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Video content analysis is essential for efficient and intelligent utilizations of vast multimedia databases over the Internet. In video
sequences, object-based extraction techniques are important for content-based video processing in many applications. In this
paper, a novel technique is developed to extract objects from video sequences based on spatiotemporal independent component
analysis (stICA) and multiscale analysis. The stICA is used to extract the preliminary source images containing moving objects
in video sequences. The source image data obtained after stICA analysis are further processed using wavelet-based multiscale
image segmentation and region detection techniques to improve the accuracy of the extracted object. An automated video object
extraction system is developed based on these new techniques. Preliminary results demonstrate great potential for the new stICA
and multiscale-segmentation-based object extraction system in content-based video processing applications.
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1. INTRODUCTION

The increasing popularity of video processing is due to
the high demand for video in entertainment, security re-
lated applications, education, telemedicine, database, and
new wireless telecommunications. Recently, interesting re-
search topics such as automated and efficient content-based
video processing techniques are attracting much attention.
The content-based video presentation is an essential need for
emerging broadcasting services, Internet, and security appli-
cations.

Raw video clips are usually binary streams that are not
well organized. To represent their contents, video clips must
be decomposed into objects so analysis can be performed.
The object-based technique is one way of analyzing the video
clips and it is gaining importance in achieving compression
and performing content-based video retrieval.

Recently, partitioning video sequences into semantic
video objects has been an active research area. Applications
to object-based video representation include video confer-
ence, biomedical, surveillance, and content-based video in-
dexing and retrieval. Video coding standard MPEG-4 also
introduces an object-based framework for multimedia rep-
resentation [1]. To maximize the benefit of the industry
standard and to provide object-level multimedia interaction,

automatic video object segmentation techniques need to be
developed.

Classical solutions to video object segmentation are
based on motion features. A technique to represent video in
layers was proposed in [2]. Image sequence is decomposed
into layers by estimating and clustering affine parameters.
Borshukov et al.[3] improved this method by replacing adap-
tive K-means with a merging algorithm and implementing
the block-based affine modeling in multistage. A modified
Hough transform [4] and a Bayesian framework [5] were also
proposed in the literature for motion segmentation.

Spatiotemporal information could be used for video ob-
ject segmentation. In [6], a region-merging approach is pro-
posed to identify video objects. This method starts from
an oversegmentation of the current frame and then itera-
tively merges the regions based on spatiotemporal similarity.
Temporal similarity is estimated by a modified Kolmogorov-
Smirnov test. In [7], an algorithm based on higher-order
statistics significance test was described to separate moving
video objects from background. Kim and Hwang [8] utilized
edge change information to extract video objects. Another
spatiotemporal segmentation approach based on edge flow
and 3D motion estimation was proposed in [9]. Other tech-
niques that combine video object segmentation and tracking
were proposed in [10–12]. Performance could be improved
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by integrating multiple features [13, 14], user interaction
[15–17], and multiview extensive partition operators [18].
Due to the limitation of motion estimation, motion seg-
mentation techniques may not give accurate object bound-
aries. For nonrigid objects, active contour (i.e., snakes) mod-
els have been widely used for image segmentation. However,
in order to successfully solve the active contour models, it is
very important to have accurate initializations [15].

Spatiotemporal segmentation techniques consider both
spatial and temporal information. For top-down spatiotem-
poral segmentation algorithms, motion parameters may not
be accurately estimated due to imperfect outlier detection.
The bottom-up spatiotemporal segmentation techniques
typically consist of a spatial segmentation step and a merging
step based on temporal information. Even though both spa-
tial and temporal information are considered during process-
ing, spatial information and temporal information are used
in separate stages. Also, most algorithms only utilize two suc-
cessive frames.

In recent years, the independent component analysis-
(ICA-) based techniques are getting much attention in video
processing. The ICA can be used in two complementary ways
to decompose an image sequence into a set of images and
a corresponding set of time-varying image amplitudes. The
spatial ICA (sICA) [19] finds a set of mutually independent
component (IC) images and a corresponding set of uncon-
strained time courses, whereas the temporal ICA (tICA) [20]
finds a set of IC time courses and a corresponding set of un-
constrained images. However, the sICA and tICA can only
seek either the ICs of images (frames) or the time courses,
respectively. As shown in [19], the sICA extracts the in-
dependent images but the corresponding temporal sources
could be highly correlated, while tICA only extracts indepen-
dent temporal sources but not independent images. This is
undesirable for object-based video sequence analysis, since
the corresponding time courses for the independent objects
should be independent as well. The stICA, the generaliza-
tion of the classic ICA, was initially developed in functional
magnetic resonance imaging (fMRI) [21]. It can blindly sep-
arate the independent sources from their spatial and tempo-
ral mixtures.

In this paper, a systematic framework is presented for au-
tomated content-based video processing based on the spa-
tiotemporal independent component analysis (stICA) and
multiscale analysis. First, a novel stICA model is used to
formulate the spatial and temporal independence of various
moving objects. The solution of the stICA model can there-
fore identify these objects. In the new algorithm, areas of
video objects are extracted without explicitly performing
spatial and motion segmentation. The new algorithm takes
multiple frames as input, and then finds the spatial and tem-
poral independence simultaneously. Multiple moving ob-
jects are extracted at the same time. The independent com-
ponent with highest energy is considered to be the back-
ground. Postprocessing based on multiscale region segmen-
tation and other analysis is also introduced to refine video
object boundaries. A new iterative algorithm is also pre-
sented to solve the nonlinear combination problem of the

stICA modeling of video sequences. Both theoretical deriva-
tion and simulation results are given to illustrate the effec-
tiveness of the presented methods.

The main contributions of this paper include: (i) a new
method to analyze video sequences based on the stICA
model; (ii) a novel compensation method to deal with the
nonlinear combination problem in the stICA model for
video sequences; (iii) the integrated postprocessing tech-
niques based on wavelet analysis, edge detection with region
growing, and multiscale segmentation approaches.

The paper is organized as follows. Section 2 introduces
the framework of the proposed new automated video object
extraction system based on a new formulation of the stICA
model for video object extraction. Section 3 describes the al-
gorithms of the first iteration of the stICA-based video seg-
mentation, including the postprocessing based on multiscale
region segmentation. In Section 4, a new compensation ap-
proach is presented to solve the nonlinear combination prob-
lem for the practical video stICA model, which is the basis
of the second iteration of the stICA-based video segmenta-
tion. Extensive simulation results are presented in Section 5
to illustrate the effectiveness of the algorithms in each com-
ponent of the system. Finally, Section 6 concludes the paper.

2. FRAMEWORK OF A NEWAUTOMATED VIDEO
OBJECT EXTRACTION SYSTEMUSING
ICA ANDMULTISCALE ANALYSIS

2.1. An stICAmodel for video object extraction

2.1.1. Independent component analysis (ICA)
and spatiotemporal independent
component analysis (stICA)

ICA is a statistical technique introduced in the 1980s [22] in
the context of neural network modeling. The purpose of ICA
is to restore statistical independent source signals given only
observed output signals without knowing the mixing ma-
trix or sources. Comparing to principle component analysis
(PCA) [23] which solves the correlation problems, ICA can
reduce the high-order dependencies to make the sources as
independent as possible. ICA technique is based on a mixing
model given by

X = AS, (1)

where there areM observations and theM×N output obser-
vation matrix X = [x1, x2, . . . , xN ], with xi, i = 1, . . . ,N , be-
ingM×1 column vectors andN the number of samples, and
unknown source matrix S = [sT1 , s

T
2 , . . . , s

T
K ]

T , where N × 1
unknown column vectors si, i = 1, . . . ,K , are K independent
unknown source vectors. The matrix A = [a1, a2, . . . , aK ] is
an M × K unknown mixing matrix, where M × 1 column
vectors ai, i = 1, . . . ,K , are the mixing signature for source si.

There are two constraints in the ICA model: (i) source
signals s must be non-Gaussian, and (ii) the components
of s are statistically independent. If the mixture signals can
be decomposed into non-Gaussian and statistically indepen-
dent signals, these independent signals form the estimation
of source signals.



X.-P. Zhang and Z. Chen 3

If the observed samples are temporal samples, that is, sin,
n = 1, . . . ,N , are temporal sample sequences from time 1 to
N for the independent spatial source i, i = 1, . . . ,K , formu-
lation (1) becomes the spatial ICA (sICA).

Taking a transpose of (1), denoted by the superscript “T ,”
we have

XT = STAT . (2)

Now, S also looks like a mixing matrix. If the columns of
matrix AT are assumed statistically independent, a tempo-
ral ICA (tICA) problem is formulated since the row vectors
ofAT correspond to the columns of ST , representing the time
courses of the signal source. Note that in the tICA, the inde-
pendence of spatial sources in S is not assumed.

Apparently, the sICA and tICA only seek either ICs of im-
ages (frames) or time courses, respectively [19]. The sICA
extracts independent images but the corresponding tempo-
ral sources could be highly correlated, while the tICA only
extracts independent temporal sources but not independent
images.

However, for object-based video sequences analysis, both
objects and the corresponding time courses for the objects
can be assumed independent, that is, both the row vectors of
S and the row vectors of A are independent. Therefore, an
stICA model may be formulated. In stICA, not only spatial
source signals (images) are a set of ICs, but the time courses
should also be a set of ICs. The stICA, the generalization
of classic ICA, can blindly separate the independent sources
from their spatial and temporal mixtures. It was initially de-
veloped in functional magnetic resonance imaging (fMRI)
[21]. For clarity and simplicity, the stICA is formulated as
follows (note that the notations are different from (1)).

Let M × N matrix contain a sequence of n images X =
[x1, . . . , xN ]. Each image xi is an M × 1 vector. A linear de-
composition of X can be represented by a matrix factoriza-
tion,

X = SΛTT , (3)

where theM × K matrix S = [s1, . . . , sK ] represents the spa-
tial image source sequence and theM × 1 column vectors si,
i = 1, . . . ,K , represent unknown independent image sources.
In the mixing matrix T = [t1, . . . , tK ], the N × 1 column vec-
tors ti represent the corresponding independent time courses
for different sources, that is, it is assumed that difference im-
age sources have unknown independent time courses. The
matrix Λ is a diagonal matrix of scaling parameters. Note
that in ICA problems, Λ is irresolvable without other prior
information [24]. To solve both S and T when only the mix-
ture observation X is known, the following procedures are
employed.

Singular value decomposition (SVD) [23] can reduce the
rank of mixture and factorize it as

X = UDVT , (4)

where U is an M × K matrix of K ≤ M eigenimages, V is a
N × K matrix of K ≤ N eigensequences, and D is a diagonal

matrix of singular values. In order to determine the indepen-
dent S and T, two K ×K unmixing matricesWS andWT are
assumed to exist such that

S = ˜UWS, (5)

T = ˜VWT , (6)

where ˜U = UD1/2 and ˜V = VD1/2. Now we have

X = SΛTT = ˜UWS
(

˜VWT
)T = ˜UWSWT

T
˜VT . (7)

To find the unmixing matrices WT and WS, the follow-
ing informax principle is applied [20, 25]. The independent
spatial and temporal components are expected to simultane-
ously maximize a function hST of the spatial entropy

hS = H
(

σ
(

˜UWS
))

, (8)

and temporal entropy

hT = H
(

τ
(

˜VWT
))

, (9)

where σ and τ approximate the cumulative density function
(cdf) of each of the spatial source signals and temporal sig-
nals, respectively. The function h to be maximized is defined
as

hST
(

WS
) = αhS + (1− α)hT , (10)

where α is a weighting factor given to spatial and temporal
entropy. To optimize these two entropies by maximum like-
lihood estimation [20], their notations need to be changed
to

hS = log
∣

∣WS

∣

∣ +
1
m

m
∑

j=1

k
∑

i=1
log σ ′i

(

si j
)

,

hT = log
∣

∣WT

∣

∣ +
1
n

n
∑

j=1

k
∑

i=1
log τ′i

(

ti j
)

,

(11)

where si j and ti j are the corresponding elements of S and T in
(3). σi and τi are the cdfs of the spatial and temporal signals,
respectively. Their derivatives σ ′i and τ′i are the correspond-
ing pdfs.

One can recover the spatial signals and the time courses at
the same time using maximum likelihood estimation, which
is similar to the conventional ICA [26] approximation tech-
niques.

2.1.2. Formulation of the stICAmodel for
video sequences

Let us denote a video sequence with N frames as ̂F =
[̂f1, . . . ,̂fN ], where ̂fi is an M × 1 column vector represent-
ing a frame that contains M pixels. These image vectors are
constructed by taking the column-wise elements from the
frame images. Thus the dimension of matrix ̂F is M × N .
The mutual independent objects of interest are denoted as
O = [o1, . . . ,oK ], where oi is constructed in the same way as
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̂fi and K ≤ N . The dimension of the object vector oi isM×1,

the same as ̂fi. Thus, the dimension of O is M × K . If the
video sequence is captured by a fixed camera, such as in the
surveillance security system, the background is a constant.
The stationary background can be considered as a vector of
O, say oK . The independent temporal signals (time courses)
A = [a1, . . . , aK ] affect the objects on every time unit. Again,
we use the samemethod to construct the time course column
vector ai. In every time unit, there are time courses affecting
each object and the dimension of any time course vector ai
should be equal to the number of video frames, that is,N×1.
This means that each column of A is the time signature for
the corresponding objects inO. The dimension ofA isN×K ,
where K ≤ N . Because the background is stationary, the cor-
responding time course vector aK has no effect on it and all
elements of vector aK have value 1. We have

̂F = OAT . (12)

Note that given the spatial and temporal independence
assumptions, (12) exactly fits into the stICA model in (3),
where the independent spatial source matrix S in (3) is re-
placed by the independent spatial object images O in (12)
and the independent time courses T by the independent time
courses A.

To find out the effect of each object on the video frames,
we expand the matrices

[

̂f1,̂f2, . . . ,̂fN
]

= [o1,o2, . . . ,oK
][

a1, a2, . . . , aK
]T

=

⎡

⎢

⎢

⎣

o11 o12 · · · o1K
...

... · · · ...
oM1 oM2 · · · oMK

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

a11 a21 · · · aN1
...

... · · · ...
a1K a2K · · · aNK

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

a11o11 a21o11 · · · aN1o11
...

... · · · ...
a11oM1 a21oM1 · · · aN1oM1

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

a12o12 a22o12 · · · aN2o12
...

... · · · ...
a12oM2 a22oM2 · · · aN2oM2

⎤

⎥

⎥

⎦

+ · · ·

+

⎡

⎢

⎢

⎣

a1Ko1K a2Ko1K · · · aNKo1K
...

... · · · ...
a1KoMK a2KoMK · · · aNKoMK

⎤

⎥

⎥

⎦

.

(13)

A function g is assumed to describe the object oi’s contri-
bution to ̂F. From the above matrices expansion, we can see
that

g
(

oi
) = oiaTi , i = 1, . . . ,K. (14)

These equations reveal the fact that ai is the time signature
for the corresponding object oi. We can rewrite (12) in vector
format as

̂F =
K
∑

i=1
g
(

oi
) =

K
∑

i=1
oiaTi . (15)

To find the element construction in jth video frame ̂f j ,
j = 1, . . . ,K , we need to utilize the linear combination re-
lationship between the spatial elements oik and the time se-
quence signals ajk from (12) and (13):

̂fi j =
K
∑

k=1
oikajk, (16)

where i = 1, . . . ,M. This equation shows that an element at
a specific location in a frame is the linear combination of the
elements at the same locations of all the independent spatial
objects at a certain time moment i, that is, the ith element in
the jth video frame is the linear combination of all the ith
elements in all the independent object vectors o1, . . . ,oK at
ith moment.

Figure 1 demonstrates how the stICA model is applied to
video frames. At a certain moment, a video frame consists
of a linear combination of all objects, including the back-
ground. For example at t = 1, video frame 1 is obtained
by the linear combination of the spatial ICs on the left-hand
side of Figure 1. Frame 1 carries the information of the back-
ground, object 1 and object 3. In this way, different video
frames are constructed.

Note that the video frames actually are not the linear
combinations of the ICs as we wish because moving ob-
jects block (not add on) the background in the video frames.
This condition violates the stICA assumption. Thus, we need
to compensate for the background information that is lost
due to object blocking. In this way, the assumption of lin-
ear combination may hold so that the stICA requirements
are satisfied. Here we denote the ideally blocked background
information by Δi in ith frame fi, such that

̂fi = fi + Δi, (17)

where the dimension of Δi is alsoM × 1 and i = 1, . . . ,N .
Between the practical video frame model in (17) and the

fitting model in (15), there is a gap Δi that affects the accu-
racy of the stICA approach on video sequences. This prob-
lem is dealt with by a novel compensation method presented
in Section 4.

2.2. A new generic video object segmentation system
based on stICA andmultiscale analysis

Based on the stICA model formulated in the above section, a
new generic video object segmentation system is developed.
Figure 2 shows the main algorithmic modules of this system
in the block diagram.

The main algorithm includes two iterations. Both itera-
tions employ the stICA model and associated algorithm for
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Mixing
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Mixing at t = 3
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Mixing at t = 1

Video frames

Background
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Back-
ground Object 2 Object 3

Object 1 Object 2
Back-
ground

Object 1
Back-
ground Object 3

Figure 1: Illustration of video frame construction by mixing objects.

background and object extraction. Similar post-processing
procedures are also employed in both iterations. Two itera-
tions are summarized as follows.

First iteration

The stICA model and associated algorithm are applied to
video frames to separate the spatial and temporal signals. In
our system, video frames are selected as observed mixture
signals x, and an informax algorithm [20, 25] is applied on
these signals to extract the preliminary signals that represent
objects.

The signals obtained after the stICA are further pro-
cessed. The wavelet analysis, edge detection with region
growing, and multiscale image segmentation techniques are
employed to refine the extracted preliminary objects of inter-
est.

Second iteration

A compensation approach is introduced to deal with the
nonlinear combination problem of the stICA. The blocked
background is compensated based on the object extraction
results in iteration 1 (see (17)). The procedures of stICA and
post-processing in iteration are reapplied on the compen-
sated observations. A frame object indexing technique is then
performed to reconstruct the sequence of frames containing
only the objects. More precise video objects are extracted in
this iteration.

Each algorithmic module is described in the following
sections.

3. THE stICA-BASED VIDEO SEGMENTATION:
THE FIRST ITERATION

The first iteration includes the following steps (as shown in
Figure 3).

(1) Use the stICA to process selected frames from a video
sequence. The preliminarily processed images are obtained
by subtracting the recovered background from original video
frames.

(2) The preliminarily processed images are processed by
using the wavelet-analysis-based nonlinear detector to obtain
the rectangular regions of interest (ROIs).

(3) From the ROIs, edge detection of the extracted ob-
ject is performed. A recursive region growing technique is
employed to remove the small-size regions in the ROIs. The
object regions are formed in this step.

(4)Multiscale segmentation techniques are applied to the
object regions with the eroding/projecting approach to iden-
tify the regions belonging to the object.

3.1. Initial object segmentation based on stICAmodel

In the first iteration (block diagram in Figure 3), the stICA
model is applied to the captured video frames. According to
the stICA model described in (12), (13), (14), (15), and (16),
the video sequences ̂F are used directly as the observed image
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Processed video
sequences

Segmented frames
with objects o j only

The second
iteration

of algorithm

The first iteration
of algorithm

Algorithm

Video frames fi

Video capture
device

Original video
sequences

Figure 2: Block diagram of the system framework, where i and j
are the indices of frames and objects, respectively.

matrix X, to which the stICA algorithm is applied. Accord-
ing to (3), (4), (5), (6), and (7), video sequence frames can
be decomposed into two parts by SVD, eigenimages and cor-
responding eigen-time courses:

X = UDVT = (UD1/2)(VTD1/2) = ˜U˜VT . (18)

The objective is to find the unmixing matrices WS and WT

and the ICs, S and T.
The informax criterion [20, 25] represented by (8), (9),

(10), and (11) is employed on both spatial and temporal ma-
trices. Conjugate gradient minimization [27] is implemented
to find the unmixing matricesWS andWT and the ICs, S and
T. The maximum likelihood estimation is employed on both
spatial and temporal signals. The informax-based algorithm
[20, 25] is implemented to find the unmixing matrices in (3),
(4), (5), (6), and (7).

However, since the video frames are not linear combina-
tions of objects and the objects are not exactly ICs, the re-
covered spatial signals oi are still coarse representation of the
objects. The stICA approach alone cannot provide a satisfac-
tory object segmentation result. Postprocessing techniques

Approximately extracted
objects

Multiscale segmentation

Edge detection with region
growing technique

Wavelet analysis with
overlapping windows to get

the ROIs

Preliminarily processed

images fi − oi

Find stationary background
oi by the stICA

Grayscale frame fi

Figure 3: Block diagram of the first iteration.

are then required to refine the object segmentation. The post-
processing procedures in the first iteration are illustrated in
Figure 3. The inputs for postprocessing are the preliminar-
ily processed images obtained by subtracting the recovered
background by stICA from the original video frames. The
wavelet analysis is employed to locate the rectangular ROIs.
Then the edge detection and region growing approaches are
used to extract object boundaries and region edges. Subse-
quently, the small-size regions are isolated and removed. Af-
ter the edge detection and the region growing, there may
still be some superfluous connected components with similar
grayscale to the real objects. To remove the superfluous con-
nected components from an object, the multiscale segmenta-
tion technique is applied to the object regions. Through the
presented eroding and projecting approaches, multiscale seg-
mented regions belonging to the object can be identified.

In the following subsections, we present these postpro-
cessing techniques sequentially.

3.2. Usingwavelet analysis to locate ROIs

As a powerful tool of image analysis, the wavelet trans-
form performs well in characterizing singularities [28, 29].
In other words, large coefficients represent edge transitions
in the wavelet domain. As known, the 2D discrete wavelet
transform (DWT) decomposes an image into three wavelet
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subspaces, namely, LH, HL, and HH, and one scaling sub-
space LL, where letter “L” means lowpass filter in the DWT
and letter “H” means the bandpass filter in the DWT. The
first letter represents horizontal direction and the second let-
ter represents vertical direction.

The HL subspace is used to detect the horizontal bound-
aries of image objects and the LH subspace to detect the ver-
tical boundaries. In the HL subspace, horizontal edges are
represented by large coefficients. A horizontal sliding win-
dow filter is applied to detect the coefficient with the largest
absolute value which may represent the horizontal bound-
ary of the object. Thus the horizontal scope of image objects
can be detected in the HL subspace and the horizontal region
of interest (denoted by ROIhorizontalHL ) may be identified in the
wavelet domain.

For any spatial signal after the stICA processing, we de-
note W as the HL subspace at the Nth level of the wavelet
decomposition and wij is the coefficient in that subspace,
where i, j are the indices of rows and columns of W, respec-
tively. The following major procedures are involved in the al-
gorithm.

Step 1. A row vector Ψ[ψ1, . . . ,ψq] is obtained to repre-
sent the ensemble of those largest coefficient values in the
columns of the HL subspace, that is, ψj = maxi |wij|. An ex-
ample of this vector is shown in Figure 4(a). Note that q is
the total number of columns in the subspace, determined by
the level of the wavelet decomposition. For example, if the
dimension of an image is r × r, then

q =
(

1
2

)N

× r. (19)

Step 2. An overlapping sliding window filter with width l is
used. The mean value of the largest absolute values ψi within
the window is calculated:

mk =
∑k+l−1

i=k ψi

l
, k = 1, . . . , q − l + 1. (20)

An example filtering result is shown in Figure 4(b). A thresh-
old filtering is then employed to segment the object area from
the background:

m′
k =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

mk, mk ≥ max
{

ψ1, . . . ,ψq
}× α

= maxi
{

max j
∣

∣wij

∣

∣

}× α,

0, otherwise,

(21)

where α is an empirical constant, k = 1, . . . , q + l − 1, and
i, j = 1, . . . , r. An example of the thresholding result is shown
in Figure 4(c). Denote the maximum horizontal range of
continuous nonzero m′

k as [a, b]. The horizontal ROI is de-
tected as:

ROIhorizontalHL = {i | a ≤ i ≤ b
}

, (22)

where i is the column index. In this way, all (may bemultiple)
regions containing object edge can be detected.
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0

1

2

3

(a)
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0
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1.5
2

(b)

0 20 40 60 80 100 120 140 160 180
0

0.5
1

1.5
2

(c)

Figure 4: (From top to bottom): (a) maxima of absolute values of
wavelet coefficients; (b) mean values of the maxima in the overlap-
ping sliding windows; (c) mean values after threshold filtering.

The same algorithm is applied in the LH subspace, the
vertical ROI can then be detected:

ROIverticalLH = { j | c ≤ j ≤ d
}

, (23)

where j is the row index, and c, d are the starting and ending
points of vertical edges, respectively. Thus, the rectangular,
ROIs that contain the objects in the wavelet domain are ob-
tained as

ROIwavelet =
{

i, j | i ∈ ROIhorizontalHL , j ∈ ROIverticalLH

}

. (24)

The corresponding ROI in the stICA processed images can
be located by using the inverse calculation in (19).

The purpose of segmenting an ROI is to decrease com-
putational complexity for later postprocessing and to reduce
noise so that edge detection techniques and region-based
segmentation approaches can achieve better results. After
ROI detection, the edge detection with region growing com-
bined with a multiscale image segmentation is employed to
identify accurate objects within ROI.

3.3. Image edge detectionwith region growing

The ROIs detected by the presented object detection method
based on the stICA represent areas of the objects of interest.
However, they do not contain boundary information of the
objects. The Canny edge detection technique [30] is then ap-
plied to these rectangular ROIs to detect the closed regions
for possible object regions. A binary image is rendered by the
Canny edge detection. The interior regions inside the closed
edge are represented by the value 1.
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Not all the obtained regions contain objects of interest.
In the ROIs, the target objects are generally larger than other
isolated regions. Thus we can discriminate the target ob-
jects from those unwanted regions through comparing their
sizes. A region growing method based on the basic proce-
dures in [31] is employed to calculate the connected region
size, briefly summarized as follows.

In a binary image I, two pixels are considered to be in the
same region if they are in their neighbors of eight and have
same grayscale value.

Twomatrices, “MarkMatrix” and “Label Matrix,” are de-
fined to implement the region growing. All pixel values in the
two matrices are initialized to zero. The flag with value 1 is
assigned to a certain pixel in the Mark Matrix M to indicate
that this pixel has been processed to avoid repeated process-
ing. The Label Matrix L is used to assign a unique labeling
integer to each isolated region. Thus the isolated regions can
be distinguished by the different labeling integers. The to-
tal number of each labeling integer indicates the region size.
Figure 5 shows an example.

A region label needs to be assigned for each pixel in an
ROI. First of all, in the binary image I, a seed pixel Ii, j is se-
lected, which must satisfy two criteria:

(1) pixel value must be 1: Ii, j=1;
(2) the Mark Matrix element value cannot be 1 : Mi, j �= 1.

Otherwise, Ii, j has been processed.

Once a new seed pixel Ii, j is chosen, its eight neighbors
Ip,q(|p − i| ≤ 1, |q − j| ≤ 1) are examined. There are two
underlying possibilities.

(1) If Ip,q = 1, for all p �= i, q �= j, |p − i| ≤ 1, |q − j| ≤ 1,
the value of the corresponding element in the Mark
MatrixM,Mp,q should be checked. There are two pos-
sibilities under this condition.

(a) Mp,q = 1: this indicates that the pixels corre-
sponding to Mp,q and Ip,q have been processed.
Thus, Ii, j belongs to the same region as Ip,q, and
Li, j is assigned the same value as Lp,q.

(b) Mp,q = 0: this implies that Ip,q has not been pro-
cessed. If all the eight neighbors of Ii, j have not
been processed, Lp,q and Li, j are both assigned a
new labeling integer.

(2) If Ii, j is the only pixel with value 1 in its region,Mi, j is
flagged to 1 and Li, j is assigned a new labeling integer.

In this way, all Ii, j ’s neighbors Ip,q with value 1 are identi-
fied. Their Mark Matrix elements Mi, j , Mp,q are marked flag
1 after they have been processed. The corresponding Label
Matrix elements Li, j and Lp,q are assigned the same labeling
integer.

This recursive region growing method identifies all iso-
lated regions with different labeling integers by the Label Ma-
trix L. A region-size threshold detector is used to remove re-
gions with small sizes, which are not the objects of interest.

In this postprocessing step, we apply the Canny edge de-
tection technique to the rectangular ROIs and then exploit
the region growing method to remove small regions that are

0 0 1

0 1 0

0 1 0

(a)

0 0 3

0 3 0

0 3 0

(b)

(c)

0 0 1

0 1 0

0 1 0

Figure 5: Region growing technique to label connected pixels. (a)
Binary edge pixel neighborhood I; (b) mark pixel neighborhoodM;
(c) label pixel neighborhood L.

not objects of interest. The approximate object regions with
boundaries are identified.

3.4. Multiscale image segmentation

Edge detection techniques such as the Canny method work
efficiently on sharp edges. However, the processed images af-
ter the stICA usually do not possess sharp edges. This leads
to some false edges that affect further processing.

In Figure 6, the objects of interest are obtained by edge
detection with region growing to remove the small regions
that are disconnected with the objects. However, this ap-
proach cannot remove the regions that are connected to the
objects. For simplicity, these connected regions are called
“connected components.” Because of the false edges gener-
ated by edge detection, the region growing method cannot
accurately identify the edges. Thus, a multiscale region-based
still-image segmentationmethod [32–35] is employed on the
object regions in postprocessing. Note that here the term
“multiscale” means the scales of the grayscale variance in a
region. A region in this method is a homogeneous region,
which is defined as a connected region with a closed bound-
ary and certain grayscale variance. Each region is labeled with
a unique integer.

Apparently, segmentation of homogeneous regions with
similar grayscale generally does not segment the objects of
interest in images. A grayscale region may contain multiple
objects, or one object may be divided to several grayscale re-
gions. If an image has complex structure, it is difficult to find
correspondence between each closed homogeneous region
and a specific object. In Figure 6(c), an object and its con-
nected component are divided to four homogeneous regions
(R1, R2, R3, and R4) according to their grayscale similarities.
In this case, homogeneous regions R1, R2, and R3 belong to
the object of interest. However, we cannot segment R1, R2,
and R3 from R4 if using only multiscale segmentation.
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Connected
component

Object of
interest

(a)

i2

i1

i3

i1, i2, i3 represent the pixels in
the eroded regions

(b)

Region 4
(R4)

Region 2
(R2)

Region 3
(R3)

Region 1
(R1)

(c)

Object of
interest

(d)

Figure 6: Illustration of the procedures of incorporating edge detection and multiscale segmentation: (a) regions obtained by edge detection
and region growing; (b) eroded regions; (c) regions obtained by multiscale segmentation; (d) objects obtained by the projecting operation
between (b) and (c).

We apply an eroding [30] and projecting approach on the
multiscale segmentation results to obtain the objects of inter-
est. The underlined (reasonable) assumption is that the con-
nect components (which are not part of the object) are rela-
tively small regions such that eroding will effectively remove
them. The eroding results are shown in Figure 6(b). After-
wards, the eroded region Re is combined with the multiscale
segmentation results. The Rn is classified to be in the object
area Ro, that is, Rn ∈ Ro only if

Area
(

Rn

⋂

Re
)

> 0.5Area
(

Rn
)

, (25)

where the operator Area(·) calculates the area of a region.
After all Rn have been classified, final object areas are deter-
mined to be

Ro =
⋃

n

(

Rn ∈ Ro
)

. (26)

In this way, the appropriate homogenous regions contained
in the objects of interest are found with the exact boundaries
identified, as illustrated in Figure 6(d).

In this way, by utilizing wavelet analysis, edge detec-
tion, region growing, and multiscale image segmentation
approaches on the stICA outputs, objects with shape and
boundaries can be extracted.

4. A COMPENSATION APPROACHOF stICA FOR
PRACTICAL VIDEO SEQUENCES:
THE SECOND ITERATION

When the background is complex enough, the linear stICA
model may lead to inaccurate background identification in
the first place (as described in Section 2.1.2), and therefore
affect the subsequent processing. To deal with this prob-
lem and the nonlinear combination problem in the stICA
model for video sequences, a novel “compensation” tech-
nique for the stICA is introduced in the second iteration
of the presented algorithm (see Figure 2). In the second it-
eration (Figure 7), satisfactory object segmentation results
are achieved by a compensation approach, a frame ob-
ject indexing method, and the postprocessing techniques.
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Accurate objects

Multiscale segmentation

Edge detection with region
growing technique

Use the ROIs to locate
objects in different spatial

images oi

Frame object indexing

Find the independent spatial
images O by the stICA

Superimpose the blocked
background regions on

original frames to constitute

the compensated frames ̂fi

Find the background
blocked by objects obtained

in the first iteration

Figure 7: Block diagram of the second iteration.

The second iteration consists of the following procedures
(shown in Figure 7):

(1) extracting the regions of background that are blocked
by the objects whose boundaries are obtained in the
first iteration;

(2) superimposing the regions of background that are
blocked by the objects onto the original frames to ob-
tain the compensated frames;

(3) employing the stICA to process the compensated
frames to produce spatial signals with clearer edges;

(4) indexing the frame objects by the SVD and the weight-
ing matrices;

(5) using the ROIs obtained in the first iteration to locate
the objects in different spatial images;

(6) the postprocessing algorithms, such as edge detection
with region growing, and multiscale image segmenta-
tion, are applied again to obtain more accurate objects.

Simulation results will illustrate that the proposed ap-
proaches along with the postprocessing techniques can seg-
ment the objects of interest accurately and effectively.

4.1. A compensation approach of stICA

The major problem of application of the stICA to video se-
quences is the nonlinear combination problem as shown in
(17). The nonlinear problem may lead to the poor outputs
from the stICA. Let ̂Δi denote the estimation of blocked back-
ground region Δi in each frame fi. If we “compensate” the
blocked background back to each frame in (17), we can ob-

tain the ideal frames ̂fi for the linear stICA model:

fi + ̂Δi = ̂fi + ̂Δi − Δi = ̂fi +
(

̂Δi − Δi
)

, (27)

where Δi, ̂Δi, fi, and ̂fi are theM× 1 column vectors as stated
in Section 2.

If Δi is ideally located, ̂Δi−Δi = 0, which means that the
video frames can fit the stICAmodel. In fact, if we get the ac-
curate blocked background information, we can outline the
objects of interest and fulfil the video object segmentation
task. However, we can only acquire the approximate blocked
background information in the first iteration and use it for
the stICA processing in the second iteration. The following
steps are the procedures of the compensated frames for the
stICA processing in the second iteration.

(1) The blocked regions of the background are deter-
mined by the segmented objects in the first iteration. The
blocked regions are used as binary masks that are applied to
the background image obtained in the first iteration to esti-
mate the blocked background information ̂Δi.

(2) The estimated blocked background ̂Δi is superim-
posed onto its corresponding original video frame and the
compensated frames are obtained.

Note that here we only deal with the background com-
pensation caused by nonlinear blocking. In general, it is as-
sumed that the objects in the selected frames for stICA do not
overlap with each other. We can reasonably achieve this by
randomly selecting the raw frames for stICA. If the two mov-
ing objects do overlap, the stICA actually treats them as one
object and they will be separated together. In such cases, if
we want to separate the overlapped individual objects, addi-
tional domain knowledge is necessary and the iterative com-
pensation principle may still be used.

4.2. Frame object indexing

Due to the ambiguities of the ICA [26], the order of the
ICs after stICA cannot be determined. The order of the ICs
is very important for reconstructing the temporal video se-
quence containing only the segmented objects. Thus, before
edge detection, the recovered spatial objects O must be in-
dexed according to the order of the video frame ̂F. In this
subsection, an indexing method based on the SVD [36] and
the corresponding weighting matrices is developed.
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According to (18), the SVD of the video sequence ̂F is

̂F = UDVT = (UD1/2)(VTD1/2) = ˜U˜VT . (28)

Since both U and V are orthogonal [21], we could make
use of these two equations VTV = I and ˜U = UD1/2. We then
obtain

̂FV = UDVTV = UD = UD1/2D1/2 = ˜UD1/2, (29)

where D is a diagonal matrix with singular values. The mul-
tiplication of ˜U with D1/2 can only change the amplitude of
˜U (eigenimages), but cannot change the eigenimage indices.
Let us suppose that V is a k × k weight matrix. Eigenimage

ui (i = 1, . . . , k) is most affected by the frame ̂fi that has the
largest absolute element in the corresponding column of V,
that is,

̂fi ←→ u j , j = argmax j
{

vi, j , ∀i
}

. (30)

Note that the eigenimages U and ˜U have the same image or-
ders. In this way, the relationships between frames and the
eigenimages can be obtained.

Referring to (5), the spatial IC images O (containing ob-
jects) can be written as

O = ˜UWO, (31)

whereWO is a k×k unmixing matrix. The indexing relation-
ship betweenU andO can then be found in the samemanner
as that used for ̂F and U, that is,

oi ←→ u j , j = argmax j
{

wO,{i, j}, ∀i
}

. (32)

Combining (30) and (32), the indexing relationship be-
tween the frames ̂F and the spatial IC images O can be es-
tablished. Note that the same object indexing method can be
used in both the first and second iterations.

5. SYSTEM SIMULATIONS

In the following illustrations, a grayscale video sequence
“Hall Monitor” of 9.28-second duration is used for experi-
ments. There are altogether 280 frames, each with 240× 360
pixels and 256 grayscale levels. We suppose that every video
frame contains at least one object of interest. This means
there is no pure “background” image.

5.1. Simulation of the stICA applied to video
processing in the first iteration

A set of frames are selected from the 280 frames for fur-
ther processing. To avoid interference between close objects,
frames are selected from the sequence at a constant inter-
val. We set up a graphic user interface (GUI) that can show
the processing details step by step (Figure 8). The program
allows users to define a frame selection interval. Based on
the frame selection rate, a number of frames are selected
from the 280 frames and the stICA model is applied to them.

Through the stICA processing, we obtain the same number
of spatial output images as input frames. For simplicity of
the following illustration, 4 frames are selected as shown in
Figure 9.

Among the output images in Figure 10, only the back-
ground image (Figure 10(a)) is relatively clear. Meanwhile,
other output images (Figures 10(b), 10(c), and 10(d)) con-
tain moving objects but with some undesired shadows. The
reason is that the pixels representing objects in the video
frames are not the linear combination of the pixels represent-
ing objects and the background in recovered image signals.
In other words, these video frames are not a linear mixture
of all the independent sources, namely the objects and back-
ground. Since the background image is relatively clear among
all the outputs, it can be subtracted from all original video
frames to get the preliminarily processed images which con-
tain only objects as shown in Figure 11.

In these images, we can see extensive noise. Postprocess-
ing techniques are thus required to refine the object segmen-
tation.

5.2. Simulations of the postprocessing
techniques in the first iteration

5.2.1. Simulation of wavelet analysis to locate ROIs

After the subtraction of the recovered background, the pre-
liminarily processed images contain object but with extensive
noise (e.g., Figures 11(a), 11(b), 11(c), and 11(d)). The DWT
decomposes an image into four subspaces: three wavelet sub-
spaces (LH, HL, and HH) and one scaling subspace (LL). A
scaling subspace (LL) example is shown in Figure 12(a). It
is a low-frequency approximation of the original image. The
other three subspaces LH, HL, and HH are shown in Figures
12(b), 12(c), and 12(d). It can be seen that the LH, HL, and
HH subspaces describe image details along three directions:
vertical, horizontal, and diagonal directions, respectively.

The sliding window filtering described in Section 3.2 is
then applied to wavelet subspaces. The empirical constant α
in (21) is set at 0.685 since it is proved empirically effective in
all test images. The rectangle ROI is shown in Figure 13(a).
Figure 13(a) also shows that the locations of the ROIs are
very accurate and the object of interest is completely included
within the rectangular ROI. Figure 13(b) shows the detected
ROI with size 131 × 57. This reduces the computation com-
plexity for further object extraction.

5.2.2. Simulation of edge detection with region growing

The rectangular ROIs detected by the presented object detec-
tion method based on the stICA describe the areas of object
of interest, but they do not contain exact boundary informa-
tion of the detected objects. The Canny edge detection tech-
nique is applied to these rectangular ROIs. This operation
renders a binary image as shown in Figure 14(b). However,
in this binary image of the ROI, not all the detected regions
belong to the object of interest. For example, in Figure 14(b),
besides the moving human object, there are other regions,
such as the door. In the ROIs, the target objects are generally
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Figure 8: A GUI for the stICA-based object extraction in video sequences.

(a) (b)

(c) (d)

Figure 9: The original video sequence frames.

larger than other isolated regions. Thus we can discriminate
the target objects from those unwanted regions through the
comparison of their sizes. For example, in Figure 14(b), the
size of the moving human is much larger than others.

The region growing algorithm described in Section 3.3 is
employed to remove the isolated regions that are not the ob-
ject regions. Figure 14(c) shows three isolated regions. This
region growing algorithm is a recursive computing method.

Figure 14(d) shows three connected regions that are assigned
three labeling integers. The sizes/areas of isolated regions are
easily computed. The small regions corresponding to the la-
beling integers 1 and 3 are eliminated by a region-size thresh-
old detector (Figure 14(e)). This threshold is set to 10% of
the largest region size (except the background) in the whole
binary image. After threshold detection, only the approxi-
mate object of interest remains.
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(a) (b)

(c) (d)

Figure 10: Spatial source signals from the first stICA processing.

(a) (b)

(c) (d)

Figure 11: Preliminarily processed images from the first stICA processing subtraction.
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(a) (b)

(c) (d)

Figure 12: An example of 2D wavelet decomposition: (a) LL scaling subspace; (b) LH subspace; (c) HL subspace; (d) HH subspace.

(a) (b)

Figure 13: (a) A rectangular ROI after the horizontal and vertical wavelet analysis; (b) the “zoom-in” video frame.

5.2.3. Simulation of multiscale image segmentation

In Figure 14(e), the object regions are obtained by edge de-
tection and region growing. However, this approach cannot
remove the superfluous components that are connected to
the objects. Such components are caused by the false edges
from edge detection.

The multiscale region-based still-image segmentation
method outlined in Section 3.4 is employed on the ob-
ject regions in postprocessing. The superfluous connected
components can be removed by eroding [30] the edge-
detected regions. After eroding the regions in Figure 14(e),
that is, Figure 15(a), a “slimmer” object is obtained and
shown in Figure 15(b).We project the pixels after the eroding
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(a) (b) (c) (d) (e)

Figure 14: (a) Original image in the ROI; (b) edge detection by the Canny detector; (c) filling regions after edge detection; (d) labeling
regions with the same integer; (e) removing regions that are not of interest by threshold detection.

(a) (b) (c)

Figure 15: (a) Object regions in the ROI; (b) eroded regions from
edge detection; (c) multiscale segmented regions.

operation to the multiscale segmented image (shown in
Figure 15(c)). The regions belonging to the object are iden-
tified. The reason for eroding the binary regions is to make
sure that no pixel is projected to the connected components.
An example of the extracted object from the original image
is illustrated in Figure 16(b).

The methods we used in the first iteration work effec-
tively for the objects with a high-contrast clear background,
which means that the grayscale of the background pixels is
not similar to the target objects. Figures 17(a) and 17(d) are
in this category. However, if the background and the object
of interest have similar grayscale values, false regions may be
identified as the objects of interest, as shown in Figures 17(b)
and 17(c), due to the linear assumption in the stICA model.

(a)

(b)

Figure 16: (a) Original video frame; (b) extracted object.

5.3. Simulation of compensation approach of stICA

Figures 18(a), 18(b), 18(c), and 18(d) show the binary masks
that are determined by the segmented objects from the first
iteration. The blocked background regions are obtained by
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(a) (b)

(c) (d)

Figure 17: The output images from the first iteration.

(a) (b)

(c) (d)

Figure 18: Binary masks determined by the first iteration.
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projecting the masks to the background we recovered in the
first iteration as shown in Figure 19. The compensated video
frames are the sum of original video frames and the cor-
responding blocked background regions. Figure 20 provides
the examples of the video frames with compensated back-
ground. Then the stICAmodel is applied to the compensated
video frames (Figure 20). Figure 21 shows the results of the
stICA outputs. As expected, the second stICA processing de-
tects the object edges accurately. Compared with the results
obtained in the first stICA processing (Figure 10), the edges
of the recovered spatial ICs in the second stICA processing
(Figure 21) are clearer and sharper.

5.4. Simulation of the frame object indexing approach

Due to the inherent permutation ambiguity of stICA, the or-
der of the ICs cannot be determined. However, the order of
ICs is very important for reconstructing the video sequence
containing only the objects.

In the experiment, there are altogether four video frames
defined as inputs to the stICA. Since the SVD is the pre-
processing tool of the ICA, we first use the SVD to find the
indexing relationship between the video frames F and the
eigenimage ˜U. In the eigenimages matrix ˜U, the first prin-
ciple component u1 represents the strongest energy among
all the principle components [36]. Among all the objects, the
background has the strongest energy because it exists in every
frame of the video sequence. Thus u1 should correspond to
the background (a special object). Through the observation
of the elements of the eigenmatrix V, the indices of other ob-
jects can be found.

In the example, there are altogether four objects and one
background to be indexed. To determine the indices of the
four objects, the largest absolute coefficients in columns two
to four of the eigenmatrix V are found:

V =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.4899 0.4343 −0.7464 0.0245

0.4820 −0.1482 0.4756 −0.7302
0.4948 0.6290 0.4348 0.4129

0.5019 0.2218 −0.1661 −0.8002

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (33)

According to (30), the third coefficient of column two has
the largest absolute value in that column, indicating that the
object segmented from the second eigenimage u2 will be in-
dexed as the third frame in the video sequence. This is true
because the third frame corresponds to the third coefficient
and the frame has the largest contribution to the formation
of the second eigenimage and to the object in it. For the
same reason, the object segmented from the third eigenimage
u3 will be indexed as the first frame in the video sequence.
Finally, column four has two large coefficients at positions
two and four, indicating that there are two objects to be seg-
mented from the fourth eigenimage u4 and their indices in
the video sequence will be the second and the fourth frames,
respectively.

The indexing relationship between the eigenimages ˜U
and the video frames F can be described as follows:

u3 −→ f1, u4 −→ f2, u2 −→ f3, u4 −→ f4.
(34)

Then we use the Bell-Sejnowski algorithm in the stICA to
optimize the eigenimages ˜U and obtain the unmixing matrix
WO such that O = ˜UWO. In the experiment,

WO =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−10.9408 −0.8998 2.1762 −1.4259
−1.9929 −38.6003 1.4613 2.8184

−0.5246 0.2471 −40.5752 2.8608

−1.0995 8.3672 6.9683 35.0712

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(35)

For the same reason outlined above (also see (30)), the rela-
tionship between ˜U and O is

u1 −→ o1, u2 −→ o2, u3 −→ o3, u4 −→ o4.
(36)

Thus, we can map the relationship between F and O as fol-
lows:

o3 −→ f1, o4 −→ f2, o2 −→ f3, o4 −→ f4.
(37)

The object indexing relationship from F to O through ˜U is
illustrated in Figure 22. In this way, the frame object order
can be determined.

Afterwards, the postprocessing schemes are applied to ex-
tract the final object in each frame. The results after the sec-
ond iteration are shown in Figure 23.

To compare the segmentation image quality in these two
iterations, the commonly used peak signal-to-noise ratio
(PSNR) [37, 38] is calculated. In the noise calculation, the
objects are manually segmented and employed as the true
reference segmentation. Table 1 shows the comparison of the
PSNR values (dB) of the segmented object images in the two
iterations from the “Hall Monitor” sequence. It shows that
the results obtained in the second iteration (Figure 23) are
superior to those in the first one (Figure 17).

The PSNRs of another simulation experiment are also il-
lustrated below. In this experiment, a “Computer Lab” video
sequence of 4.35-second duration is used. There are alto-
gether 160 frames, each of which has 240×360 pixels and 256
grayscale levels. Each video frame contains at least one object
of interest, that is, there is no pure “background” image. A
set of frames are selected from these 160 frames for process-
ing in the proposed system. At a constant interval of 40, 4
frames are selected to be processed by the system. The two-
iteration processing is applied to the selected frames. Table 2
gives the comparison results of the PSNR values of the first
and the second iterations. Similar to the results in Table 1,
the results after the second iteration are better than the re-
sults after the first iteration in Table 2. Moreover, it is found
that some missing information of the object in the first it-
eration can be retrieved back in the second iteration by the
proposed compensation method.
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(a) (b)

(c) (d)

Figure 19: Blocked background regions determined by the binary mask.

(a) (b)

(c) (d)

Figure 20: Video frames with compensated background for the stICA in the second iteration.
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(a) (b)

(c) (d)

Figure 21: Spatial source signals from the second stICA processing: o1, o2, o3, o4.
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u3(f1)

u2(f3)
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ground

o4(f2, f4)

o3(f1)

o2(f3)

Back-
ground

Figure 22: Illustration of the indexing relationship from F to O
through ˜U.

Note that a fixed camera is assumed. Once a background
image is extracted, it can be subtracted (by correlation) from
all video frames other than the frames used for stICA. Then

the postprocessing techniques may be used to remove back-
ground noise and variations, and extract the exact objects as
well as the relationships of the objects across the frames.

Also note that it is the advantage of the new algorithm
that it can still well separate the background even if there
is no pure background image since the stICA method can
maximally catch the statistical correlation of the background
across frames.

5.5. Discussion and practical considerations

The semantic object segmentation has been a challenging
topic in video analysis and processing, since there is cur-
rently no universal way to define a semantic object using
low-level features. This is also a reason that the object-based
MPEG-4 coding has not been widely used in applications.
The presented new object extraction system is an attempt
to employ the joint spatiotemporal statistical features in a
video sequence to identify coherent moving objects. We be-
lieve that such spatiotemporal features carry reasonable se-
mantic meaning of the objects of interest. However, while
the statistical features have advantages to catch large-scale se-
mantic characteristics of objects in video, they are not very
accurate identifying details, such as boundaries, of objects.
On the other hand, traditional image segmentation meth-
ods generally have advantages to catch edges but have dif-
ficulties to identify different semantic meaning of various
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Figure 23: The output images from the second iteration.

Table 1: PSNR (dB) of the segmented images in “Hall Monitor”
sequence.

Iteration Image (a) Image (b) Image (c) Image (d)

First 30.25 27.43 26.12 34.71

Second 36.36 39.84 41.72 40.30

edges. The presented system combines the new spatiotempo-
ral statistical-features-based video analysis method and con-
ventional effective image segmentation methods for video
object segmentation. For practical video object segmenta-
tion applications, postprocessing steps are generally needed
to take advantage of multiple semantic features of videos to
obtain accurate segmentation results.

Nevertheless, there are weaknesses for the presented
system. First, the current method only deals with static
background. Static background provides us with more spa-
tiotemporal information since it leads to more statistical spa-
tiotemporal correlations across frames. Though the static
background is assumed, some variations in the background,
such as very common background luminance changes and
additive noises that happen in a number of applications, can
be dealt with well by the stICAmodel since the stICAmethod
can maximally catch the statistical relationship of the co-
herent objects across frames. Theoretically, the stICA model

Table 2: PSNR (dB) of the segmented images in “Computer Lab”
sequence.

Iteration Image (a) Image (b) Image (c) Image (d)

First 24.42 29.66 25.17 38.72

Second 26.67 31.21 31.54 40.28

has potential inprocessing moving background as well, since
the background can be considered as another independent
moving object. However, since foreground objects always oc-
clude background, with a moving background and multiple
moving objects, more sophisticated algorithms have to be de-
veloped to solve the nonlinearity and dependency problems.
It is expected that the statistical-modeling-based method can
be combined withmany other traditional methods to achieve
better content analysis of video sequences, a topic that will
also be our future investigation. Secondly, many statistical
analysis and learning methods, such as ICA methods, can be
computationally expensive since nonlinear numerical opti-
mization is usually involved. However, in the presented sys-
tem, it is not necessary to perform stICA on all frames since
backgrounds as well as moving objects among consecutive
frames within a video shot or a video scene are highly corre-
lated. After the static background and basic moving objects
are identified by stICA in the selected frames, correlation or
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other simple algorithms can be developed to identify the ob-
jects in the adjacent frames. Also, the stICA algorithm can
be further optimized by employing other statistical informa-
tion. In the present work, our main objective is to demon-
strate the validity of the new stICA-based method. The op-
timization of the algorithms and the development of the
real-time analysis are certainly important involved topics that
should be further investigated in theory and practice.

In the new system, some empirical parameters, such as
the number of frames used for stICA K , have to be selected.
In general, K should be no less than the number of mov-
ing objects that appeared in the image sequence. However, a
large K may lead to increased computational complexity. As
the objective of stICA is to identify common background and
rough object areas, in practice, an empiricalK can be selected
as 4 or 5, which gives reasonable results.

6. CONCLUSIONS

In this paper, a new automated video object extraction sys-
tem is presented based on the stICA and multiscale analy-
sis. A novel statistical formulation based on stICA is pro-
posed for video sequence analysis to extract moving objects.
A mathematical framework is presented in the context of the
video frame analysis. An advantage of this statistical analy-
sis method is that it captures both the spatial and tempo-
ral characteristics of moving video objects in frames without
getting into the detailed pixel-based processing. On the other
hand, though the new statistical method can catch the mov-
ing blobs in the video, it cannot capture the object details
in the pixel level. Therefore, a set of postprocessing schemes
incorporating traditional pixel-based processing techniques,
such as edge detection, region growing, and so forth, are pre-
sented to extract the boundary details of objects. Specifically,
multiscale analysis is employed in finding the ROIs and seg-
menting homogenous regions. However, the inherent non-
linearity of the video object composition in a video frame
contradicts with the linearity in the ICA model. A new itera-
tive background-compensation scheme is presented to solve
this problem.

Extensive experiments are performed to validate the pre-
sented model, system, and new algorithms. It is shown that
for fixed camera video sequences, the extraction results are
satisfactory. It is also worth to note that for the background
compensation, although more iterations are possible to fur-
ther improve the validation of the linear stICAmodel, one it-
eration has worked reasonably well in our experiments. Both
visual and PSNR results demonstrate the effectiveness of the
new system. It is expected that the presented stICA-based ob-
ject segmentation system, combined with other information
processing technologies, can be used in applications such
as video information mining, analysis, and retrieval, and so
forth.
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