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This paper presents a new method for super-resolution (SR) reconstruction of a high-resolution (HR) image from several low-
resolution (LR) images. The HR image is assumed to be composed of homogeneous regions. Thus, the a priori distribution of the
pixels is modeled by a finite mixture model (FMM) and a Potts Markov model (PMM) for the labels. The whole a priori model is
then a hierarchical Markov model. The LR images are assumed to be obtained from the HR image by lowpass filtering, arbitrarily
translation, decimation, and finally corruption by a random noise. The problem is then put in a Bayesian detection and estimation
framework, and appropriate algorithms are developed based onMarkov chain Monte Carlo (MCMC) Gibbs sampling. At the end,
we have not only an estimate of the HR image but also an estimate of the classification labels which leads to a segmentation result.
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1. INTRODUCTION

This paper concerns super-resolution (SR) reconstruction of
an image from a few low-resolution (LR) images in order
to gain a better detection on faintly contrasted and isolated
specks having a size of almost one pixel in a picture. In this
paper we deal more particularly with the SR process.

The SR reconstruction consists in producing a high-
resolution (HR) image from a set of LR images. These LR
images can be taken from a video sequence. They must come
out from a moving scene: the movement and nonredundant
information are what make SR process possible. So, the ob-
tained HR picture contains more useful information than
one of the LR pictures taken in the initial video sequence.

One of the main steps in a SR reconstruction process is
the registration of the different LR images. It is defined as
the way of matching two or more pictures showing the same
scene from different viewpoints, from different sensors, or
at different times. To get a good SR reconstruction, it is es-
sential to know accurately the transformation that enables to
go from one LR picture to another. Our work context allows
us to limit the field of possible transformations between two
pictures to the global translatory motion. Indeed, it does not
seem unrealistic to have a stabilized and controlled camera
to obtain the initial LR video sequence. We can imagine that
the movement of the camera during the image acquisition

is limited to global translational move, and that there is no
zoom effect (equivalent to homothety transformation) and
no rotation of the camera axis. To deal with this problem, we
use the image registration by phase correlation. This method
and its extension using the gradients of the images are well
explained in [1, 2]. We also evaluated both methods in our
previous work [3]. These methods are interesting for the eas-
iness of their implementation, the speed of their execution
on a computer, and their good subpixel accuracy.

SR methods may be categorized into two main divi-
sions: frequency domain and spatial domain techniques. Our
proposed methods use the linear spatial domain observa-
tion model. They are stochastic methods, and they use the
Bayesian framework. Other works used the same Bayesian
approach, we can cite for instance [4, 5].

The problem of SR has been addressed for the first time
in [6], with a frequency domain approach. It would be too
long to describe all the different SR approaches, so we suggest
[7, 8] that give very good overviews of them.

Due to the fact that SR reconstruction is an ill-posed
problem, Tikhonov- regularized SR methods have been ex-
amined [9–12]. This method is a deterministic approach uti-
lizing regularization functions to impose smoothness con-
straints on the space of feasible solutions. The regularization
functions used in [9] is equivalent to a GaussianMarkov ran-
domfield (MRF) prior in the Bayesianmaximum a posteriori
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(MAP) framework. Gaussian MRF priors are well known to
produce overly smoothed restorations. The Tikhonov reg-
ularization approach is a special case of the more gen-
eral Bayesian framework under the assumptions of Gaussian
noise and prior.

Many works are based basically on modeling the link be-
tween the LR images and the HR image through a lowpass
filtering, decimating, and translation movement. This is also
the model we choose. But to our knowledge, all the existing
HR reconstructionmethods are based either on a least square
estimation which leads to an interpolation, registration, and
summation [13], or at the best, on the regularization ap-
proach [9–12]. Here, we propose a Bayesian estimation
framework which gives the possibility to account for a wider
class of a priori model for the distribution of the pixels of the
HR image. Themethod we propose here assumes that the HR
image is composed of homogeneous regions. Thus, the a pri-
ori distribution of the pixels is modeled by a finite mixture
model (FMM) to let their classification in a finite number of
classes, and a Potts Markov model (PMM) for the labels. The
FMM is a common tool for classification, but in general, the
discrete variable which represents the classes is assumed to
be i.i.d. Our Potts Markov model for these variables gives the
possibility to account for spatial correlation of the pixels. In
fact, the PMM parameter controls the mean value of the size
of the agglomerated pixels in different classes and thus the
mean value of the segmented regions in the image.

The method proposed in [4] concerns the image restora-
tion using Gauss-Markov random fields and line process.
Our work differs from that work in two main aspects. First,
the purpose of that work is an image restoration which is
conceptually different of SR methods. Next, authors of this
paper use a line process where we use a label process. More,
the novelty of our work in comparison to all known meth-
ods is that our framework allows us to obtain not only an
estimate of the HR image, but also an estimate of the classi-
fication labels which leads to a segmentation result. This last
result is useful for possible geometrical features estimation of
the results, for example, for a tracking of feature in satellite
images. The Bayesian probabilistic framework gives a good
estimation of the real classification of the scene.

The authors in [5] consider the SR problem and use
a classical approach, also used for instance in [12]. More
specifically, in this article, authors focus on an estimation
stage of the SR parameters. Our method differs from this
work in the model relating the LR images to HR image which
is not exactly the same, and in the prior modeling of the HR
image which is a Gauss-Markov and not a compound Gauss-
Markov random fields, with hidden label process.

In summary, the proposed a priori model for the distri-
bution of the pixels of the HR image results in a hierarchical
Markov model which gives the possibility to estimate jointly
the HR image, the classification labels which can be used as
a segmentation result and also the parameters of the a priori,
and the noise model which results in a totally unsupervised
HR image estimation and segmentation.

Indeed, the hierarchical structure of the model can be
appropriately implemented using the Markov chain Monte
Carlo (MCMC) Gibbs sampling.

The paper is organized as follows: in Section 2, the for-
ward model linking the HR image to LR images is detailed,
and the basics of the Bayesian estimation framework for SR
reconstruction is presented. In Section 3, we give the details
of the a priori models for the HR image pixels distribution
which is composed of a FMM and Potts MRF. In Section 4,
we give the expressions of all the posterior laws which are
necessary for the implementation of the MCMC Gibbs sam-
pling. In Section 5, we give details of implemented MCMC
Gibbs sampling algorithm. In Section 6, we first present the
results which we can obtain with the proposed method and
then compare its performances with a classical interpola-
tion, registration, and summation [13], and with another
classical method based on popular Tikhonov regularized ap-
proach [9]. Section 7 shows results obtained with real video
sequences. Finally, we present conclusions and perspectives
of this work in Section 8.

2. FORWARDMODEL AND THE BAYESIAN
ESTIMATION FOR SR RECONSTRUCTION

A simple model which links the LR images and the HR image
is

gi = DMiBf + εi = Hif + εi, i = 1, . . . ,M, (1)

where f is the HR image, {gi, i=1,...,M} represent the M LR
images, B represents the lowpass filter operator needed be-
fore sampling a HR image,Mi are operators representing the
translation movements, D represents a decimation operator,
εi are the additive noises representing all the errors, and fi-
nally, Hi = DMiB represents the composite operator linking
the HR image f to the LR image gi. This is the forwardmodel.

Noting that gi, εi, and f represent the images, we also note
them by gi(r), εi(r), and f (r), where r = (x, y) ∈ N2 repre-
sents the pixel position, and gi(r) = [DMiB f ](r) + εi(r),
where B, Mi, and D are respectively the equivalent contin-
uous operators of B,Mi, and D.

Note that we may use the following combination:

g =

⎡
⎢⎢⎣
g1
...
gM

⎤
⎥⎥⎦ , H =

⎡
⎢⎢⎣
H1
...

HM

⎤
⎥⎥⎦ , ε =

⎡
⎢⎢⎣
ε1
...
εM

⎤
⎥⎥⎦ (2)

to rewrite (1) as

g = Hf + ε, (3)

where, given f and H, computing g is the forward model,
and estimating f , givenH and g, is the corresponding inverse
problem. The direct problem is to obtain the LR images from
a HR image.

An illustration of operator’s role is given with Figure 1.
We consider this figure as being made of 3 parts. Each part
can be seen as a row of the full Figure 1. The first one
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f̂i

Figure 1: HR image f , LR images gi = DMif , i = 1, . . . , 4, registered

and interpolated images f̂i =Mt
iDtgi, which can be used to obtain a

HR image by a classical method consisting in f̂ = (1/M)
∑

i f̂i.

represents a HR image, each symbol representing a different
pixel of the image. The second shows a representation of all
the LR images obtained from the previous HR image and for
a decimation factor d = 2. Finally, all the registered and inter-
polated LR pictures on the HR grid can be seen on the third
and last row. The symbols with full contours are the original
pixel values from LR images, and symbols with dotted con-
tours are interpolated pixel values.

Next, the fact of taking one pixel over two in the original
HR image to create the LR images shows the effect of oper-
ator D for a decimation factor d = 2. And the fact that two
neighboring pixels of the HR image, for instance, the upper-
left circle and diamond, are located at the same position in
the corresponding LR images (the upper-left pixel) shows the
effect of operatorsMi. Thus, the second row shows how to go
from f to gi, i=1,...,4.

Lastly, the presence of interpolated pixels values on the
third row of Figure 1 shows the inverse effect of operator
D. And the fact that the upper-left circle and diamond have
found back their correct initial positions (in comparison to
their positions in the initial HR image) shows the inverse ef-
fect of operatorMi.

Through an example of size 125 × 125 pixels2, Figure 2
shows the forward process of generation of LR images from
a HR image f that can be seen on image (a). It starts by a
lowpass filtering, giving Bf shown on (b), sampling, trans-
lation, and decimation by a factor d of 5 give Hf and it is
shown on (c), and finally, alteration by a random noise repre-
senting measurement noise and all the other errors of mod-
eling gives g, which is shown on (d) (we used a noise cen-
tered, white, and Gaussian obtained with a SNR—see (35)—
of 5 dB).

The Bayesian estimation framework for SR reconstruc-
tion can be summarized as follows.

(i) Use the forward model (1) and some assumptions on
the noise to obtain the likelihood p(g | f , θε), where
θε represents the parameters of the probability distri-
bution of the noise.

(a) (b)

(c) (d)

Figure 2: (a) A HR image f , (b) its lowpass filtered Bf , (c) LR im-
ages without noise gi = Hif , and (d) LR images with additive noise
gi = Hif + εi.

(ii) Use all the prior information or the desired properties
for the solution to assign an a priori probability distri-
bution p(f | θ f ), where θ f is its parameters.

(iii) Use the Bayesian approach to obtain

(a) the a posteriori probability distribution

p
(
f | g, θ)∝ p

(
g | f , θε

)
p
(
f | θ f

)
, (4)

where θ = (θε, θ f ) if θ is known (supervised
case), or

(b) the joint a posteriori probability distribution

p
(
f , θ | g)∝ p

(
g | f , θε

)
p
(
f | θ f

)
p(θ f )p(θε) (5)

if the θ is unknown (unsupervised case).

(iv) Finally, define an estimator f̂ for f , and θ̂ for θ, based
on these posterior probability laws.

The next section defines more in detail the prior laws
which are needed to obtain the expressions of these posterior
laws, and proposes different estimators based on them.

3. A PRIORI MODEL OF THE HR IMAGE PIXELS

3.1. HMMmodeling of HR image

The main idea in this modeling is to assume that the image
f (r), r ∈ R, is composed of a finite set K of homogeneous
regions Rk with given labels Z(r) = k, k = 1, . . . ,K , such
that Rk = {r : z(r) = k}, R = ∪kRk, and the correspond-
ing pixel values fk = { f (r) : r ∈ Rk}, and f = ∪kfk. The
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hidden Markov modeling (HMM) is a very general and ef-
ficient way to model appropriately such images. The main
idea is to assume that all the pixel values fk of a homoge-
neous region k follow a given probability law, for example,
a Gaussian N (mk1,Σk), where 1 is a generic vector of ones
of size nk = |Rk| which is the number of pixels in region k
with

∑
k nk = |R| = n, the total number of pixels of the HR

image.
In the following, we consider two cases.

(i) The pixels in a given region are assumed i.i.d.:

p
(
f (r) | z(r) = k

) = N
(
f (r) | mk, σk

)
, k = 1, . . . ,K , (6)

and thus

p
(
fk
) = p

(
f (r), r ∈Rk

) = N
(
fk | mk1, σ2k I

)
, (7)

with I the identity matrix of size nk.
(ii) The pixels in a given region are assumed to be locally

dependent:

p
(
fk
) = p

(
f (r), r ∈Rk

) = N
(
fk | mk1,Σk

)
, (8)

where Σk is an appropriate covariance matrix whose
shape and structure depend on the modeling of this
dependency. We propose a first-order Markov model
with the four nearest neighbors.

In both cases, the pixels in different regions are assumed
to be independent:

p
(
f | z) =

K∏

k=1
p
(
fk
) =

K∏

k=1
N
(
fk | mk1,Σk

)
. (9)

Note that f (r) is a scalar and p( f (r) | z(r) = k) is its
conditional probability density function, but fk is a vector
and p(fk) is the joint probability density function of all the
pixels in region k.

3.2. Modeling the labels

Noting that the two models (7) and (8) are conditioned on
the value of z(r) = k, they can be rewritten in the following
general form:

p
(
fk(r)

) =
K∑

k=1
P
(
z(r) = k

)
N
(
fk(r) | mk, σ2k

)
. (10)

Now, we need also to model the probability distribution
P(Z(r) = z(r), r ∈ R) of the vector random variables
Z = {Z(r) : r ∈ R} which we note hereafter p(z). For this
too, we consider two cases.

(i) Independent Gaussian mixture (IGM) model, where
{Z(r), r ∈R} are assumed to be independent and

P
(
z(r) = k

) = pk,

with
K∑

k=1
pk = 1, p(z) =

K∏

k=1
pk.

(11)

(ii) Contextual Gaussian mixture (CGM) model that we
also call hidden Markov model (HMM), where {Z(r), r ∈
R} are assumed to be Markovian:

p(z)∝ exp

[
α
∑

r∈R

∑

s∈V(r)

δ
(
z(r)− z(s)

)]
, (12)

which is the Potts Markov random field (PMRF). V(r) rep-
resents neighboring pixels of s with |V(r)| = 4. The Marko-
vian modeling with a connexity of 4 considers that each label
value z(r) of a pixel at position r is function of the values
of its four closest pixels z(s), s ∈ V(r) (neighboring pixels).
They are the one above, the one on its right, the one under,
and the one on its left. The parameter α controls the mean
value of the regions’ sizes. Here, it controls the mean value of
the sizes of the classes, that is, increasing α results in a realiza-
tion where the different classes become more homogeneous.
Using the Hammerslay-Clifford equivalence of the Gibbs and
Markov random fields, we can also write

p
(
z(r) | z(s), s ∈R

)∝ exp

[
α
∑

s∈V(r)

δ
(
z(r)− z(s)

)]
(13)

which shows that the probability of obtaining a label z(r) for
a pixel is related to the number of neighboring pixels hav-
ing the same label. We remind that δ(·) is the Dirac function
defined by δ(0) = 1, and δ(t) = 0 for t �= 0.

3.3. Hyperparameters prior law

The final point before obtaining an expression for the poste-
rior probability law of all the unknowns, that is, p(f , θ | g)
is to assign a prior probability law p(θ) to the hyperparam-
eters θ. Even if this point has been one of the main dis-
cussing points between Bayesian and classical statistical re-
search community, and still there are many open problems,
we choose here to use the conjugate priors for simplicity. The
conjugate priors have at least two advantages:

(i) they can be considered as a particular family of a dif-
ferential geometry-based family of priors [14–16],

(ii) and they are easy to use because the prior and the pos-
terior probability laws stay in the same family.

In our case, we need to assign prior probability laws to the
means mk, to the variances σ2k or to the covariance matrices
Σk, and also to the covariance matrices of the noises Σε i.

The conjugate priors for the meansmk are, in general, the
GaussiansN (mk | mk0, σk

2
0), those of variances σ

2
k are the in-

verse Gammas IG(σ2k | αk0,βk0), and those for the covariance
matrices Σk are the inverse Wishart’s IW(Σk | αk0,Λk0). See
the appendix for a detailed expression of these probability
density functions.

4. A POSTERIORI PROBABILITY LAWS

We now have all the elements for writing the expressions of
the posterior laws. We are going to summarize them here.
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(i) Likelihood.
The expression of the likelihood depends on the observa-

tion model (1). Then, the expression is

p
(
g | f , θε

) =
M∏

i=1
p
(
gi | f ,Σε i

)

=
M∏

i=1
N
(
gi | Hif ,Σε i

)
,

(14)

where we assumed that the noises εi are independent, cen-
tered, and Gaussian with covariance matrices Σε i which,
hereafter, are also assumed to be diagonal Σε i = σε

2
i I. We

note θε = {σε2i , i = 1, . . . ,M}.
(ii) HMM for the images:

p
(
f | z, θ f

) =
K∏

k=1
p
(
fk | mk1,Σk

)

=
K∏

k=1
N
(
fk | mk1,Σk

)
,

(15)

where Σk is characterized either by σ2k assuming Σk = σ2k I,
or by an extra parameter ρk which controls the correlation
between the neighboring pixels. Assuming that the pixels in
a homogeneous region are modeled with a homogeneous
Gauss-Markov field,

p
(
fk
)∝ exp

⎡
⎣ ∑

r∈Rk

(
f (r)− β(r)

∑

s∈V(r)

f (s)

)2
⎤
⎦ (16)

considering the four nearest pixels neighborhood.
Thus, here, the hyperparameters become θ f = {(mk, σ2k ,

ρk), k = 1, . . . ,K}.
(iii) PMRF for the labels:

p(z)∝ exp

[
α
∑

r∈R

∑

s∈V(r)

δ
(
z(r)− z(s)

)]
, (17)

where we used the simplified notation p(z) = P(Z(r) =
z(r), r ∈R).

(iv) Conjugate priors for the hyperparameters:

p
(
mk
) = N

(
mk | mk0, σk

2
0

)
,

p
(
σ2k
) = IG

(
σ2k | αk0,βk0

)
,

p
(
Σk
) = IW

(
Σk | αk0,Λk0

)
,

p
(
σε

2
i

) = IG
(
σε

2
i | αεi0 ,βεi0

)
.

(18)

(v) Joint posterior law of f , z, and θ:

p
(
f , z, θ | g)∝ p

(
g | f , θε

)
p
(
f | z, θ f

)
p(z)p(θ). (19)

The forward model and the priors for this case can be
summarized as follows:

gi = Hif + εi ←→ g = Hf + ε,

p
(
g | f) = N

(
g | Hf ,Σε

)
with Σε = diag

[
Σε1, . . . ,ΣεM

]
,

p
(
gi | f

) = N
(
gi | Hif ,Σε i

)
with Σε i = σε

2
i I,

p
(
f (r) | z(r) = k

) = N
(
f (r) | mk, σ2k

)
, k = 1, . . . ,K ,

Rk =
{
r : z(r) = k

}
, fk =

{
f (r) : r ∈Rk

}
,

p
(
fk
) = N

(
fk | mk1k ,Σk

)
with Σk = σ2k Ik,

p(z) = p
(
z(r), r ∈R

)∝ exp

[
α
∑

r∈R

∑

s∈V(r)

δ
(
z(r)− z(s)

)]
,

p
(
f | z) =

∏

k

N
(
fk | mk1k ,Σk

) = N
(
f |mz,Σz

)
,

withmz = [m11′1, . . . ,mk1′K
]′
, Σz = diag

[
Σ1, . . . ,ΣK

]
,

p
(
mk
) = N

(
mk | mk0, σ

2
k 0

)
,

p
(
σ2k
) = IG

(
σ2k | αk0,βk0

)
,

p
(
σε

2) = IG
(
σε

2 | αε0,βε0
)
.

(20)

5. MAXIMUMA POSTERIORI AND
MCMCGIBBS SAMPLING

5.1. Maximuma posteriori

First, assume that θ and z are known. Then, consider the
maximum a posteriori (MAP) estimate

f̂ = argmax
f

{
p
(
f | g, z, θ)} = argmin

f

{
J
(
f | g, z, θ)}. (21)

Then, it is easy to show that

(i) when pixels in given regions are assumed to be i.i.d.
(7), we have

J1
(
f | g, z, θ) = ‖g−Hf‖2 + λ‖f −m‖2Σ

= ‖g−Hf‖2 + λ(f −m)tΣ−1(f −m)

=
M∑

i=1

∥∥gi −Hif
∥∥2 + λ

K∑

k=1

∥∥fk −mk1
∥∥2

σ2k

=
M∑

i=1

∥∥gi −Hif
∥∥2 + λ

K∑

k=1

∑

r∈Rk

∥∥ f (r)−mk

∥∥2

σ2k
,

(22)

where we noted by Σ2 = diag[σ21 , . . . , σ
2
K ],
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(ii) when pixels in given regions are assumed to be locally
dependent (8) with a local Markovian model, we have

J2
(
f | g, z, θ)

= ‖g−Hf‖2 + λ‖f −m‖2Σ
= ‖g−Hf‖2 + λ(f −m)tΣ−1(f −m)

= ‖g−Hf‖2 + λ
∥∥D(f −m)

∥∥2

=
M∑

i=1

∥∥gi −Hif
∥∥2 + λ

K∑

k=1

∥∥Df̃k
∥∥2

σ2k

=
M∑

i=1

∥∥gi −Hif
∥∥2

+ λ
K∑

k=1

1
σ2k

∑

r∈Rk

(
f̃ (r)− βr

( ∑

s∈(V(r)∩Rk)

f̃ (s)

))2

,

(23)

where Σ−1 = diag [σ21 , . . . , σ
2
K ]DD

t, f̃ (r) = f (r) −
m(r), and βr a coefficient depending on pixel r. Let nr
be Card(V(r)∩Rk), which is the number of neighbor-
ing pixels of the pixel r that belong to the same region
Rk. βr equals to 1/nr if nr �= 0 and equals to 0 other-
wise.

Note that, when we assume that the whole image is com-
posed of one statistically homogeneous region (K = 1), these
two criteria become

J1(f) = ‖g−Hf‖2 + λ

σ2
‖f −m‖2,

J2(f) = ‖g−Hf‖2 + λ

σ2
∥∥D(f −m)

∥∥2,
(24)

which can then be compared to the regularization criterion
used by [9]. It is the classical Tikhonov regularization ap-
proach without σ2 andm, values that we get from our classi-
fication.

So, compared to the classical regularizationmethods and,
in particular, the SR method firstly proposed by [9], here,
we go farther in details of modeling the HR image. Indeed,
we model the HR image as to be a piecewise homogeneous
regions, each characterized by a Gaussian process with mean
mk, variance σ2k , or covariance Σk. In the last case, we assume
a Gauss-Markov process with the four nearest neighbors.

5.2. MCMCGibbs sampling

One more advantage with this model is that we also can go
farther and try to estimate both the shape of each homo-
geneous region modeled through z(r) and estimate also the
corresponding hyperparameters mk and σ2k through an iter-
ative process (unsupervised) using either any alternate opti-
mization such as Expectation-Maximization or a more gen-
eral MCMC Gibbs sampling process. For this purpose, we
propose the following general iterative algorithms.

(i) Joint MAP (Algorithm 1):

f̂ = argmax
f

{
p
(
f | z, θ, g)},

θ̂ = argmax
θ

{
p
(
θ | f , z, g)},

ẑ = argmax
z

{
p
(
z | f , θ, g)}.

(25)

(ii) MAP-Gibbs sampling (Algorithm 2):

f̂ = argmax
f

{
p
(
f | z, θ, g)},

sample θ̂ using p
(
θ | f , z, g),

sample ẑ using p
(
z | f , θ, g),

or using p
(
z | θ, g),

(26)

or still
(ii) MAP-Gibbs sampling (Algorithm 3):

f̂ = argmax
f

{
p
(
f | z, θ, g)},

θ̂ = argmax
θ

{
p
(
θ | f , z, g)},

sample ẑ using p
(
z | f , θ, g),

or using p
(
z | θ, g).

(27)

In all cases, we need to initialize the algorithm. For this, we
propose to start by assuming K = 1, and thus z = 1 and
θ = [m1, σ21 ] = [0, 1]. This means that we try to obtain a
regularized solution f(0) from which we can use any classical
histogram-based segmentation to obtain z(0), and a classical
maximum likelihood estimation approach to obtain a first
estimation θ(0) for θ. Then, we can continue the iterations
using any of the proposed algorithms.

Between the three proposed algorithms, we may note
that there is not any theoretical guaranty of the conver-
gence for either of them. However, in Algorithms 1 and 3,
the critical point in the segmentation part is to compute

θ̂ = argmaxθ p(θ | f , z, g), because it can give values of σk
which are very small (10−6 or even less) if pixels of a region
Rk have almost all the same values. This difficulty is atten-
uated in Algorithm 2, which is the one we used for all our
simulations.

The following relations summarize all the posterior prob-
ability laws that are needed to implement these algorithms:

p
(
f | z, θ, g) = N

(
f | f̂ , Σ̂) (28)

with

Σ̂ = (HtΣε
−1H + Σz

−1)−1, f̂= Σ̂
(
HtΣε

−1g + Σz
−1mz

)
,

p
(
z | g, θ)∝ p

(
g | z, θ)p(z)

(29)

with

p
(
g | z, θ) = N

(
g | Hmz,Σg

)
with Σg = HΣzHt + Σε,

p
(
mk | z, f

) = N
(
mk | μk, vk

)

(30)
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with

vk =
(
nk
σ2k

+
1
σ2k 0

)−1
, μk = vk

(
nk f̄k
σ2k

+
mk0

σ2k 0

)
,

p
(
σ2k | f , z

) = IG
(
σ2k | αk,βk

)
(31)

with

αk = αk0 +
nk
2
, βk = βk0 +

nks̄k
2

, (32)

where

f̄k = 1
nk

∑

r∈Rk

fi(r), s̄k =
∑

r∈Rk

(
f (r)−mk

)2
,

p
(
σε

2 | f , g) = IG
(
σε

2 | αε,βε)
(33)

with

αε = n

2
+ αε0, βε = 1

2
‖g−Hf‖2 + βε0 ,

nk = number of pixels inRk,

n = total number of pixels .

(34)

Some details about the way we obtained these relations
are given in the appendix.

6. SIMULATION RESULTS AND PERFORMANCES OF
THE PROPOSEDMETHODWITH ARTIFICIALLY
GENERATED LR IMAGES

To have a good evaluation of this new method, and for the
evaluation of its performances, we constructed our own LR
pictures from a supposed HR image of size 125×125 pixels2.
Because of the classification feature of our technique that
leads to a segmentation of the HR image, we began this con-
struction with a segmented picture composed of only two
labels. It is made of two circles, two rectangles, and two
squares. This picture constitutes our reference segmented
image z0 and can be seen on Figure 3(a). Let εn(r) be a noise,
we define here the signal-to-noise ratio (SNR) in dB as fol-
lows:

SNR = 10× log10

(∑
r∈R

(
f (r) + εn(r)

)2
∑

r∈R εn(r)2

)
. (35)

Our idea about this construction is to start from a known
discrete-value image z0 representing the labels of homoge-
neous regions in the image and shown on Figure 3(a), and
simulate a HR image f . For this step, we generated a colored
noise with a SNR of 20.5 dB and added it to z0 to obtain
f . We used this image, which can be seen on Figure 3(b),
as our reference HR image f0. Then we apply the forward
transformation equation (1), applying first a 5× 5 Gaussian
kernel lowpass filter B to f0. Resulting image is shown on
Figure 3(c). We choose a decimation factor d = 5, and we
construct M = d2 = 25 LR images using the scheme illus-
trated on Figure 1 in the case d = 2. Thus, we are in an ideal

(a) (b)

(c) (d)

Figure 3: (a) z0 to obtain HR image f0, (b) HR image f0, (c) lowpass
filtered image Bf0, and (d) noisy LR images gi = Hif0 + εi.

case where we can observeM different LR images gi showing
different views of a same HR image f0. These LR images can
be seen on Figure 2(c). Finally we add to each LR image gi in-
dependently a centered, white and Gaussian noise, obtained
for a SNR of 5 dB. These LR noisy images, which constitute
our simulated data, are on Figure 3(d). This choice of value
for the noise parameters was a way of showing the robustness
of our method in noise conditions. If it is working quite well
with hard noise conditions, it will be working too with less
noise.

We used the gradient phase correlation method that we
evaluated in [3] for the registration process. For this ideal
case, andwithout noise (Figure 2(c)), the registration process
gives an accurate estimation of the shifts between all LR pic-
tures. These information, and for a given interpolation factor
d, allow to register and interpolate linearly pixel values on the
HR grid. This step is illustrated on the second and third lines
of Figure 1. We can also use one or two reference images to
fill the unknown areas (e.g., the first and the last registered
and interpolated LR pictures).

For the noisy case, the registration method does not give
the same accuracy in the estimation of movement between
LR images. The registration method evaluates correctly 28%
of all shifts between pictures. For 30% of them, the wrong
values were very close (±1/d) to the exact move values.

For the choice of parameters and hyperparameters, we
choose the PMRF parameter α equals to 2 in all the following
simulations of our methods. We normalize all the original
HR images f0 between 0 and 1, and we choose for all k:mk0 =
0.5, σ2k 0 = 0.1, αk0 = αε0 = 1, and βk0 = βε0 = 2.

In the case of our method, we used a CGM model (12)
for the labels because it gives better results than for a IGM
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(a) (b)

(c) (d)

Figure 4: (a) f̂mean, (b) f̂median, (c) f̂Tikhonov 1, λ = 1, and (d) f̂Tikhonov 2,
λ = 1.

(a) (b)

Figure 5: Results of segmentation ẑ3 (a), and reconstructed HR im-

age f̂3 (b) with K = 3 and for λ = 1, when pixels in given regions
are assumed to be i.i.d.

model (11). Concerning the three algorithms presented in
Section 5.2, we used Algorithm 2 with MAP-Gibbs sampling
which provided us the better results. Algorithm 3 was partic-
ularly critical because, at that stage of our works, we imposed
the number of classes to use in the segmentation part. So, a
class becoming unrepresented can give a σ2k very close to zero,
making (22) or (23) to explode.

We compared the performances of our method with two
other SR schemes. The first one uses a registration, a classi-

cal linear interpolation, and a summation [13]. If f̂i are the

LR images gi registered and interpolated, we have f̂mean(r) =
(1/M)

∑M
i=1 f̂i(r). On the same model, we can also replace

the median of pixels instead of the mean giving f̂median(r).
The second one is another classical method based on popu-
lar Tikhonov regularized approach [9–12]. This method is
a deterministic approach utilizing regularization functions

(a) (b)

(c) (d)

Figure 6: Results of segmentation ẑ3 with K = 3 (a) and (c), and

reconstructed HR image f̂3 (b) and (d), respectively, for λ = 10 and
λ = 102, when pixels in given regions are assumed to be locally de-
pendent.

to impose smoothness constraints on the space of feasible
solutions. We implemented two versions of this method:
f̂Tikhonov1, where we use classical derivative highpass kernel

operator of size 3×3 to compute Df . f̂Tikhonov2 is almost the
same thing, except that it adapts D for the pixels located on
the corner of the pictures.

We define evaluation criteria using the difference im-
age Δ between our reference HR image f0 and any HR

image f̂ reconstructed from our noisy LR images gi. We
used the estimation of the shifts obtained from these im-
ages. Thus, Δ(f̂ , f0) = f̂ − f0. We also define Δα(f̂ , f0) =∑

r∈R |Δ( f̂ (r), f0(r))|α/
∑

r∈R | f0(r)|α, for α = {1, 2}, as be-
ing L1 and L2 normalized relative error measures.

Because of our choice of HR image, which have regions
with frank discontinuities, it seems more interesting to look

at Δ1(f̂ , f0). So, for each case, we computed Δ1, the mean
(which is the bias of our HR estimator) and standard devi-
ation of the difference image Δ(f̂ , f0): Δmean and ΔSD. More-
over, for our methods, we will give percentage of error on ẑ
label estimation.

We first experimented our method with a synthetical im-
age obtained from a segmented image using 2 labels only.

Figure 4 shows the results obtained for f̂mean (a), f̂median (b),

f̂Tikhonov 1 (λ = 1) (c), and f̂Tikhonov 2 (λ = 1) (d). Figure 5
shows the results obtained with our method when pixels in
given regions are assumed to be i.i.d. and using (7) and (22).

(a) and (b) show respectively ẑ and f̂ , for λ = 1 and K = 3.
Figure 6 shows the results obtained with our method when
we consider a local dependency between pixels of a same
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Table 1: Synthetic image made of 2 labels: evaluation criteria of SR methods.

Methods Δmean (×10−2) ΔSD Δ1 (×10−1) Error on estimation

of labels (%)

Mean of pixel values, f̂mean 0.74 0.125 3.36 ×
Median of pixel values, f̂median 0.63 0.124 3.40 ×

f̂Tikhonov 1, λ = 1 0.67 0.117 3.56 ×
f̂Tikhonov 2, λ = 1 0.06 0.128 4.24 ×

(f̂3, ẑ3), i.i.d., λ = 1 0.41 0.105 2.04 9.09

(f̂3, ẑ3), dependent, λ = 10 1.03 0.134 3.45 7.17

(f̂3, ẑ3), dependent, λ = 102 3.86 0.118 3.31 7.58

(f̂2, ẑ2), dependent, λ = 10 3.35 0.135 2.80 2.67

(a) (b)

Figure 7: Results of segmentation ẑ2 (a), and reconstructed HR im-

age f̂2 (b) with K = 2 and for λ = 10, when pixels in given regions
are assumed to be locally dependent.

regions and using (8) and (23). (a) and (b) show respectively

ẑ and f̂ , for λ = 10 and K = 3. (c) and (d) show respectively

ẑ and f̂ , for λ = 102 and K = 3. Figure 7 shows the results
obtained in the same case, but for only two labels. Thus, (a)

and (b) show respectively ẑ and f̂ , for λ = 10 and K = 2.
Table 1 presents the values of our evaluation criteria for

all the previous cases shown on Figures 4, 5, 6, and 7. Firstly,
it is important to remind that our method is stochastic. So,
another realization of our algorithm can give some other, but
close, results. Next, our methods give a piece of information
that usual methods do not give: a segmented image ẑ. This
knowledge about the HR image could be useful to a detection
purpose. It is also useful to the reconstruction of the HR im-
age. If we look at all these different reconstructed HR images

f̂ , it seems that our method considering a local dependency
between pixels of the same region, with K = 3, λ = 102, and
shown on Figure 6(d), highlights the contours of the shapes.
These contours seem to be more sharp and contrasted with
our methods than for the other compared methods. Indeed,
the methods of comparison give images without sharp edges,
but with blurred object’s contours. Also, our method allows
to distinguish the squares from the circles.

For our methods, on the point of view of the percentage
of error on labels’ estimation, it is not surprising to have less
errors when we use 2 labels than when we use more labels
since we made our original HR image from 2 labels.

(a) (b)

(c) (d)

Figure 8: (a) z0 to obtain HR image f0, (b) HR image f0, (c) lowpass
filtered image Bf0, and (d) noisy LR images gi = Hif0 + εi.

We can also notice that our reconstruction seems ro-
bust to error of the estimation of the movement since we
use an estimatedmovement vector which included errors. Fi-
nally, we remark that no one of our chosen criteria seems to
be adapted to evaluate the quality of the reconstructed HR
picture.

Next, we did the same kind of evaluation with a synthetic
image of size 200× 200 pixels2 originally made of 8 different
labels. So, we constructed our own LR images as in the previ-
ous case.We built f0 (Figure 8(b)) from a segmented image z0
(Figure 8(a)) to which we added a colored noise with a SNR
of 27.2 dB. The blurred image Bf0 is on Figure 8(c), and the
noisy M = 25 LR pictures, with a noise of 5 dB, can be seen
on Figure 8(d). The registration method evaluates correctly
30% of all shifts between noisy pictures. All the results of the
used methods are shown on Figures 9 and 10. Table 2 gives
the evaluation criteria values.
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(a) (b)

(c) (d)

Figure 9: (a) f̂mean, (b) f̂median, (c) f̂Tikhonov 1, λ = 1, and (d) f̂Tikhonov 2,
λ = 1.

(a) (b)

(c) (d)

Figure 10: Results of segmentation ẑ8 with K = 8 (a) and (c), and

reconstructed HR image f̂8 (b) and (d), respectively, for pixels as-
sumed to be i.i.d. and λ = 1, and for pixels assumed to be locally
dependent and λ = 103.

Here again, our method that considers a local depen-
dency between pixels of the same region, with K = 3 and
λ = 103, gives a better reconstructed HR image if we look at
the homogeneity of regions and their sharp contours.

Finally, we did the same experiment on a real image of
size 250 × 250 pixels2 taken from the sky, and that can be
seen on Figure 11(b). We did a segmentation of this picture
with K = 8 labels and used evenly distributed thresholds.
It is shown on (a) of the same figure. Except for the colored
noise that we did not add, we constructed our own LR images
as before. The blurred image Bf0 is on Figure 11(c), and the
noisy M = 25 LR pictures, with a noise of 5 dB, can be seen
on Figure 11(d). The registration method evaluates correctly
28% of all shifts between noisy pictures. All the results of the
used methods are shown on Figures 12 and 13. Table 3 gives
the evaluation criteria values.

For this real and more detailed HR image, our method
that assumes pixels are i.i.d., K = 8, λ = 1, and shown on
Figure 13(b), seems to give a good reconstruction of the ini-

tial HR image f̂ .

7. SIMULATION RESULTS OBTAINEDWITH
REAL VIDEO SEQUENCES

We used a Philips ToUCam Video WebCam to obtain three
real video sequences. For each case, we used a super-
resolution factor of d = 4. First, we did a 208 frames movie
using Figure 14(a) as the main image of the video sequence.
The registration process found all the 16 over 16 possible
subpixel moves in all the frames of the sequence. Figure 14(b)
shows one of the 38 × 64 pixels2 LR real frames we used to
compute HR images, (c) is the f̂mean solution, and (d) is the

f̂Tikhonov2 with λ = 1 solution.
Figure 15(a) shows the result of segmentation ẑ2, and (b)

the reconstructed HR image f̂2 when we use our method with
K = 2 and λ = 10−1. (c) shows the result of segmentation

ẑ3, and (b) the reconstructed HR image f̂3 when we use our
method with K = 3 and λ = 10−1.

The HR images obtained with our method are quite
similar to the one obtained with the two other methods.
However, if we look closely, it appears that object’s con-
tours are more accurate with our method (Figures 15(b) and
15(d)). Indeed, we also have the segmented images (a) and
(c) of Figure 15 that show more precisely the object’s forms,
in particular, image (c) which is the segmentation’s result
when we use 3 labels.

The second movie is filmed using Figure 16(a) as the
main image of the video sequence. The registration process
found 14 over 16 possible subpixel moves in the 120 frames
of the sequence. Figure 16(b) shows one of the 53×57 pixels2
LR real frames we used to computeHR images, (c) is the f̂mean

solution, and (d) is the f̂Tikhonov2 with λ = 1 solution.
Figure 17(a) shows the result of segmentation ẑ3, and (b)

the reconstructed HR image f̂3 when we use our method with
K = 3 and λ = 10−1. (c) shows the result of segmentation

ẑ7, and (b) the reconstructed HR image f̂7 when we use our
method with K = 7 and λ = 10−1.

As in the previous example, we can notice that object’s
contours are more accurate with our method (Figures 17(b)
and 17(d)). The segmented images (a) and (c) of Figure 17
show more precisely the object’s real forms, in particular,
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Table 2: Synthetic image using 8 labels: evaluation criteria of SR methods.

Methods Δmean (×10−2) ΔSD Δ1 (×10−1) Error on estimation

of labels (%)

Mean of pixel values, f̂mean 0.14 0.108 1.33 ×
Median of pixel values, f̂median 0.21 0.110 1.35 ×

f̂Tikhonov 1, λ = 1 0.34 0.114 1.48 ×
f̂Tikhonov 2, λ = 10 1.85 0.108 1.48 ×

(f̂8, ẑ8), i.i.d., λ = 1 4.54 0.132 2.03 32.7

(f̂8, ẑ8), dependent, λ = 103 8.16 0.155 2.82 29.7

(a) (b)

(c) (d)

Figure 11: (a) z0 obtained by thresholding of the HR image f0 and
K = 8 labels, (b) HR image f0, (c) lowpass filtered image Bf0, and
(d) noisy LR images gi = Hif0 + εi.

image (c) which is the segmentation’s result when we use 7
labels.

The last video sequence is made of 313 frames. The reg-
istration process found all the 16 over 16 possible subpixel
moves in all the frames of the sequence. Figure 18(b) shows
one of the 70× 69 pixels2 LR real frames we used to compute
HR images, (c) is the f̂mean solution, and (d) is the f̂Tikhonov2
with λ = 1 solution.

Figure 19(a) shows the result of segmentation ẑ3, and (b)
the reconstructed HR image f̂3 when we use our method with
K = 3 and λ = 10−2. (c) shows the result of segmentation

ẑ6, and (b) the reconstructed HR image f̂6 when we use our
method with K = 6 and λ = 10−2.

This last video, showing more complicated real images,
allows to see that our method works well. For example, the
text “ PHILIPS” on both batteries can be clearly read on
the HR images obtained with our method (Figures 19(b)

(a) (b)

(c) (d)

Figure 12: (a) f̂mean, (b) f̂median, (c) f̂Tikhonov 1, λ = 1, and (d)
f̂Tikhonov 2, λ = 1.

and 19(d)), but it is not so clear on the HR images ob-
tained with other methods. Even the time on the digital
clock can be read on the HR images obtained with our
method, which is not the case on the other HR images.
More, the segmentation’s result shown on images (a) and
(c) of Figure 19 allows to have information about the dif-
ferent homogeneous regions of the HR image, which is not
the case for the HR images obtained with the other meth-
ods.

From a computational point of view, our methods are
more expensive in comparison to classical methods pre-
sented in this work. Indeed, in each main iteration of the
algorithm we have chosen in Section 5.2, we have 3 steps:

(1) estimation of f | z, θ, g, which needs an optimization
and costs approximately the same as any regulariza-
tion technique and which can be estimated as about
50 times the cost of a forward model (Hf),
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Table 3: Image taken from the sky: evaluation criteria of SR methods.

Methods Δmean (×10−2) ΔSD Δ1 (×10−1) Error on estimation

of labels (%)

Mean of pixel values, f̂mean 0.24 0.104 1.41 ×
Median of pixel values, f̂median 0.27 0.106 1.44 ×

f̂Tikhonov 1, λ = 1 0.26 0.113 1.48 ×
f̂Tikhonov 2, λ = 1 0.20 0.102 1.44 ×

(f̂8, ẑ8), i.i.d., λ = 1 0.90 0.117 1.61 13.0

(f̂8, ẑ8), dependent, λ = 103 8.76 0.122 2.27 13.8

(a) (b)

(c) (d)

Figure 13: Results of segmentation ẑ8 with K = 8 (a) and (c), and

reconstructed HR image f̂8 (b) and (d), respectively, for pixels as-
sumed to be i.i.d. and λ = 1, and for pixels assumed to be locally
dependent and λ = 103.

(2) sampling of z which is not really too expensive, mainly
the cost of the computation of a forward problem,

(3) sampling of hyperparameters which is not expensive
neither, mainly the cost of computation of the means
and variances of the pixel values in each region.

More precisely, if we let X and Y be the size of LR images in
pixels (width and height), M the number of LR images used
in the SR process, K the number of labels used for the seg-

mentation of the HR image f̂K , and d the SR factor, then the

calculation complexity of methods giving f̂mean and f̂median is

O(X ,Y ,M,d2). It is the same complexity when f̂Tikhonov 1 and
f̂Tikhonov 2 are computed, even if an iterative process is per-
formed.

For our methods, the calculation complexity is O(X ,Y ,
M,d2,K). However, it is not easy to give an exact compara-
tive cost computation. For this reason, we performed some
experimental time comparison using the CPU time for the
execution of these different methods. Table 4 gives the com-
putation times (in seconds) we obtained using Matlab, on a
Windows XP OS, with a Pentium IV processor at 2.6 GHz.
We did these time estimations for the clock real sequence
(whose results are shown on Figures 18 and 19), and the arti-
ficially generated sequence showing a view of the earth took
from the sky (results shown on Figures 12 and 13). Table 4
also gives in each case the overall number of iterations real-

ized to obtain f̂ in the full optimization process (first number
between brackets), and the number of iterations done in our
SRmethods (second number between brackets). The two last
lines of this table show that, with the absolute same condi-
tions, the number of iterations in our algorithm can be very
different, even if the obtained results are almost the same.
This is due to the probabilistic approach of our methods.

We first noticed that there is a multiplicative factor rang-
ing between 5 and 10 as regards the necessary comput-
ing time between the computation time of classical method

f̂Tikhonov 2 and our method giving (f̂K , ẑK ). More, we can also
see that the computational time needed to obtain the final
result is a function of the number of iteration realized.

8. CONCLUSION

In this paper, we presented a new approach to the SR recon-
struction problem. The forward model relating a LR image
gi to the HR image f is a classical one composed of lowpass
filtering, a translational movement, decimation and corrup-
tion by a noise. The main idea in the inversion process is to
propose a compound Gauss-Markov intensity process with a
hidden Potts random field for the labels of the homogeneous
regions in the image, and to use the fusion process which has
been presented in [17], and in a more general way in [14],
to obtain a HR image which can be considered as the fusion
result of the LR images. This HR image is computed thanks
to an optimization criterion, which uses information taken
from the segmentation result. The proposed method, based
on the Bayesian estimation framework, estimates jointly the
HR image, its segmentation, and all the hyperparameters of
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(a) (b)

(c) (d)

Figure 14: (a) Image used to obtain the video sequence, (b) one

LR image (38 × 64 pixels2), (c) f̂mean(152 × 256 pixels2), and (d)

f̂Tikhonov 2, λ = 1.

the problem through a global Gibbs sampling scheme. One
aspect of the originality of our work concerns the different
kind of results we obtain with our stochastic SR method: we
do not only obtain a reconstructed HR image f̂ , but also a
segmented image ẑ which can be useful for geometrical fea-
ture extraction and their tracking.

The perspectives of our future works on SR reconstruc-
tion methods are to first apply these methods on more com-
plex real video sequences. Also, we want to use a more com-
plete movement scheme to estimate the affine motion be-
tween LR images, including homothety and rotation. The au-
thors of [18] propose such a more sophisticated movement
model. Finally, we may also look to an adaptation of our SR
methods for color images.

For now, the number of labels used in the segmentation
process must be fixed. So, another research axis could con-
cern an automated and clever evolution of the number of
necessary labels to obtain the best reconstructed HR picture.

To end, it would be interesting to find a good evaluation
criterion that will permit to characterize a good HR recon-
structed image.

APPENDIX

A. EXPRESSIONS OF THE PRIOR PROBABILITY LAWS
MENTIONED IN SECTION 3.3

N
(
mk | mk0, σk

2
0

) = 1√
2πσ2k0

exp

[
− 1

2

(
mk −mk0

σk0

)2]
,

N
(
fk | mk1,Σk

)

=
∣∣Σk

∣∣1/2

(2π)nk/2
exp

[
− 1

2

(
fk −mk1

)t
Σ−1k

(
fk −mk1

)]
,

(A.1)

with nk the number of pixels of f that belong to the region

(a) (b)

(c) (d)

Figure 15: (a) Results of segmentation ẑ2 and (b) reconstructed HR

image f̂2 with K = 2 and λ = 10−1, (c) results of segmentation ẑ3
and (d) reconstructed HR image f̂3 with K = 3 and λ = 10−1.

Rk, |Σk| the determinant of the matrix Σk, and 1 a vector of
size nk with all components equal to 1.

IG
(
σ2k | α,β

) = βα

Γ(α)

(
1
σ2k

)α−1
exp

[
− β

1
σ2k

]
,

IW
(
Σk | α,Λ

) = |Λ|α
Γ(α)

(
Σk
)1−α

exp
[−ΛΣ−1k

]
.

(A.2)

B. EXPRESSIONS OF THE POSTERIOR PROBABILITY
LAWSMENTIONED IN SECTIONS 5.1 AND 5.2

(i) Posterior law of f | z, θ, g:
p
(
f | z, θ, g)∝ p

(
g | f , z, θ)p(f | z, θ)

∝ N
(
g | f , σ2ε I

) K∏

k=1
p
(
fk | zk, θ

)

∝ N
(
g | Hf , σ2ε I

) K∏

k=1
N
(
fk | mk1, σ2k Ik

)

∝ N
(
g | Hf , σ2ε I

)
N
(
f |mz,Σz

)

∝ N
(
f | f̂ , Σ̂),

(B.1)

with Σ̂ = (HtΣε
−1H + Σz

−1)−1, and f̂ = Σ̂(HtΣε
−1g +

Σz
−1mz), and where mz is a vector of the size of the

image defined as mz = [m11′1, . . . ,mk1′K ]′, and where
Σz = diag[Σ1, . . . ,ΣK ]. 1′k is a vector of size nk with
all components equal to 1, and Σk is a diagonal matrix
with σ2k as its diagonal elements.

(ii) Posterior laws of z | f , θ, g, and z | g, θ:
p
(
z | f , θ, g)∝ p

(
g | f , z, θ)p(z)

∝ N
(
g | Hf , σ2ε I

)
p(z),

p
(
z | g, θ)∝ p

(
g | z, θ)p(z)

∝ N
(
g | Hmz,HΣzHt + Σε

)
p(z).

(B.2)
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(a) (b) (c) (d)

Figure 16: (a) Image used to obtain the video sequence, (b) one LR image (53 × 57 pixels2), (c) f̂mean(212 × 228 pixels2), and (d) f̂Tikhonov2,
λ = 1.

(a) (b) (c) (d)

Figure 17: (a) Results of segmentation ẑ3 and (b) reconstructed HR image f̂3 with K = 3 and λ = 10−1, (c) results of segmentation ẑ7 and
(d) reconstructed HR image f̂7 with K = 7 and λ = 10−1.

(a) (b) (c)

Figure 18: (a) One LR image (70× 69 pixels2), (b) f̂mean(280× 276 pixels2), and (c) f̂Tikhonov 2, λ = 1.

(a) (b) (c) (d)

Figure 19: (a) Results of segmentation ẑ3 and (b) reconstructed HR image f̂3 with K = 3 and λ = 10−2, (c) results of segmentation ẑ6 and
(d) reconstructed HR image f̂6 with K = 6 and λ = 10−2.
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Table 4: Computation times (in seconds) and number of iterations (to compute f̂ , in the iterative algorithm) obtained using different SR
methods.

Methods
Clock sequence (Figures 18, 19) View from sky (Figures 12, 13)

(X ,Y ,M,d) = (70, 69, 16, 4) (X ,Y ,M,d) = (50, 49, 13, 4)

Computation time Iterations (No.) Computation time Iterations (No.)

[2pt] Mean of pixel values, f̂mean 6.3 (×, ×) 3.0 (×, ×)
Median of pixel values, f̂median 15.6 (×, ×) 7.5 (×, ×)

f̂Tikhonov 2, λ = 1 8.1 (26, ×) 3.2 (24, ×)
(f̂3, ẑ3), i.i.d., λ = 10−3 22.0 (41, 17) 8.1 (37, 11)

(f̂6, ẑ6), i.i.d., λ = 10−3 24.3 (36, 12) 11.4 (37, 11)

(f̂3, ẑ3), dependent, λ = 10−2 42.2 (41, 16) 13.6 (34, 6)

(f̂6, ẑ6), dependent, λ = 10−2 32.0 (29, 4) 20.4 (36, 6)

(f̂6, ẑ6), dependent, λ = 10−2 53.0 (38, 13) 30.0 (44, 14)

(iii) Posterior laws of θ | z, f , g:

p
(
θ | z, f , g)

=
M∏

i=1
p
(
σε

2
i | f , gi

) K∏

k=1
p
(
mk | σ2k , f , z

)
p
(
σ2k | mk, f , z

)
,

p
(
mk | σ2k , f , z

)∝ p
(
f | mk, σ2k , z

)
p
(
mk | σ2k , z

)

∝ N
(
fk | mk1, σ2k I

)×N
(
mk | mk0, σ

2
k0

)

∼ N
(
mk | mapost

k0 , σ2k0
apost

)

∝
(

1
2πσ2k

)nk/2

exp
[
− 1

2σ2k

∥∥fk −mk1
∥∥2
]

× 1√
2πσ2k0

exp
[
− 1

2σ2k0

∣∣mk −mk0
∣∣2
]
,

δp
(
mk | σ2k , f , zb

)

δmk
= 0 =⇒ 1

σ2k

∑

r∈Rk

f (r) +
mk0

σ2k0

= mk

(
nk
σ2k

+
1
σ2k0

)
,

σ2k0
apost =

(
nk
σ2k

+
1
σ2k0

)−1
,

m
apost
k0 = σ2k0

apost
(

1
σ2k

∑

r∈Rk

f (r) +
mk0

σ2k0

)
,

p
(
σ2k | mk, f , z

)

∝ p
(
f | σ2k ,mk, z

)
p
(
σ2k | mk, z

)

∝ N
(
fk | mk1, σ2k I

)× IG
(
σ2k | αk0,βk0

)

∼ IG
(
σ2k

apost | αapostk0 ,β
apost
k0

)

∝
(

1
2πσ2k

)nk/2

exp
[
− 1

2σ2k

∥∥fk −mk1
∥∥2
]

(B.3)

×
(

1
σ2k

)αk0−1
exp

[
− βk0

1
σ2k

]

∝
(

1
σ2k

)αk0+(nk/2)−1
exp

[
− 1
σ2k

(
βk0+

∥∥fk−mk1
∥∥2

2

)]
,

αk0
apost = αk0 +

nk
2
,

β
apost
k0 = βk0 +

1
2

∑

r∈Rk

∣∣ f (r)−mk

∣∣2,

p
(
σε

2
i | f , gi

)∝ p
(
gi | σε2i , f

)
p
(
σε

2
i | f

)

∝N
(
gi | Hif , σε2i I

)× IG
(
σε

2
i | αεi0 ,βεi0

)

∼ IG
(
σε

2
i | αεi0 apost

,βεi0
apost

)

∝
(

1
2πσε2i

)n/2

exp
[
− 1

2σε2i

∥∥gi −Hif
∥∥2
]

×
(

1
σε

2
i

)α
εi
0 −1

exp
[
− βεi0

1
σε

2
i

]

∝
(

1
σε

2
i

)α
εi
0 +(n/2)−1

exp

[
− 1
σε

2
i

(
βεi0 +

∥∥gi−Hif
∥∥2

2

)]
,

αεi0
apost = αεi0 +

n

2
,

βεi0
apost = βεi0 +

1
2

∑

r∈R

∣∣gi(r)−
[
Hi f

]
(r)
∣∣2.

(B.4)
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