv)

P̌k+m|k+m =
[
P̌−1k+m|k+m−1 +

1
σ2

Hk+mHT
k+m

]−1
(10)

– Calculate J(sk+m) = |P̌k+m|k+m|
End

(3) Calculate J(Sk+M) using (3)

End
Choose the optimal sequence of sensors using (4)

Algorithm 1: The CB algorithm.

be easily eliminated in the actual implementation of the al-
gorithm.

3.2.1. Covariance-based sensor scheduling

The covariance-based (CB) sensor scheduling algorithm uses
the covariance-based cost and is particularly well-suited for
tracking systems with limited computational and memory
resources [28]. Specifically, the computational complexity of
the CB algorithm in obtaining J(sk+m) for a given sk+m is in
the order of O(n3x), where nx is the dimension of xk.

In the CB algorithm, we approximate P(sk+m) in (5)
by linearizing the measurement model in (2) about a pre-
dicted target state x̂k+m|k; we denote this approximation
by P̌k+m|k+m. Our iterative CB algorithm is summarized in
Algorithm 1. It is initialized by the estimates x̂k|k and P̂k|k
computed at time k by a particle filter (in Section 2.2). For
each sequence Sk+m, equations (i) and (ii) of Algorithm 1
are used to predict x̂k+m|k and P̌k+m|k+m−1 to time k + m;
we then linearize h(x; xs, ys) about x̂k+m|k to compute the Ja-
cobian matrix Hk+m in equation (iii). P̌k+m|k+m is obtained
using equation (iv) in Algorithm 1; the determinant sched-
uler cost is then obtained as J(sk+m) = |P̌k+m|k+m|. Finally,
J(Sk+M) is obtained using (3). Note that equations (i) and
(ii) of Algorithm 1 correspond to the prediction step of
the extended Kalman filter (EKF), while equation (iv) of
Algorithm 1 corresponds to the update step of the EKF.

The CB is similar to the PCRLB algorithm in [8], but
was developed independently [28]. The two algorithms differ
in the calculation of the sensor information term, that is,
(1/σ2)Hk+mHT

k+m; while the CB algorithm computes it us-
ing the predicted state estimate x̂k+m|k, the PCRLB algorithm
computes an expected value of the sensor information term
using the predicted state density p(xk+m | Zk, Sk).

3.2.2. Unscented transform-based sensor scheduling

The motivation for the unscented transform-based (UTB)
algorithm is to provide a generalized framework that al-
lows sensor scheduling using information-theoretic costs.
The UTB algorithm does not require the Jacobian matrix;
this is useful when it is not possible to obtain the Jacobian
matrix analytically. For instance, in a tracking scenario where
the measurements are binary valued (detect or no-detect)
and depend probabilistically on the state (e.g., through a
probability of detection), it is not possible to obtain an ex-
pression of the Jacobian matrix.

In the UTB algorithm, the key idea is to sample future
state and measurement particles, and to calculate expected
costs using these particles. We first investigated sequential
sampling methods [3], where the particles for future states
and measurements were obtained directly using the parti-
cle filter. Thesemethods were computationally too expensive.
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Figure 2: Sets of particles used to compute the expected future cost
for the UTB algorithm.

Grid-based sampling techniques as used in [25, 29] are also
computationally expensive as they require large number of
particles to compute expected scheduler costs. Instead, we
propose in this paper to use the unscented transform (UT)
to generate future particles [30]. As these sample particles
are few in number, the computational load in calculating the
scheduler costs is significantly reduced.

The UTB algorithm is summarized in Algorithm 2. In
this algorithm, we use several sets of particles as shown in
Figure 2. At time k + m, the particle sets used are Bk+m =
{xB,ζk+m}, ζ = 1, . . . ,Nσ , which is a predicted set of Nσ state
particles calculated using the UT (where Nσ is the number
of sigma points obtained using the UT) and approximates

p(xk+m | xk, Sk); C
sk+m
k+m = {zC, jk+m}, j = 1, . . . ,E, which is a

predicted set of E measurement3 particles calculated using
the Nσ state particles and approximates p(zk+m | xk, sk+m);
and Dk+m = {xD,lk+m}, l = 1, . . . ,L, which is a predicted set of
L (≤ N) state particles and approximates p(xk+m | xk, Sk).
Also, XD,l

k+m �
[
xD,lk+1 · · · xD,lk+m

]T
, l = 1, . . . ,L, and Z

C, j
k+m �

[
z
C, j
k+1 · · · z

C, j
k+m

]T
, j = 1, . . . ,E, are defined as the lth pre-

dicted state sequence and the jth predicted measurement se-
quence, respectively, from time k + 1 to k + m. We now de-
scribe theM-step UTB algorithm.

InitializeAk = {xA,ik }, i = 1, . . . ,N , as the set of resampled
particles computed by the particle filter at time k.

Initialize Dk+1 = {xD,lk+1}, l = 1, . . . ,L, by randomly sam-
pling L particles from the set Ak, and predicting these parti-
cles to k + 1 by sampling from the distribution p(xk+1 | xA,lk ).

Initialize the set Bk+1 = {xB,ζk+1}, ζ = 1, . . . ,Nσ , by perform-
ing a UT on the set Ak through the steps (i) to (iii) in the
following.

3 We use sk+m as a superscript in C
sk+m
k+m to denote the explicit dependence of

the measurement set on the sensor sk+m.

(i) Compute the predicted mean and predicted covari-
ance matrix of estimate error at time k:

xk|k= 1
N

N∑

i=1
xA,ik ,

Pk|k= 1
N

N∑

i=1

(
xA,ik − xk|k

)(
xA,ik − xk|k

)T
.

(15)

(ii) Define xak|k =
[
xTk|k 0 0

]T
as a concatenation of the

state, process noise, and measurement noise vectors,
and Pa

k|k = diag(Pk|k,Q, σ2) as the covariance of xak|k.
The length of the vector xak|k is denoted by na = 9.

(iii) Using the UT [31], we deterministically computeNσ =
2na + 1 sigma points from Ak. The sigma points are

defined as Xζ
k �

[
Xx,ζ

k Xw,ζ
k Xv,ζ

k

]T
, ζ = 1, . . . ,Nσ ,

and are computed as [31]

Xζ
k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xak|k, ζ = 0,

xak|k +Λζ , ζ = 1, . . . ,
Nσ − 1

2
,

xak|k −Λζ−na , ζ = Nσ + 1
2

, . . . ,Nσ .

(16)

Here Xx,ζ
k , Xw,ζ

k , and Xv,ζ
k denote the partition of

Xζ
k in the target-state space, process-noise space, and

measurement-noise space, respectively. Furthermore,

Λζ is the ζth column of Λ, Λ =
√
(na + λ)Pa

k|k, and λ =
a20(na + κ) − na. Note that 0 ≤ a0 ≤ 1 determines the
spread of the sigma points around xak|k. A value of
a0 = 0.1 was chosen through experimentation to en-
sure that the sigma points are neither spaced too far
from the mean nor too close to the mean. The sec-
ondary scaling parameter κ is generally set to zero [31].
Now, using the sigma points, we calculate the elements

of the sets Bk+1 as x
B,ζ
k+1 = FXx,ζ

k + Xw,ζ
k , ζ = 1, . . . ,Nσ .

We then iterate the following steps form = 1 toM.

Step 1. For m > 1, obtain the elements of Dk+m as xD,lk+m =
FxD,lk+m−1 + ξD, l = 1, . . . ,L, where ξD is a random sample
drawn from a Gaussian distribution of zero mean and co-
variance Q.

Step 2. For m > 1, obtain the elements of Bk+m as xB,ζk+m =
FxB,ζk+m−1 + ξB, ζ = 1, . . . ,Nσ , where ξB is a random sample
drawn from a Gaussian distribution of zero mean and co-
variance Q.

Step 3. Obtain ηmeasurements for each sigma point in Bk+m

using the distribution p(zk+m | Xx,ζ
k+m−1, sk+m) to form the

measurement set Csk+m
k+m with E = ηNσ measurement parti-

cles.

Step 4. Using the sets Csk+m
k+m andDk+m, we compute the sched-

uler cost J(sk+m) at time k + m using equations (ii)–(v)
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For each possible sequence of sensors Sk+M

(1) Initialize: Ak , Bk+1 and Dk+1

(2) Form = 1 toM,

– Obtain sets Bk+m, C
sk+m
k+m , and Dk+m using Steps 1–3 in Section 3.2.2

– Compute the cost J(sk+m):

(i) Compute w
j,l
k+m using the particles in Dk+m and C

sk+m
k+m :

w
j,l
k+m ∝ p

(
z
j
k+m | xlk+m, sk+m

)
p
(
Z

j
k+m−1 |Xl

k+m−1,Sk+m−1
)

(11)

(ii) Compute the approximate conditional cost function C(Z
( j)
k+m, sk+m) in (17) and (18) using w

j,l
k+m and xlk+m.

(iii) Compute the approximate conditional density of Z
j
k+m using Dk+m:

p̂
(
Z

j
k+m | Zk , Sk+m

) ≈
L∑

l=1
p̂
(
Z

j
k+m | xlk+m, Sk+m

)

=
L∑

l=1
p
(
z
j
k+m | xlk+m, sk+m

)
p
(
Z

j
k+m−1 |Xl

k+m−1,Sk+m−1
)

(12)

(iv) Compute the expectation of C(Z
j
k+m, sk+m) at time k +m as

EZk+m

[
C
(
Z

j
k+m, sk+m

)] ≈
∑E

j=1 γ
j
k+mC

(
Z

j
k+m, sk+m

)

∑E
j=1 γ

j
k+m

, where γ
j
k+m � p̂

(
Z

j
k+m | Zk , Sk+m

)
(13)

(v) Compute the scheduler cost at time k +m as

J
(
sk+m

) =
⎧
⎨

⎩
EZk+m

[
C
(
Z

j
k+m, sk+m

)]
for KL cost

∣
∣P

(
sk+m

)∣∣ �
∣
∣EZk+m

[
C
(
Z

j
k+m, sk+m

)]∣∣ for determinant cost.
(14)

(3) Calculate the total scheduler cost using (3)

End
Choose the optimal sequence of sensors using (4)

Algorithm 2: The UTB algorithm.

in Algorithm 2. We then obtain the total scheduling cost
J(Sk+m) using (3); optimizing over all sequences gives the op-
timal sensor sequence S

opt
k+m using (4). Note that when possi-

ble in Algorithm 2 and hereafter, we drop the superscript C

fromZ
C, j
k+m and the subscriptD fromXD,l

k+m and xD,lk+m, to sim-
plify the notation.

The method in Algorithm 2 can be used for any condi-
tional cost function that depends on future measurements.
The conditional cost function for covariance-based costs is
given as

CCOV
(
Z

j
k+m, sk+m

)=
L∑

l=1
w

j,l
k+m

(
xlk+m − x

j
k+m

)(
xlk+m − x

j
k+m

)T
,

(17)

where x
j
k+m =

∑L
l=1w

j,l
k+mx

l
k+m, and w

j,l
k+m are the weights ob-

tained in step (ii) of Algorithm 2.

For the KL distance cost, the corresponding conditional
cost is derived in Appendix A, and is given by

CKL
(
Z

j
k+m, sk+m

) =
L∑

l=1
−wj,l

k+m log

⎡

⎣ w
j,l
k+m

w
j,l
k+m−1

⎤

⎦ . (18)

Equation (18) resembles the KL distance between two dis-
crete distributions and can be interpreted in a similar way.

The particles in set D each has weights equal to w
j,l
k+m−1,

and represent our belief of the future state. Each predicted

measurement z
j
k+m updates these weights to w

j,l
k+m, accord-

ing to the measurement model. The gain in information for
each predicted measurement is calculated using (18), which
is then averaged with respect to the measurement density

p(Z
j
k+m | Zk,Sk+m).
It must be noted that equation (i) (derived in Appendix

B) in Algorithm 2 allows us to incorporate the effect of
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k + 3

k + 2

k + 1

k

M = 3

Figure 3: An illustrative configuration tree with U = 4 configura-
tion choices and a time horizon ofM = 3.

predicted measurements z
j
k+m on the predicted density func-

tion p(xk+m | Z
j
k+m−1,Sk+m−1). Although L and E are re-

quired to be large numbers in order to accurately predict the
scheduler costs, this results in a significant increase in com-
putational complexity. Furthermore, as we are mainly inter-
ested in the relative tracking performance achievable with the
available sensor configurations, we can trade off the compu-
tational cost of scheduling with the accuracy of the predicted
tracking performance. To this effect, we choose L = 2000 and
E = 380 (η = 20) for the state and measurement particles.

We further note that in order to compute w
j,l
k+m, we

need to store p(Z
j
k+m−1 | Xl

k+m−1,Sk+m−1) (equation (i) of

Algorithm 2) in memory and access it only when required.

However, as storing p(Z
j
k+m−1 | Xl

k+m−1,Sk+m−1) requires
a lot of memory, in this work the scheduler stores only the
predicted measurements for each sensor configuration. We

note that p(Z
j
k+m−1 | Xl

k+m−1,Sk+m−1) is generated only
once when concurrently computing J(sk+m) for two sensor
sequences having identical measurement history up to time
k +m− 1.

The computational complexity of the UTB algorithm in
obtaining J(sk+m) with the KL cost for a given sk+m is in the
order of O(nxEL); thus, the UTB algorithm is computation-
ally more expensive than the CB algorithm. Furthermore,
the computational complexity in obtaining P(sk+m) for the
determinant cost in equation (v) of Algorithm 2, given the

weights w
j,l
k+m and γ

j
k+m (in equations (i) and (iv), resp., of

Algorithm 2), is in the order of O(nx(nx + 2)EL). An alterna-
tive formulation in obtaining P(sk+m) is

P
(
sk+m

) = P1
(
sk+m

)− P2
(
sk+m

)
, (19)

where P1(sk+m) =
∑L

l=1 w̃
l
k+m(x

l
k+m − xk+m)(xlk+m − xk+m)T

with

xk+m =
L∑

l=1
w̃l
k+mx

l
k+m,

w̃l
k+m =

∑E
j=1 p

(
z
j
k+m | xlk+m, sk+m

)
p
(
Z

j
k+m−1 |Xl

k+m−1,Sk+m−1
)

∑E
j=1

∑L
l=1 p

(
z
j
k+m | xlk+m, sk+m

)
p
(
Z

j
k+m−1 |Xl

k+m−1,Sk+m−1
) , l = 1, . . . ,L,

P2
(
sk+m

) =
∑E

j=1 γ
j
k+m

(
x
j
k+m − xk+m

)(
x
j
k+m − xk+m

)T

∑E
j=1 γ

j
k+m

.

(20)

This formulation avoids computing CCOV(Z
j
k+m, sk+m)

(in (17)) E times for equation (ii) in Algorithm 2, and it re-
duces the computational complexity in obtaining P(sk+m) to
the order of O(nxEL), that is, by an order of nx + 2 = 6.

4. PRUNING ALGORITHMS FOR NONMYOPIC
SENSOR SCHEDULING

4.1. Tree search and pruning algorithms

The sensor sequences (of lengthM) can be arranged in a tree
of depthM as shown in Figure 3, with each depth-m node of
the tree depicting a configured sensor position at time k+m.
Thus, the sensor scheduling problem can be posed as a tree
search problem, where the best sensor sequence corresponds
to the lowest-cost branch of this tree.

We use the following terminology. A node is open if its
cost has been computed, expanded if all its children have been

opened, and pruned if the node and its children have been re-
moved from the tree. Note that during a node expansion, we
compute the cost of all of the children nodes. Pruning a node
with optimality means that the pruned node is guaranteed
not to be a part of the best sensor sequence.

We implement the scheduling algorithms using differ-
ent combinations of three search techniques: breadth-first
search (BFS), uniform-cost search (UCS), and greedy search
(GS). BFS expands the nodes in depth order; a depth-m node
(m > 1) is expanded only when all shallower nodes have
been expanded [11]. Algorithm 3 shows the pseudocode for
BFS. BFS uses a list to store all the unexpanded nodes; newly
opened nodes are always appended to the end of the list. Each
level of the tree must be stored to generate the next level. The
worst-case memory requirement (proportional to the max-
imum number of stored nodes) is O(UM). In addition, the
worst case time complexity is also O(UM) [11].
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Initialize: SolutionFound = FALSE and list = root node
While (SolutionFound = FALSE) and (there is a node in the
list)
Remove the first node from the list and expand it
If depth of children nodes �=M
Sort the children nodes in ascending order of costs
Append the sorted children nodes to the list

else
If solution is found
Set SolutionFound = TRUE

End
end

end

Algorithm 3: Pseudocode for breadth-first search.

In the UCS, the lowest-cost unexpanded node of a tree is
expanded regardless of its depth in the tree [11]. The pseu-
docode for UCS is exactly the same as that for BFS, except
that instead of appending the sorted children nodes to the
list, we insert the children nodes into the list such that the
updated list is in ascending order of cost. UCS is more time-
efficient than BFS, but has the same memory complexity as
BFS [11].

GS always expands the lowest-cost, lowest-depth, open
node of the tree; Algorithm 4 shows its pseudocode. GS ex-
pands only the lowest-cost open node at each depth of the
tree, so its memory and time complexity is O(UM). GS does
not search the tree exhaustively and does not guarantee the
optimal solution.

With exhaustive search, a total of UM sensor sequences
must be considered to obtain the optimal sensor sequence.
AsM increases, the number of sensor sequences grows expo-
nentially; since the computational time and memory usage
increase exponentially as well, it is imperative to reduce the
search space as much as possible. We propose two optimal
pruning algorithms that significantly reduce the computa-
tional burden in obtaining the sensor sequences. The prun-
ing algorithms are optimal as they provide the same best sen-
sor sequence as the one obtained using an exhaustive search
[32].

These pruning algorithms use the branch-and-bound
technique; the B&B technique is often used to prune the
search tree for problems such as the traveling-salesman prob-
lem, vehicle routing, and production planning [33, 34]. Ap-
plication of this technique requires that lower bounds on
the costs of all nodes in the tree are easier to compute than
the actual costs of the nodes. Typically, in a B&B aided tree
search, the tree is traversed using a search technique with de-
sired time/memory tradeoffs; whenever a potential best so-
lution is obtained, its cost is compared to the lower bounds
of all the unexpanded open nodes. Any node whose lower
bound is larger than the cost of the current best solution
is pruned from the tree. B&B can significantly reduce the
computational and memory requirements but typically does
not eliminate exponential complexity. As part of our future
work, we will investigate efficient search algorithms that do
not require a complete enumeration of the search space.

Initialize: SolutionFound = FALSE and list = root node
While (SolutionFound = FALSE) and (there is a node in the
list)
Expand the first node and remove it from the list
If depth of children nodes �=M
Sort the children nodes in an ascending order of costs
Prepend the list with sorted children nodes

else
Choose lowest cost depthM open node as the best

solution
Set SolutionFound = TRUE

end
end

Algorithm 4: Pseudocode for greedy search.

4.2. Branch-and-bound-based pruning algorithms

We present two B&B based pruning algorithms in this sec-
tion. The first pruning algorithm that we developed com-
bines BFS and GS with the B&B technique, and is relatively
efficient in memory usage. We call this the BFS-GS pruning
algorithm. The second pruning algorithm is referred to as a
best-first B&B algorithm [35] in the literature; it combines
UCS with the B&B technique and is relatively efficient in pro-
cessing time.

The pruning algorithms address two main issues of an
exhaustive search: (a) each node expansion requires compu-
tation of the scheduler cost since the costs are stochastic in
nature and are not known a priori, and (b) each open node
(except depth-M nodes) requires memory to store the pre-
dicted state information. Specifically, for the CB algorithm,
each node stores a mean vector and a covariance matrix,
while for the UTB algorithm, each node stores a set of mea-
surement particles. Additionally for each node, its cost, its
status (open, close, or pruned), and an index to identify its
position in the tree must be stored.

In simulations, we observed that the cost of some depth
M nodes that resulted in improved tracking performance was
lower than the cost of many intermediate depth nodes that
resulted in poor performance. Furthermore, it was found
that suboptimal techniques that accept the first candidate so-
lution found (such as a pure GS or a combination of BFS
and pure GS) yield poor tracking performance in compari-
son to an optimal search. This motivated us to use the B&B
framework. The additive cost in (3) guarantees that for non-
negative scheduler costs, any children of these poor perfor-
mance intermediate depth nodes will have larger costs than
the depth M nodes. Making use of this fact, we assign the
lower bound on the cost of any unopened node as the cost
of its nearest open ancestor. Specifically, for a given sensor
sequence Sk+m with m > 1, the lower bound on J(sk+m) is
chosen as J(sk+r), where sk+r (1 ≤ r < m) corresponds to
the deepest open node in Sk+m. This bound is a valid lower
bound because the additive cost structure in (3) guarantees
that J(sk+r) ≤ J(sk+m) for r < m. Although this bound is con-
servative, it works very well for our problem as demonstrated
by our results in Section 5.3.2.
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Initialize: cmin = ∞
Perform BFS up to depth dint < M
Store the depth dint nodes in a list, sorted in ascending order
of cost
While there is a node in the list
Expand the first node and remove it from the list
If depth of children nodes =M
If the lowest-cost child node has cost lower than cmin

Set cmin to this cost
Set BestNode to this child

end
else
Sort the children nodes in ascending order of costs
Prepend the list with sorted children nodes

end
For all nodes in the list
If cost of a node ≥ cmin

remove the node from the list
end

end
Trace back the BestNode to the root node to obtain S

opt
k+M

Algorithm 5: Pseudocode for the BFS-GS pruning algorithm.

It must be noted that our B&B algorithms are applica-
ble only with positive scheduler costs (e.g., determinant and
trace of covariance matrix of estimate error, and entropy of
the posterior distribution). Since the KL distance cost in (18)
is negative, our B&B pruning algorithms cannot be used with
the KL-based scheduling.

We now present our two pruning algorithms.

4.2.1. BFS-GS pruning algorithm

The pseudocode for our proposed BFS-GS pruning algo-
rithm is provided in Algorithm 5. In this algorithm, we first
perform a BFS to an intermediate depth dint, and then be-
ginning with the best node of depth dint, we perform a GS
to the terminating depth M. The GS gives an initial candi-
date path ending in a node with cost that we denote cmin.
We then repeat the following until there are no unexpanded
open nodes.

Step 1. Compare the cost of all unexpanded open nodes to
cmin; prune any node whose cost is not less than cmin. The
additive cost guarantees that the best node cannot be a child
of any pruned node.

Step 2. Perform a GS on the tree beginning at the lowest-
cost open node; at each expansion compare the cost of the
children nodes with cmin and prune away the nodes whose
cost is not less than cmin. If the GS gives a path with a terminal
node whose cost is less than cmin, set cmin to be this cost and
the best path to be this path.

The intermediate depth dint is an important factor for
the BFS-GS pruning algorithm since the best node at this
depth is used as a starting point for the GS to find an initial

candidate solution. As dint increases, the probability of the
initial candidate solution being closer to the best solution in-
creases. However, large values of dint are undesirable because
an exhaustive-search (here BFS) to depth dint is conducted.
At the same time, a small dint is undesirable as the initial
candidate solutions obtained using it are often of poor qual-
ity, which results in superfluous expansion of nodes. For the
problem under consideration, we found that a good compro-
mise for the BFS-GS algorithm is dint = �M/2	.

4.2.2. UCS pruning algorithm

The second pruning algorithm combines UCS with the B&B
algorithm. In this algorithm, we first use a UCS to expand the
nodes until the terminating depth M is reached. The lowest
cost sensor sequence of length M is used as an initial candi-
date solution whose cost is denoted by cmin. We then repeat
the same two steps of the BFS-GS pruning algorithm, except
that we use a UCS instead of the GS. The pseudocode for this
algorithm is the same as that in Algorithm 5, except that we
set dint = 1 and instead of sorting the children nodes and
adding them to the front of the list, we insert the children
nodes in the list such that the updated list is maintained in
ascending order of costs.

4.3. ε-suboptimal search

Wemay significantly reduce the computational effort of find-
ing a sensor sequence if we relax the requirement of optimal-
ity. Using an ε-suboptimal search, it is possible to find a good
sequence that does not significantly increase the scheduler
cost. The cost csub obtained by an ε-suboptimal search always
satisfies csub < cbest(1+ε), where cbest is the cost of the optimal
sequence. In our pruning algorithm, the ε-suboptimal search
is implemented by dividing cmin by 1+ε, and using the result-
ing value to prune the sensor sequences. This is equivalent to
making the lower bound of the nodes tighter by a factor of
1 + ε. We found through simulations that 0 < ε < 0.2 is an
acceptable choice, and that for these values, the increase in
cost over the optimal solution is approximately 35 ε% (e.g.,
ε = 0.2 generally gives a solution within 7% of the optimal
cost).

5. SIMULATIONS AND RESULTS

We used Monte Carlo (MC) simulations to evaluate the per-
formance of the sensor scheduling algorithms for the tar-
get/torpedo scenario described in Section 2.1. The initial tar-
get position and velocity are (x, y) = (2000, 2500) m and
(ẋ, ẏ) = (−4.5,−4.5)m/s, respectively; the average speed of
the target corresponds to 6.36m/s (12.18 knots). The tar-
get travels for 40 time-steps of one second each, and a sin-
gle bearing measurement is obtained in each time step; the
standard deviation of the measurement error is 0.035 radi-
ans (2◦). The torpedo and its sensor are initially located at
(2100, 2300)m and move b = 15m in each one-second time
step (a speed of 28.73 knots).

In the particle filter tracker, we used N = 2500 parti-
cles. The number of particles was chosen such that further
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Figure 4: (a) Comparison of the RMSE of the target position estimate forM = 1, 2, . . . , 5 OL scheduling using the UTB algorithm with the
determinant cost. (b) Comparison of the sensor trajectories for the M = 2 and M = 4 OL scheduling using the UTB algorithm with the
determinant cost.

increase in N does not bring a significant improvement in
the tracking performance. The particles were initialized us-
ing a Gaussian density whose mean was the true target state
and whose covariance was diag(500 10 500 10). The pro-
cess covariance matrix in (1) was chosen as

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0667 0.1 0 0

0.1 0.2 0 0

0 0 0.0667 0.1

0 0 0.1 0.2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (21)

Also, 100MC simulations were performed for each set of pa-
rameter values.

5.1. Nonmyopic scheduling results

5.1.1. Open-loop scheduling

In this simulation, we investigated the performance of OL
scheduling for values ofM from 1 to 5; nonmyopic schedul-
ing provided improved performance. We used the UTB algo-
rithm with the determinant cost to obtain the sensor con-
figuration sequence. The UTB parameters were chosen as
L = 2000, a0 = 0.1, κ = 0, and η = 20 (refer to Section 3.2.2).

Figure 4(a) compares root mean-square error (RMSE) of
the target position for M = 1, . . . , 5. It can be seen that as
M increases, the RMSE performance improves, and it begins
to saturate with increasing M. The RMSE curve for M = 4
step scheduling is on an average 2m higher than that for the
M = 5 step scheduling, but has a much lower computational
cost; we can conclude that for the current tracking scenario,
M = 4 step scheduling may suffice.

Figure 4(b) compares the sensor trajectory of one of the
MC runs for M = 2 and M = 4 step scheduling. Initially,
the sensor trajectory is similar; both schedulers use the same
trajectory to reduce the initial high uncertainty about the tar-
get position. After about 16 s, the trajectories begin to differ.
WhenM = 4, the sensor remains in the vicinity of the target;
however, when M = 2, the sensor cannot plan far enough
ahead to maintain a close proximity to the target. This is due
to the constrained sensor movement, which leads to poor
RMSE tracking performance in comparison to the case with
M = 4.

We also performed scheduling with the KL distance cost
for M = 1, . . . , 3 using the UTB algorithm. Figure 5 com-
pares the RMSE results (marked as KL M = 1, . . . , 3); the
RMSE performance improves with increasing M. For com-
parisons, we also include the RMSE result obtained with the
determinant cost with M = 3 (labeled as Det M = 3).
The KL scheduling resulted in slightly better RMSE perfor-
mance than the determinant cost. This is possibly because the
KL scheduling uses the complete statistics of the predicted
state densities, while the determinant scheduling uses only
up to second-order statistics (through the predicted covari-
ance matrix).

5.1.2. Open-loop feedback scheduling

We also investigated the performance for scheduling with
OLF (refer to Section 3). We used the UTB algorithm with
the determinant cost. Figure 6(a) compares the RMSE results
for OLF scheduling for M = 2, 3, and 4. It can be seen here
that the RMSE performance improves asM increases. Figures
6(b), 6(c), and 6(d) compare the RMSE results of the OL and



12 EURASIP Journal on Applied Signal Processing

0 5 10 15 20 25 30 35 40

Time index (k)

5

10

15

20

25

30

35

R
M
SE

(m
)

KLM = 1
KLM = 2

KLM = 3
DetM = 3

Figure 5: Comparison of the RMSE of the target position estimate
for M = 1, 2, and 3 with the KL distance cost, using the UTB al-
gorithm. TheM = 3 case with the determinant cost is included for
comparison.

OLF scheduling for M = 2, 3, and 4. It can be seen that the
OLF scheduling performs better in all the cases. This is be-
cause OLF improves its scheduling decisions using the feed-
back provided by the measurement at each time-step. This
however results in a higher computational cost (than the OL
scheduling) asM-step scheduling is performed at each time-
step.

5.2. Comparisons of UTB and CB scheduling

Next, we compare the UTB and CB OL scheduling results
for the tracking example with the determinant cost. Figure 7
compares the RMSE performance for the CB and UTB algo-
rithms for M = 3 and M = 4. It can be seen that the UTB
algorithm yields slightly better RMSE performance than the
CB algorithm. For example, when M = 4, the RMSE curve
for the UTB algorithm is on an average 2m lower than the
RMSE curve for the CB algorithm. However, the CB algo-
rithm is computationally more efficient than the UTB al-
gorithm. For instance, on a Pentium IV 2.4GHz computer
with Matlab software, an exhaustive search for M = 3 step
scheduling requires 236 s with the UTB algorithm, but only
9 s with the CB algorithm. Further, the CB algorithm requires
56 bytes for each node to store a mean and covariance while
the UTB algorithm requires 1.52KB for each node to store
the measurement set C. The reduced processing-time and
memory requirementsmake the CB algorithm a better choice
for computationally constrained tracking systems.

5.3. Pruning results

We conducted three sets of Monte Carlo experiments to eval-
uate the effectiveness of pruning in reducing the scheduling
computational load. The first set of experiments investigated

whether the optimal sensor sequence performs significantly
better in terms of scheduler cost than sequences found us-
ing a suboptimal heuristic search technique; we found the
optimal sequence to be significantly better. The second set
of experiments investigated the relative computational re-
quirements of the BFS-GS and UCS B&B algorithms. The
third set of experiments investigated the tracking perfor-
mance/computation tradeoffs of the ε-suboptimal search.

5.3.1. Comparison of suboptimal heuristic
and optimal algorithms

In order to assess the tracking performance of suboptimal
search, we first compare the tracking performance of M = 4
OL optimal scheduling with the tracking performance of
M = 4 OL suboptimal scheduling using the following heuris-
tic: the first candidate solution obtained with a BFS up to
depth d1 is the starting point for a pure GS from depth d1 to
depthM = 4. We use the abbreviation Sub[d1,M] to denote
this search. Figure 8(a) compares the results obtained with
Sub[1, 4], Sub[2, 4], and Sub[3, 4], and the optimal M = 4
scheduling. We note that the optimalM = 4 scheduling per-
forms best, followed by Sub[3, 4], Sub[2, 4], and Sub[1, 4].
The relatively poor tracking performance of the subopti-
mal heuristic search motivated the development of the B&B
pruning algorithms.

5.3.2. Comparison of BFS-GS and UCS pruning algorithms

We now compare the computational resources required for
the two pruning algorithms described in Section 4 with the
resources needed for exhaustive search. We compare the two
pruning algorithms on the basis of the number of nodes
opened and the maximum number of nodes stored for one
M-step search averaged over all MC iterations. Table 2 sum-
marizes the search statistics for M = 2, . . . , 5 OL scheduling
with dint = �M/2	. Similar results were obtained with the
CB algorithm. The maximum memory consumption for the
search techniques in Table 2 can be obtained by multiply-
ing the maximum number of nodes stored with the mem-
ory usage per node. Similarly, the average scheduler time is
proportional to the average number of nodes opened dur-
ing the search. It can be seen that while the number of nodes
opened is relatively lower for the UCS algorithm (i.e., UCS
is relatively faster), the maximum number of nodes stored
is relatively lower for the BFS-GS algorithm (i.e., BFS-GS
is relatively less demanding in memory). This memory and
scheduler-time tradeoff can be used to select between the
pruning algorithms based on the tracking resources. Both
algorithms require significantly less memory and less time
than the exhaustive-search. We also note that asM increases,
the percentage of nodes opened with both the pruning algo-
rithms decreases. This is because with increasing M (M ≥ 4
here), the best sensor sequence at depths close toM begins to
dominate the outcome of the best sensor sequence of length
M. This is consistent with Figure 4(a) where we observe that
the RMSE performance begins to saturate with increasingM.
Lastly, as the pruning algorithms are optimal, their RMSE
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Figure 6: (a) RMSE comparison for OLF scheduling with M = 2, 3, and 4, using the UTB algorithm and the determinant cost. RMSE
comparison of OLF and OL scheduling for (b)M = 2, (c)M = 3, (d)M = 4.

tracking performances are the same as those presented in
Section 5.1.1.

5.3.3. ε-suboptimal algorithms

Here, we present results obtained with the ε-suboptimal
search in Section 4.2. We performed M = 4 OL scheduling
for different values of ε using the UTB algorithm and the two
pruning algorithms. Figure 8(b) depicts the RMSE curves
obtained with the UCS algorithmwhile Figures 9(a) and 9(b)
depict the resource savings for different values of ε with the
BFS-GS and UCS algorithms, respectively. Clearly, with in-
creasing ε, the RMSE performance degrades, as expected.

However, as seen in Figures 9(a) and 9(b), the computa-
tional savings increase with increasing ε. We note that a
good compromise between RMSE performance and compu-
tational savings can be achieved by using ε = 0.2.

6. DISCUSSIONS AND CONCLUSIONS

Our objective in this paper was to significantly improve the
RMSE tracking performance of a constrained tracking sce-
nario using nonmyopic scheduling. We demonstrated the
improved performance using Monte Carlo simulations for
the two new scheduling algorithms: the covariance-based
(CB) and the unscented transform-based (UTB) algorithms.
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Figure 7: Comparison of the RMSE of the target position estimate
using the UTB and CB algorithms for M = 3 and 4 with the deter-
minant cost.

We compared two nonmyopic scheduling schemes in this
paper: open-loop (OL) scheduling and open-loop feedback
(OLF) scheduling. We demonstrated that while the RMSE
performance of the OLF scheduling is better than the OL
scheduling, the OL is computationally less intensive than the
OLF. Thus, we can choose which scheduling to use based
on the available computational resources. We also noted that
while the UTB algorithm performs slightly better than the
CB algorithm and can use arbitrary costs, the CB algorithm
is computationally muchmore efficient, and is thus more de-
sirable for computationally constrained tracking systems.

To further reduce the computational cost of nonmyopic
scheduling, we also proposed two branch-and-bound (B&B)
based optimal pruning algorithms. These algorithms are op-
timal in the sense that they provide the same best sensor
sequence as the one obtained using an exhaustive search.
We implemented the proposed pruning algorithms for a
bearing-only tracking scenario and demonstrated their ad-
vantage over exhaustive search in terms of significant savings
in memory and scheduling time. Our simulation results also
showed that while the BFS-GS pruning algorithm is relatively
memory efficient, the UCS pruning algorithm is relatively ef-
ficient in scheduler time.

Note that in future work, we plan to increase the dimen-
sionality of the problem by increasing the number of sen-
sors and sensor configurations. As this would significantly in-
crease the computational requirements for optimization, we
will investigate efficient search algorithms for sensor schedul-
ing that do not require a complete enumeration of the search
space. This is motivated by some of the recent developments
inQ-value function approximationmethods for rollout algo-
rithms used in stochastic scheduling and stochastic shortest-
path problems [18, 36]. The use of approximation techniques
for scheduling in this case could be useful as the increased

dimensionality can add redundancy into the information
gathered from the different sensing options.

APPENDICES

A. DERIVATION OF CONDITIONAL KL DISTANCE LOST

We derive the conditional KL distance cost in (18). The KL
distance conditioned on Z

j
k+m and sk+m is

CKL
(
Z

j
k+m, sk+m

)

= −
∫

p̂
(
xk+m | Z j

k+m, Sk+m
)

× log

⎡

⎣ p̂
(
xk+m | Z j

k+m,Sk+m
)

p̂
(
xk+m | Z j

k+m−1,Sk+m−1
)

⎤

⎦dxk+m.

(A.1)

The argument of the logarithm can be further simplified
using the first-order Markovian property of the dynamics
model:
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(A.2)

The particles of the sets Dk+m along with the weights w
j,l
k+m−1

approximate p̂(xk+m | Z j
k+m−1,Sk+m−1) as

p̂
(
xk+m | Z j

k+m−1,Sk+m−1
) ≈

L∑

l=1
w

j,l
k+mδ

(
xk+m − xlk+m

)
.

(A.3)

Using (A.3), the integral in the denominator of (A.2) can be
approximated as

∫
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z
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The particles of set Dk+m along with weights w
j,l
k+m approxi-

mate p̂(xk+m | Z j
k+m,Sk+m)

p̂
(
xk+m | Z j
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) =

L∑

l=1
w

j,l
k+mδ

(
xk+m − xlk+m

)
. (A.5)
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Figure 8: (a) Comparison of the suboptimal heuristic and optimal searches with the UTB algorithm and the determinant cost for M = 4
OL scheduling. Here, Sub[d1, 4] is a heuristic suboptimal algorithm composed of a BFS up to depth d1 and pure GS from depth d1 to depth
M = 4. (b) Comparison of RMSE of the target position estimate for M = 4 and varying values of suboptimal parameter ε using the UCS
pruning algorithm.

Table 2: Statistics for two pruning algorithms: BFS-GS and UCS.

M Statistics BFS-GS UCS Exhaustive search

M = 2
Nodes opened 81 (90%) 81 (90%) 90

Maximum nodes stored 9 9 9

M = 3
Nodes opened 376 (44.75%) 313 (38.17%) 820

Maximum nodes stored 81 71 81

M = 4
Nodes opened 1667 (22.59%) 1102 (14.93%) 7381

Maximum nodes stored 89 213 729

M = 5
Nodes opened 3764 (5.66%) 2548 (3.84%) 66430

Maximum nodes stored 737 1206 6561

Now substituting (A.2), (A.4), and (A.5) in (A.1), we obtain
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(A.6)

B. DERIVATION OF RECURSIVEWEIGHT
UPDATE EQUATION

Wederive the weight update step of equation (i) of Algorithm
2. For this, we first define an augmented state particle
Xl

k+m � [xlk+1 · · · xlk+m]T as the vector obtained by concate-
nating the predicted state particles xlk+r , r = 1, . . . ,m. The
augmented state particle is obtained by sampling from the
kinematic prior distribution p(xk+m | xlk+m−1) · · · p(xk+1 |
xlk) · p(xlk | Zk, Sk). Similarly, Z

j
k+m = [

z
j
k+1 · · · z

j
k+m

]T

is an augmented measurement particle that is obtained by

concatenating the predicted measurement samples z
j
k+r , r =

1, . . . ,m.
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Figure 9: (a) Percentage of nodes opened as a function of ε forM = 4 with the BFS-GS pruning algorithm. (b) Maximum number of nodes
stored as a function of ε forM = 4 with the UCS pruning algorithm.

For a givenZ
j
k+m we can obtain the following discrete ap-

proximation of the posterior density:

p
(
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)
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where we have from [17]
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