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An algorithm based on a space fast-time adaptive processor is presented for nulling the mainlobe jammer when the jammer and
the target of interest share the same bearing. The computational load involved in the conventional processor, which blindly looks
for the terrain-scattered interference (TSI), is required to stack a large number of consecutive range cell returns to form the space
fast-time data snapshot making it almost impossible to implement in real time. This issue is resolved via the introduction of a
preprocessor (a TSI finder which detects the presence of the minute levels of multipath components of the mainlobe jammer and
associated time delays) which directs the STAP processor to select only two desired range returns in order to form the space fast-
time data snapshot. The end result is a computationally extremely fast processor. Also a new space fast-time adaptive processor
based on the super-resolution approach (eigenvector-based) is presented.
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1. INTRODUCTION

Mainbeam jamming poses a difficult and challenging prob-
lem for the modern multichannel radar. Conventional pro-
cessing techniques such as adaptive sidelobe cancelling or
space-time adaptive processing (as in space slow-time adap-
tive processing) can successfully suppress the sidelobe jam-
mers, where the space slow-time adaptive processing refers
to the stacking of spatial data corresponding to a series of co-
herent pulses to form the space-time data snapshot for the
range cell being interrogated [1]. This form of processing is
very effective in achieving high spatio-temporal degrees of
freedom to null sidelobe jammers and hot clutter. However
when one of the jammers is colocated with the target of in-
terest, these processors fail. A new emerging class of space-
time processing techniques that may be referred to as space
fast-time adaptive processing can overcome this problem. In
space fast-time processing one needs only a minimum of one
pulse in order to form a space fast-time processor by stack-
ing a large number of range returns (fast-time samples) in
the neighbourhood of the cell being interrogated. Success of
the processor depends on the availability of coherent multi-
path in the form of terrain-scattered interference (TSI).

At present the known approaches [2–6] to solving this
problem require one to stack a considerable number of range
returns blindly to form the space fast-time data snapshot or

apply a large number of filters first [6]. There are two main
problems associated with the current approach. One is the
size of the space fast-time covariance matrix which is very
large, and its inversion which is computationally intensive.
The second problem is the lack of training data to estimate
it. In fact, in theory, one needs to consider one additional
data snapshot corresponding to the time delay of one of the
TSI paths (if the corresponding path delay is known).

In this study, first we develop a vector subspace-based
approach to explain the procedure involved in nulling the
mainlobe jammer, and secondly an eigenvector-based solu-
tion is presented alongside the currently used covariance ma-
trix inversion-based solution. Finally a preprocessor is pre-
sented for identifying the availability of the TSI power and
the associated path delays corresponding to the mainlobe
jammer. This enables us to form the space fast-time data
snapshot as a 2N × 1 vector by stacking the correct auxiliary
range return (which corresponds to the TSI delay) with the
current range cell of interest, where N is the number of ar-
ray elements. As a result, the space fast-time covariance ma-
trix need be formed only when TSI is present and its size is
limited to 2N × 2N . The TSI finder, unlike the conventional
direction finder, does not estimate the angle of arrival of the
TSI paths, instead it estimates the path delays associated with
each coherent multipath off the mainlobe jammer while sup-
pressing the mainlobe jammer itself and all of the sidelobe
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jammers which are uncorrelated with the mainlobe jammer.
Furthermore, we have derived the expression for the achiev-
able signal processing gain as a function of the power level of
the TSI path being used to null the mainlobe jammer. This
would provide us with some insight into understanding the
ability of the processor, particularly its limitations. Since the
bulk of the computational load has been lifted, this innova-
tive preprocessor will allow a modern radar to implement an
ultimate adaptive processor, that is, the space slow-time fast-
time adaptive processor, to null sidelobe jammers, mainlobe
jammer, and hot clutter in a single processor within a realistic
time frame. The order of the computational load is reduced
from (NMR)3 to (2NM)3 where M is the number of coher-
ent pulses and R is the number of fast-time range cells to be
used (R is generally unknown, but large) in order to form the
space fast-time component of the data vector.

2. FORMULATION

Suppose an N-channel radar, whose N × 1 steering mani-
fold is represented by s(φ, θ) (where φ is the azimuth angle
and θ is the elevation angle), transmits a single pulse where
s(φ, θ)Hs(φ, θ) = N and the superscript H denotes the Her-
mitian transpose. The return (i.e., the N × 1 measured signal
x(r)) corresponding to the rth range gate (which is also re-
ferred to as the fast-time scale) can be written as

x(r) = αtδ
(
r − r0

)
s
(
φt, θt

)
+ j(r)s

(
φt, θt

)

+
k=K∑
k=1

βk j
(
r − nk

)
s
(
φk, θk

)
+ ε,

(1)

where αt is the target amplitude, r0 is the target range cell
number, δ represents the Kronecker delta function, j(r) rep-
resents a series of complex random amplitudes correspond-
ing to the mainlobe jammer, (φt, θt) is the bearing of the tar-
get as well as the mainlobe jammer. The third term (sum-
mation term) consists of K multipath arrivals known as
terrain-scattered interferers (TSI), where the integers nk (k =
1, 2, . . . ,K) are the associated path delays (lags), s(φk, θk)
(k = 1, 2, . . . ,K) are the corresponding steering vectors, βk
(k = 1, 2, . . . ,K) are the scattering coefficients (|βk|2 < 1),
and ε represents the N × 1 white noise component. In this
study we consider the clutter-free case. Furthermore, we as-
sume σ2J = E{| j(r)|2} is the power level of the mainlobe jam-
mer and |βk|2σ2J (k = 1, 2, . . . ,K) represent the TSI power
levels associated with eachmultipath, where E{·} denotes the
expectation operator with respect to the variable r. Through-
out the analysis, we assume that the mainlobe jammer power
is above the channel noise power, that is, Jnr = σ2J /σ

2
n > 1,

E{εεH} = σ2nIN where Jnr is the jammer-to-noise ratio per
channel, σ2n is the white noise power present in any chan-
nel, and IN is the unit identity matrix. Without loss of gen-
erality, we use the notation st and sk to represent s(φt, θt)
and s(φk, θk), respectively. Furthermore, it is assumed that
E{ j(r + l) j(r +m)∗} = σ2J δ(l−m), where ∗ denotes the com-
plex conjugate operation. It should also be noted that it is

possible to have additional independent jammers added to
the expression in (1). This will be equivalent to an additional
term

∑Q
k=1 ĵk(r)ŝk due to Q sidelobe jammers, where ĵk(r)

are the associated random amplitudes and ŝk = s(φ̂k, θ̂k),
(k = 1, 2, . . . ,Q) are the corresponding steering vectors. The
presence of these sidelobe jammers does not alter the theory
to follow.

2.1. Vector subspace-based approach

The N × N interference covariance matrix formed by sum-
ming and averaging the outer products xxH has the following
properties. Its signal subspace, which is a subspace of com-
plex N-dimensional space (or CN×1) formed by the base vec-
tors st and sk (k = 1, 2, . . . ,K) is K + 1 dimensional and its
noise subspace is of dimension N − (K + 1). Generally the
range cell which is being interrogated for targets (in this case
r = r0) would not be included in forming the covariance
matrix. However, due to the fact that the mainlobe jammer
is associated with the same steering vector as the target, we
are forced to include st in the signal subspace. Alternatively
suppose that we have only sidelobe jammers, then st is not
a member of the signal subspace. In this case (i.e., mainlobe
jammer-free case) the objective is to find an N × 1 weights
vector w which is orthogonal to the signal subspace and sat-
isfies the condition wHst = 1 (such a solution is always avail-
able via the eigenvector-based high-resolution approach as
seen later). The orthogonality requirement guarantees that
the weights vector is orthogonal to steering vectors associ-
ated with all interferers and as a result, when applied to the
range cell of interest, we have wHx(r) = αtδ(r − r0) + wHε
(note: wH ŝk = 0 is guaranteed for sidelobe arrivals). This
is simply a spatial beamformer. On the other hand, when a
mainlobe jammer is present, suppose we are still able to find
a weights vector which is orthogonal to all the basis vectors
in the signal subspace, that is, wHsk = 0, wH ŝk = 0, exclud-
ing the vector st for which we maintain the look direction
constraint wHst = 1 (such a solution is also available via the
power minimization approach which can make the weights
vector almost orthogonal to the undesired steering vectors in
the signal subspace). Then the beamformer output is given
by wHx(r) = αtδ(r − t0) + j(r) +wHε which incorporate the
mainlobe jammer data. This is the fundamental reason for
the failure of the spatial beamformer whenever a mainlobe
jammer is present.

In order to understand the space fast-time adaptive pro-
cessor, let us consider a 4N × 1 space fast-time data snapshot
by stacking 4 consecutive range cell returns. The 4N × 1 data
vector has the form

y(r) = (x(r)T , x(r + 1)T , x(r + 2)T , x(r + 3)T
)T
. (2)

The 4N×4N covariance matrix is defined as the average sum
of the outer products of y(r)y(r)H . Suppose x(r) = αtδ(r −
r0)st + j(r)st + βk j(r − nk)sk + ε (target, mainlobe jammer,
and any one of the TSI paths), then the data snapshot has the
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following structure:

y(r)

= αtδ
(
r − r0

)(
sTt ,o

T ,oT ,oT
)T

+ j(r)
(
sTt ,o

T ,oT ,oT
)T

+ (r + 1)
(
oT , sTt ,o

T ,oT
)T

+ j(r + 2)
(
oT ,oT , sTt ,o

T
)T

+ j(r + 3)
(
oT ,oT ,oT , sTt

)T

+ βk j
(
r − nk

)(
sTk ,o

T ,oT ,oT
)T

+ βk j
(
r + 1− nk

)(
oT , sTk ,o

T ,oT
)T

+ βk j
(
r + 2− nk

)(
oT ,oT , sTk ,o

T
)T

+ βk j
(
r + 3− nk

)(
oT ,oT ,oT , sTk

)T

+ e,

(3)

where o = (0, 0, . . . , 0, 0)T is the N × 1 vector of zeros and e
represent the 4N × 1 noise component. The signal subspace
which is a subspace of C4N×1 is represented by the linearly
independent basis vectors (sTt ,oT ,oT ,oT)T , (oT , s

T
t ,oT ,oT)T ,

(oT ,oT , sTt ,oT)T , (oT ,oT ,oT , s
T
t )T , (s

T
k ,o

T ,oT ,oT)T , (oT , sTk ,
oT ,oT)T , (oT ,oT , sTk ,o

T)T , and (oT ,oT ,oT , sTk )
T . As before

the vector corresponding to the target, that is, (sTt ,oT ,
oT ,oT)T is contained in the signal subspace of the covariance
matrix. However, suppose nk is equal to one of the integers
between 1 and 4, then we would have a signal subspace which
will not contain (sTt ,oT ,oT ,oT)T as a basis vector. For exam-
ple, suppose nk = 2 (i.e., j(r) ≡ j(r+2−nk)), then the signal
subspace is formed by the basis vectors (sTt ,oT ,βks

T
k ,o

T)T ,
(oT , sTt ,oT ,oT)T , (oT ,oT , s

T
t ,oT)T , (oT ,oT ,oT , s

T
t )T , (s

T
k ,o

T ,
oT ,oT)T , (oT , sTk ,o

T ,oT)T , and (oT ,oT ,oT , sTk )
T . This omis-

sion of (sTt ,oT ,oT ,oT)T as a contributing vector to form
the signal subspace occurs whenever βk �= 0 for some k
(1 � nk � 3). In this case if we compute the 4N × 1 weights
vector orthogonal to the signal subspace, satisfying the re-
quirement wH(sTt ,oT ,oT ,oT)T = 1, then we have the re-
quired space fast-time adaptive processor output wHy(r) =
αTδ(r − r0) + wHe. It is clearly seen that we may need to
stack a large number of range returns (several hundred) in
order to blindly exploit the opportunity to null the mainlobe
jammer energy at the processor output. This will not only
increase the dimension of the covariance matrix to a very
high value, it also makes it virtually impossible to form an
accurate interference covariance matrix due to lack of train-
ing cells. It should also be noted that to null the mainlobe
jammer (i.e., to exclude the target steering vector in signal
subspace), all we need is to match the time delay of any one
of the TSI paths available. On the other hand if none of the
TSI paths is able to have a matching path delay in the se-
lected stack, our signal steering vector (sTt ,oT ,oT ,oT)T is in-
cluded in the signal subspace. In this case if we compute a
weights vector orthogonal to the steering vectors in the signal

subspace excluding the vector (sTt ,oT ,oT ,oT)T , where we
maintain the look direction constraint, then the processor
output is wHy(r) = αTδ(r − r0) + j(r) +wHe.

2.2. The preprocessor approach

The first objective of this study is to simplify the above con-
cept of blind inclusion of the large number of range cell
returns to form an unnecessarily high-dimensional space
fast-time adaptive processor. Suppose we have a preprocessor
that determines the number of multipaths available (TSI off
the mainlobe jammer only) and associated time delays. As an
example assume that at least one such TSI is known to have a
delay path ofm units. Suppose the associated unknown steer-
ing vector for this path is sm, then the 2N × 1 space fast-time
data snapshot is defined as y(r) = (x(r)T , x(r +m)T)T where
the dimensionality of the processor will always be 2N . The
form of the measured signal is (ignoring other multipaths
and sidelobe jammers by assuming that they can be spatially
nulled)

y(r) = αtδ
(
r − r0

)(
sTt ,o

T
)T

+ j(r)
(
sTt ,βs

T
m

)T

+ j(r +m)
(
oT , sTt

)
+ β j(r −m)

(
sTm,o

T
)T

+ e.
(4)

The signal subspace consists of the basis vectors
(sTt ,βsTm)

T , (oT , sTt )T , (sTm,o
T)T , and other linearly indepen-

dent vectors, that is, (oT , sTk )
T , (sTk ,o

T)T , k = 1, 2, . . . ,K ,
k �= m, arising from other TSI paths, and (oT , ŝTk )

T , (ŝTk ,o
T)T ,

k = 1, 2, . . . ,Q due to other sidelobe jammers. For the sake of
brevity, we continue to ignore sidelobe jammers andmultiple
TSI paths. The exclusion of the desired signal related steering
vector, that is, (sTt ,oT)T , in the signal subspace, will enable us
to extract the signal of interest as discussed earlier.

3. POSSIBLE SOLUTIONS

3.1. Subspace-based solution

The subspace solution (the high-resolution approach) de-
pends on the eigen analysis of the 2N×2N covariancematrix,
whose eigenvectors corresponding to the largest eigenvalues
are known as signal subspace eigenvectors [7]. The rest of
the eigenvectors are termed as noise eigenvectors. A prop-
erty of the signal subspace eigenvectors is that they form a
basis for the signal subspace which is also spanned by the
vectors (sTt ,βsTm)

T , (oT , sTt )T , (sTm,o
T)T . Now suppose E1, E2,

E3 are the signal subspace eigenvectors (more details of sep-
arating the signal subspace eigenvectors are given in [7]).
The orthogonality requirement is equivalent to wHEk = 0
(k = 1, 2, 3). If more eigenvectors are found in the signal sub-
space, this implies the presence of other TSI paths and side-
lobe jammers. In order to achieve the lowest possible side-
lobes in the final pattern while satisfying the orthogonality
requirement, we will minimise wHw subject to the condi-
tions wH(sTt ,oT)T = 1.0 and wHEk = 0 (k = 1, 2, . . . , q),
where q is the dimension of the signal subspace. This leads to
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the minimisation of the following objective function:

Φ(w) = wHw + λ
(
wHsA − 1

)
+

q∑
k=1

μkwHEk, (5)

where λ,μ1,μ2, . . . ,μK are scalar quantities (Lagrange multi-
pliers) which correspond to the minimum value of Φ and
sA = (sTt ,oT)T represents the space fast-time look direction
steering vector. By differentiating Φ with respect to wH and
equating to zero, we have

w + λsA +
q∑

k=1
μkEk = 0. (6)

The weight vector is given by

w = −λsA −
q∑

k=1
μkEk. (7)

Now applying wHEm = 0 (m = 1, 2, . . . , q), we have

λ∗sHAEm +
q∑

k=1
μ∗k E

H
k Em = 0, m = 1, 2, . . . , q. (8)

The look direction constraint wHsA = 1 implies

λ∗sHA sA +
q∑

k=1
μ∗k E

H
k sA = −1. (9)

By combining (8) and (9), we can estimate the unknown
parameters U = (λ∗,μ∗1 , . . . ,μ∗q )T using the following linear
system:

⎛
⎝ sHA sA

(
BHsA

)T
(
sHAB

)T (
BHB

)T
⎞
⎠U =

(
−1
oq×1

)
, (10)

where B = (E1,E2, . . . ,Eq) and oq×1 is a q × 1 column vector
of zeros.

3.2. Minimumpower distortionless response solution
for space fast-time adaptive processing

The MPDR [1] solution minimises the power output of the
objective function wHRw, where R is the 2N × 2N mea-
sured space fast-time covariance matrix, subject to the con-
straint wH(sTt ,oT)T = 1. The conventional MPDR solu-
tion needs to be slightly altered due to the fact that we
can impose additional constraints using the following argu-
ment. Ideally, as discussed earlier, we would like to satisfy
wH(sTt ,oT)T = 1 as the constraint and maintain the orthog-
onality: wH(oT , sTt )T = 0, wH(sTm,o

T)T = 0, wH(sTt ,βsTm)
T =

0, wH(sTk ,o
T)T = 0, wH(oT , sTk )

T = 0 (k = 1, 2, . . . ,K , k �=
m), wH(ŝTk ,o

T)T = 0, wH(oT , ŝTk )
T = 0 (k = 1, 2, . . . ,Q),

and so forth. Since we have the full knowledge of the vector
(oT , sTt )T , the orthogonality requirement arising from this

vector (this is not the signal steering vector in space fast-
time domain) can be enforced as an additional constraint:
wH(oT , sTt )T = 0 in the power minimization procedure to
achieve a better result. Thus we would like to minimise the
following objective function:

ΦM(w) = wHRw + λ
(
wH
(
sTt ,o

T
)T − 1

)
+ μwH

(
oT , sTt

)T
.

(11)

This solution is always available (for a fixed m), regardless
of whether the signal steering vector (sTt ,oT)T is included in
the signal subspace of the covariance matrix or not, in other
words, whether βm has a zero value or not. The weights vector
is given by w = −λR−1sA − μR−1sB, where sA = (sTt ,oT)T ,
sB = (oT , sTt )T , and the parameters λ and μ are given by

(
sHAR

−1sA sHB R
−1sA

sHAR
−1sB sHB R

−1sB

)(
λ∗

μ∗

)
=
(
−1
0

)
. (12)

In general, w is not orthogonal to all the steering vectors in
the signal subspace. Naturally the weights vector is almost
orthogonal to all the steering vectors included in the signal
subspace except for the one specified in the look direction
constraint. Therefore, if for some reason the selected TSI
path is not sufficiently strong, or if the selected path delay
is not available as a TSI, the end result is that the mainlobe
jammer is associated with the desired signal steering vec-
tor (sTt ,oT)T (instead of (sTt ,βsTm)

T). However, the weights
vector will be almost orthogonal to all other steering vec-
tors (except (sTt ,oT)T). In this case, the output at the pro-
cessor will be dominated by a series of random numbers
corresponding to the mainlobe jammer, that is, wHx(r) =
αtδ(r − r0) + j(r) + wHε. Further analysis of this solution is
carried in the next section by investigating the nature of the
2N × 1 weights vector.

4. PROPERTIES OF THEMPDR SOLUTION

Under the fundamental assumption that we have identified
the path delay corresponding to at least one TSI (i.e., m), we
can compute the 2N × 2N covariance matrix using (4) as

R =
(

Rx σ2J β
∗
msts

H
m

σ2J βmsms
H
t Rx

)
, (13)

where Rx = σ2J sts
H
t +R1 is theN×N measured spatial covari-

ance matrix estimated as the average of outer product terms
x(r)x(r)H and R1 = σ2J |βm|2smsHm + σ2nIN is not a measurable
quantity using data.

Note that when other TSI paths and sidelobe jammers are
taken into account, the only difference is that

R1 = σ2J
∣∣βm

∣∣2smsHm + σ2nIN

+

(m−1∑
k=1

σ2J
∣∣β2k

∣∣sksHk +
K∑

k=m+1

σ2J
∣∣β2k

∣∣sksHk +
Q∑
k=1

σ̂2J ŝk ŝ
H
k

)
.

(14)
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Now, for the sake of convenience, we represent the 2N×1
weights vector as wT = (wT

1 ,w
T
2 )

T , where N × 1 vector w1

refers to the first N components of w and the rest is repre-
sented byN×1 vectorw2. The output power at the processor
Pout is given by

Pout = wHRw

= wH
1 R1w1 +wH

2 R1w2 + σ2J w
H
1 sts

H
t w1 + σ2J w

H
2 sts

H
t w2

+ σ2J β
∗
mw

H
1 sts

H
mw2 + σ2J βmw

H
2 sms

H
t w1.

(15)

The constraints wH(sTt ,oT)T = 1 and wH(oT , sTt )T = 0
are, in fact, equivalent to wH

1 st = 1 and wH
2 st = 0. As a result,

we may substitute these requirements into wHRw to obtain

Pout = wHRw

= wH
1 R1w1 +wH

2 R1w2 + σ2J + σ2J
(
β∗ms

H
mw2 + βmwH

2 sm
)
.

(16)

The original power minimization problem can now be
broken into two independent optimisation problems as fol-
lows:

(1) minimise wH
1 R1w1 subject to the constraint wH

1 st = 1,
(2) minimisewH

2 R1w2+σ2J +σ
2
J (β

∗
ms

H
mw2+βmwH

2 sm) subject
to wH

2 st = 0.

The MPDR solution can be expressed as

w1 = R−11 st(
sHt R

−1
1 st

) , (17)

w2 = −βmσ2J R−11 sm + βmσ
2
J

(
sHt R

−1
1 sm

sHt R
−1
1 st

)
R−11 st . (18)

The above representation of the MPDR solution cannot
be used to compute the weights vector w due to the fact
that the quantities involved are not measurable. Direct ap-
proach (11) is implemented to evaluate w as described in the
previous section. Substituting R1 = σ2J |βm|2smsHm + σ2nIN in
(16) and noting that σ2J |βm|2wH

2 smsHmw2 + σ2J + σ2J (β
∗
ms

H
mw2 +

βmwH
2 sm) = σ2J |1 + βmwH

2 sm|2, we have the following expres-
sion for the output power:

Pout = σ2J
∣∣βm

∣∣2∣∣wH
1 sm

∣∣2

+ σ2J
∣∣1 + βmwH

2 sm
∣∣2 + σ2n

(
wH
1 w1 +wH

2 w2
)
.

(19)

In an ideal scenario, one would expect this expression
to be free of jammer energy, that is, to achieve wH

1 sm ≈ 0
and 1 + βmwH

2 sm ≈ 0. The performance measure of the pro-
cessor is generally indicated by the signal processing gain
which is defined by the ratio SINRout / SINRin, where SINRin

is the input signal-to-interference ratio and SINRout is the
signal-to-interference ratio at the output. For the case of

a mainlobe jammer plus single TSI path (with delay m),
we have SINRin = |αt|2/(σ2J (1 + |βm|2) + σ2n), SINRout =
|αt|2/Pout, and the processing gain (PG) is given by

PG=
(
σ2n + σ2J

(
1 +

∣∣βm
∣∣2)

Pout

)
=
(

σ2n
Pout

)(
1 + Jnr

(
1 +

∣∣βm
∣∣2)).

(20)

The performance of the processor can be measured by the
quantity σ2n/Pout which is the only algorithm-dependent part
of the processing gain. Furthermore, this quantity is the pro-
cessing gain in the absence of any interference sources (noise
only detection) and it generally achieves the valueN for most
spatial beamformers. Therefore we may define the quantity

P̃G = σ2n
Pout

(21)

as the processing gain for comparison of our selected algo-
rithms. This measure is expected to achieve a value between
1 and N depending on the nature of the algorithm applied to
null the mainlobe jammer and any other spatial interference
sources. In order to obtain a quantitative figure for the pro-
cessing gain, we may further analyse the array weights vector
obtained above for the case of a mainlobe jammer and one
TSI path as follows.

For R1 = σ2J |βm|2smsHm + σ2nIN , we have (using matrix in-
version lemma [8])

R−11 = 1
σ2n

[
IN −

(
σ2J
∣∣βm

∣∣2smsHm
)

(
σ2n +N

∣∣βm
∣∣2σ2J

)
]
, (22)

R−11 st = 1
σ2n

[
st −

(
σ2J
∣∣βm

∣∣2smsHmst
)

(
σ2n +N

∣∣βm
∣∣2σ2J

)
]
, (23)

R−11 sm = sm
σ2n +N

∣∣βm
∣∣2σ2J

, (24)

sHmR
−1
1 sm = N

σ2n +N
∣∣βm

∣∣2σ2J
, (25)

sHmR
−1
1 st = sHmst

σ2n +N
∣∣βm

∣∣2σ2J
, (26)

and (for N|βm|2 Jnr� 1)

sHt R
−1
1 st = 1

σ2n

[
N −

(
σ2J
∣∣βm

∣∣2∣∣sHt sm
∣∣2)

(
σ2n +N

∣∣βm
∣∣2σ2J

)
]

= N

σ2n

[
1−

∣∣sHt sm
∣∣2∣∣βm

∣∣2 Jnr
N
(
1 +N

∣∣βm
∣∣2 Jnr )

]

≈ N

σ2n

(
1−

∣∣sHt sm
∣∣2

N2

)
≈ N

σ2n
.

(27)

The assumption made in the last expression (i.e., |sHt sm|/
N2 ≈ 0) is very accurate when the signals are not closely
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spaced. The other assumption made throughout this study
is that the mainlobe jammer is above the noise floor (i.e.,
Jnr > 1). In this case, we need at least |βm|2 � 1/N (or equiv-
alently N|β|2 Jnr � 1) in order to achieve any processing
gain as seen later. We will also see that when |βm|2 is closer
to the lower bound of 1/N , we do not achieve any processing
gain. Therefore, we would like to investigate the two cases
|βm|2 � 1/N and |βm|2 � 1/N simultaneously. The value
of the expression (27) for |βm|2 � 1/N (or N|βm|2 Jnr� 1)
can be simplified as follows:

sHt R
−1
1 st ≈ N

σ2n

[
1−

∣∣sHt sm
∣∣2∣∣βm

∣∣2 Jnr
N

]

≈ N

σ2n

[
1−

∣∣sHt sm
∣∣2(N∣∣βm

∣∣2) Jnr
N2

]

≈ N

σ2n
.

(28)

Furthermore, applying the above formula and (24) in (17)
we can see that

∣∣wH
1 sm

∣∣2 =
∣∣∣∣ s

H
t R

−1
1 sm

sHt R
−1
1 st

∣∣∣∣
2

=
∣∣∣∣∣

sHt
sHt R

−1
1 st

· sm(
σ2n +N

∣∣βm
∣∣2σ2J

)
∣∣∣∣∣
2

≈
(∣∣sHt sm

∣∣2/N2
)

(
1 +N

∣∣βm
∣∣2 Jnr )2 ≈ 0.

(29)

This expression shows how closely we have achieved the or-
thogonality requirement expected above. It is reasonable to
assume that wH

1 sm ≈ 0 (or equivalently |sHt sM|2/N2 ≈ 0)
for all possible positive values of N|βm|2. We may now in-
vestigate the second and third terms as the dominant terms
at the processor output in (19). The approximate expressions
for these two terms can be derived using (22)–(27) (see ap-
pendix) as

∣∣1+βmwH
2 sm

∣∣2≈

⎧⎪⎪⎨
⎪⎪⎩

1(
N
∣∣βm

∣∣2 Jnr)2 for N
∣∣βm

∣∣2 Jnr� 1,

1− 2N
∣∣βm

∣∣2 Jnr for N
∣∣βm

∣∣2 Jnr� 1,

σ2n‖w‖2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ2n

(
1
N

+
1

N
∣∣βm

∣∣2
)

for N
∣∣βm

∣∣2 Jnr� 1,

σ2n

(
1
N

+N
∣∣βm

∣∣2 Jnr2
)

for N
∣∣βm

∣∣2 Jnr� 1.

(30)

Substituting (30) in (19) we can evaluate Pout/σ2n as

Pout
σ2n

≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1
N
+

1

N
∣∣βm

∣∣2
)
+

1

N2
∣∣βm

∣∣4 Jnr for N
∣∣βm|2 Jnr�1,

1
N
+Jnr−N∣∣βm

∣∣2 Jnr2 for N
∣∣βm

∣∣2 Jnr�1,

(31)

which can be approximated to

Pout
σ2n

≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N
∣∣βm

∣∣4 Jnr+N∣∣βm
∣∣2 Jnr+1

N2
∣∣βm

∣∣4 Jnr for N
∣∣βm

∣∣2 Jnr� 1,

1
N

+ Jnr for N
∣∣βm

∣∣2 Jnr� 1.

(32)

As a result, we have the processing gain (substituting
N|βm|4 Jnr+N|βm|2 Jnr+1 ≈ N|βm|4 Jnr+N|βm|2 Jnr in the
above expression for N|βm|2 Jnr� 1 case)

P̃G= σ2n
Pout

≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N
∣∣βm

∣∣2
1 +

∣∣βm
∣∣2 , N

∣∣βm
∣∣2 Jnr� 1,

N

1 +N Jnr−N2
∣∣βm

∣∣2 Jnr2 , N
∣∣βm

∣∣2 Jnr� 1.

(33)

Whenever the mainlobe jammer power is above the noise
floor, the algorithm can achieve greater than one process-
ing gain only if |βm|2 > 1/N and the value of this gain
falls far shorter than N . The maximum possible value for
N|βm|2/(1 + |βm|2) is around N/2 when |βm|2 = 1. For
N|βm|2 Jnr � 1, P̃G ≈ 1/ Jnr < 1. As seen later in the sim-
ulation section, the conclusions drawn here do not change
significantly when one or two sidelobe interferers are con-
sidered. The only difference is that (19) will have additional
terms due to sidelobe jammers and other TSI paths. The
added terms in (19) are of the form σ2k |wH

1 sk|2 (k = 1, 2, . . .)
and they satisfy the orthogonality requirement in a very sim-
ilar manner.

5. TSI FINDING

Now consider the following dimensionless measure:

TS(m) =
{(
wHRw

)−1(
sHt R

−1
x st

)−1 − 1
}

=
(
sHt R−1x st

)−1
Pout

− 1,
(34)

where m refers to the “guessed” time delay used in form-
ing the space fast-time processor as explained previously,
w is the array’s 2N × 1 space fast-time weights vector ob-
tained via the direct MPDR filter (11) which optimises the
powerwHRw subject to the constraintswH(sTt ,oT)T = 1 and
wH(oT , sTt )T = 0. Rx is the N × N measured spatial covari-
ance matrix. By denoting the value of TS(m) for m = nk (for
some k) by TS(m)m=nk and noting that Pout = wHRw, we can
use the earlier result (33) to show that

Ts(m)m=nk

≈ (sHt R−1x st
)−1 N|β|2

σ2n
(
1 + |β|2) − 1 for N|β|2 Jnr� 1,

(35)
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where β represents a reflectivity coefficient corresponding to
any of the TSI paths (at least one) available. In order to fur-
ther simplify the above expression, we need to use the follow-
ing matrix inversion lemma.

Lemma 1. Suppose the square matrix A is added to an addi-
tional dyad term uuH , where u is a column vector, then the
inversion of the new matrix is given by (e.g., [8])

(
A + uuH

)−1 = A−1 − A−1uuHA−1

1 + uHA−1u
. (36)

By definition we have Rx = σ2J sts
H
t + R1, where

R1 = σ2J
∣∣βm

∣∣2smsHm + σ2nIN

+

(m−1∑
k=1

σ2J
∣∣βk

∣∣2sksHk +
K∑

k=m+1

σ2J
∣∣βk

∣∣2sksHk +
Q∑
k=1

σ̂2j ŝk ŝ
H
k

)
.

(37)

Applying the above lemma, we have the following identity:

R−1x = R−11 − σ2J
(
R−11 stsHt R

−1
1

)

1 + σ2J
(
sHt R

−1
1 st

) . (38)

This leads to the expression

sHt R
−1
x st = sHt R

−1
1 st −

σ2J
(
sHt R

−1
1 stsHt R

−1
1 st

)

1 + σ2J
(
sHt R

−1
1 st

)

= sHt R
−1
1 st

1 + σ2J
(
sHt R

−1
1 st

) ,

(
sHt R

−1
x st

)−1 = σ2J +
(
sHt R

−1
1 st

)−1
.

(39)

Substituting (39) in (35), we have

TS(m)m=nk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
σ2J +

(
sHt R

−1
1 st

)−1) N|β|2
σ2n
(
1 + |β|2) − 1, N|β|2 Jnr� 1,

(
σ2J +

(
sHt R

−1
1 st

)−1) N

σ2n
(
1 +N Jnr−N2|β|2 Jnr2) − 1, N|β|2 Jnr� 1.

(40)

For the case of a mainlobe jammer and a single TSI path we
have shown that (sHt R

−1
1 st) ≈ N/σ2n for N|βm|2 Jnr � 1 and

N|βm|2 Jnr� 1. As a result we have for N|βm|2 Jnr� 1

TS(m)m=nk =
(
σ2J +

σ2n
N

)
N|β|2

σ2n
(
1 + |β|2) − 1

≈ N|β|2 Jnr−1(
1 + |β|2)

≈ N|β|2 Jnr,

(41)

and for N|β|2 Jnr� 1

TS(m)m=nk =
(
σ2J + σ2n/N

)
Pout

− 1

= N
(
σ2J + σ2n/N

)

σ2n
(
1 +N Jnr−N2|β|2 Jnr2 ) − 1

≈ N2|β|2 Jnr2(
1 +N Jnr

(
1−N|β|2 Jnr ))

≈ N2|β|2 Jnr2
(1 +N Jnr)

≈ N|β|2 Jnr .

(42)

The interesting observation made here is that the quan-
tity TS(m)m=nk represents a large value, which is proportional

toN Jnr when the selected delay (m) matches with one of the
path delays (nk) regardless of howminute the value of |β|2 is.
It will now be interesting to evaluate the value of TS(m) for
a mismatch (i.e., TS(m)m �=nk ). Let us consider the case where
m �= nk for any k. Then (13) has the following format:

R =
(
σ2J sts

H
t + R1 0

0 σ2J sts
H
t + R1

)
=
(
Rx 0

0 Rx

)
. (43)

(Note that in this case, the signal subspace consists of the base
vectors (sTt ,oT)T , (oT , s

T
t )T , (sTm,o

T)T , (oT , sTm)
T , and other

linearly independent vectors such as (oT , sTk )
T , (sTk ,o

T)T ,
k = 1, 2, . . . ,K , arising from other TSI paths and (oT , ŝTk )

T ,
(ŝTk ,o

T)T , k = 1, 2, . . . ,Q, due to other sidelobe jammers.)
The output power at the processor is given by

wHRw = wH
1 R1w1 +wH

2 R1w2

+ σ2J w
H
1 sts

H
t w

+
1 σ

2
J w

H
2 sts

H
t w2.

(44)

The minimisation of power subject to the same constraints
(as applied to (15)), leads to the following solution:

w1 = R−11 st(
sHt R

−1
1 st

) ,

w2 = oN×1.
(45)
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Figure 1: Processing gain for two solutions versus the theoretical
prediction.

In this case we have the following expression for the pro-
cessor output power:

Pout = wHRw

= wH
1 Rw1 + σ2J w

H
1 sts

H
t w1

= (sHt R−11 st
)−1

+ σ2J .

(46)

Substituting this expression in (34) leads to

TS(m)m �=nk =
(
sHt R−1x st

)−1
(
sHt R

−1
1 st

)−1
+ σ2J

− 1 ≡ 0 (47)

using (39). The most important fact here is that we do not
have to assume the simple case of a mainlobe jammer and
one TSI path to prove that this quantity is zero. The TSI
finder spectrum has the following properties:

TS(m) =
⎧⎨
⎩
N|β|2 Jnr, m = nk,

0, m �= nk.
(48)

The TSI spectrum has an almost infinite processing gain
when inverted (at least in theory), and is able to detect ex-
tremely small TSI power levels which will be shown by simu-
lation in Section 6.

6. SIMULATION

In this section we illustrate several examples using simulated
data. In the first example we have considered 800 range sam-
ples for an airborne linear equispaced array of 24 elements
with half-wavelength spacings. The transmitter is assumed
to transmit a single pulse towards a target in the 10th range
cell where (φt, θt) = (0◦, 0◦). It is assumed that the trans-
mitter does not illuminate the ground with sufficient energy
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Figure 2: TSI spectrum representing 4 TSI arrivals where 30, 80, 82,
and 84 are the time delays and the associated directions of arrivals
are (5◦, 0◦), (−30◦, 0◦), (−32◦, 0◦), and (−34◦, 0◦). The correspond-
ing reflectivities are |β1|2 = 1/4, |β2|2 = 1/40, |β3|2 = 1/80, and
|β4|2 = 1/90, respectively.

to consider the clutter return. However, a mainlobe jammer
is present in the target direction which is 10 dB above noise
floor (Jnr = 10dB, σ2n = 1). Target power level at the re-
ceiver is 0 dB. Mainlobe jammer is assumed to produce 4 TSI
paths where (5◦, 0◦), (−30◦, 0◦), (−32◦, 0◦), (−34◦, 0◦) rep-
resent the directions of arrivals, and the associated path de-
lays are 30, 80, 82, 84, respectively. This represents a scenario
where the last three arrivals occur in a cluster. The associ-
ated power ratios are given by |βk|2 (k = 1, 2, 3, 4), where
|β1|2 is treated as a variable and |β2|2 = 1/40, |β3|2 = 1/80,
|β4|2 = 1/90 are fixed. The estimated signal processing gain
using simulated output data (= σ2n/(w

HRw)) and the the-
oretical prediction P̃G ≈ N|β1|2/(1 + |β1|2) of (33) is illus-
trated in Figure 1. Highest predicted value for the processing
gain (≈ 10 log10(N/2)) is achieved when the reflectivity co-
efficient |β1|2 is close to 1.0 as predicted by the theory. The
processing gain may further be reduced when the sidelobe
jammers are present. The TSI spectrum (10 log10(Ts(m))) al-
ways picks up the correct time lags. A typical TSI spectrum
when |β1|2 = 0.25 is illustrated in Figure 2. Figure 3 shows
the MPDR-based space fast-time processor outputs for the
first 100 range cells. Furthermore, the same plot displays the
results of the usual spatial beamformer where we simply in-
vert the N × N measured covariance matrix to obtain the
array weights. In this case, as predicted, the processor out-
put reproduces the stream of random numbers used in sim-
ulating the mainlobe jammer (i.e., j(r)) where E{| j(r)|2} =
10 dB.

In a second example, we would like to simulate a more
realistic TSI scenario by assuming that all TSI paths are re-
flected off the ground by changing their directions of arrival
from the set (5◦, 0◦), (−30◦, 0◦), (−32◦, 0◦), (−34◦, 0◦) to
(5◦,−10◦), (−30◦,−15◦), (−32◦,−20◦), (−34◦,−25◦). The
mainlobe jammer power is increased from 10 dB to 30 dB.
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Figure 3: The processor output for two methods and the usual spa-
tial beamformer in the first 100 range cells. The target resides in the
10th-range cell.

Furthermore, (1) is altered to generate 16 coherent pulses us-
ing

xm(r) = αtδ
(
r − r0

)
s
(
φt, θt

)
exp

(
j2π fdmT

)
+ jm(r)s

(
φt, θt

)

+
k=K∑
k=1

βk jm
(
r − nk

)
s
(
φk, θk

)
+ εr,m,

(49)

where m = 0, 1, 2, . . . ,M − 1 represent M(= 16) coherent
pulses, jm(r) is a random function, εm,t is aN×1 column vec-
tor containing independent and identical Gaussian random
numbers with unit variance and zero mean, T is the pulse
repetition interval, and fd is the target Doppler. T = 10−4

and fd = 12/(MT) are the values used in the simulation. All
other parameters remain as in the previous example. In this
example the plot of the TSI finder has been further improved
due to the fact that 16 times more data was available when
averaging the outer products to form the TSI finder. This is
clearly seen in Figure 4. The STAP processor output is passed
through a digital FFT processor to achieve further processing
gain ofM(= 12 dB) as seen in Figure 5. The target in the 10th
range cell has been enhanced considerably in comparison to
the single pulse output shown earlier.

6.1. The effect of taps

As we interrogate the rth range cell for targets in the pres-
ence of a mainlobe jammer, we would like the proposed TSI
finder to determine the exact time delay so as to form the
2N × 1 space fast-time data snapshot at each range. For the
example in Figure 4, one would use (r + 30)th-range cell
data to form the space fast-time snapshot. However, in prac-
tice, we may use several range returns to form the STAP
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Figure 4: Improved TSI spectrum using 800 × 16 range samples.
Correct delay points are detected at 30, 80, 82, and 84.
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Figure 5: Output of the space fast-time adaptive processor (MPDR)
for the 13th Doppler bin as a function of range for the first 100 range
cells.

processor. For instance, it is advisable to form a 4N × 1
(or larger) snapshot by incorporating r, r +29, r +30, r +31.
This will increase the order of the space fast-time covari-
ance matrix to 4N × 4N at the STAP processor, and hence
the computational complexity by several orders (approxi-
mately 8 times), but it secures the inclusion of the TSI into
the STAP processor. In order to demonstrate this invariance
to the number of taps being used at the processor (provided
that at least one TSI is included in the selected set), we have
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Figure 6: Output of the space fast-time adaptive processor (MPDR)
for the 13th Doppler bin as a function of range.

repeated the result in Figure 5 with 2 taps and 4 taps. The
outputs are displayed in Figure 6 which clearly shows that
the number of taps are not relevant. In fact this result can
be further verified theoretically as well. It should also be
noted that when higher-order snapshots are formed at the
processor, then one would obtain the corresponding 4N × 1
space fast-time weights vector by minimising wHRw sub-
ject to wH(sTt ,oT ,oT ,oT)T = 1, wH(oT , sTt ,oT ,oT)T = 0,
wH(oT ,oT , sTt ,oT)T = 0, wH(oT ,oT ,oT , sTt )T = 0. A similar
argument holds for the subspace-based solution as well.

7. APPLICATION TO CLUTTER

In airborne look down applications where the clutter return
is significant, we need to apply the space fast-time slow-time
adaptive processing which is equivalent to stacking two con-
ventional STAP (i.e., space slow-time adaptive processors)
processors provided one has the knowledge of the TSI finder
to select the best fast-time delay. The TSI finder described
in this study uses the 2N × 2N space fast-time covariance
matrix with jammers only. For HPRF radar one can convert
the data into frequency domain and discard the Doppler bins
that contain clutter energy. Using the data in the frequency
domain corresponding to all the clutter-free Doppler bins,
one can estimate the jammer-only covariance matrix very ac-
curately [9] and form the TSI finder as in (34). For LPRF and
MPRF radars, the computation of the clutter-free covariance
matrix is not always straightforward and these complexities
are beyond the scope of this study.

8. CONCLUSION

The TSI finder introduced in this study is a highly accurate
process to find very small power levels and associated time

delays by forming a series of 2N × 2N covariance matrices.
Finding the time delay corresponding to the highest point of
the TSI spectrum almost always provides the best lag, which
corresponds to the most powerful TSI available. However the
achievable signal processing gain of the final output is deter-
mined by the power level of this TSI path. The eigenvector-
based approach seems to perform marginally better than
MPDR but at a higher computational cost (80% or more).
The advantage of the use of the subspace technique is that it
produces around 0.4 dB additional processing gain in almost
all the cases simulated (as predicted in Figure 1). By formu-
lating a suitable threshold detector on the TSI finder we can
automate the process of attempting to null mainlobe jammer
whenever a sufficiently powerful TSI is available. At all other
times the process does not have to go into the space fast-time
mode unnecessarily.

APPENDIX

From (18), we have

βmwH
2 sm

= βm

[
−βmσ2J R−11 sm + βmσ

2
J

(
sHt R

−1
1 sm

sHt R
−1
1 st

)
R−11 st

]H

sm

= −∣∣βm
∣∣2σ2J sHmR−11 sm +

∣∣βm
∣∣2σ2J

∣∣sHt R−11 sm
∣∣2

sHt R
−1
1 st

.

(A.1)

Now further simplification of (A.1) using (25) leads to

1 + βmwH
2 sm = 1−

∣∣βm
∣∣2σ2J N

σ2n +N
∣∣βm

∣∣2σ2J
+

∣∣βm
∣∣2σ2J

∣∣sHt R−11 sm
∣∣2

sHt R
−1
1 st

= σ2n
σ2n +N

∣∣βm
∣∣2σ2J

+

∣∣βm
∣∣2σ2J

∣∣sHt R−11 sm
∣∣2

sHt R
−1
1 st

,

(A.2)

where the second term on the right-hand side can be simpli-
fied using (26), (27) and finally assuming N|βm|2 Jnr � 1
(i.e., 1 +N|βm|2 Jnr ≈ N|βm|2 Jnr) as follows:
∣∣βm

∣∣2σ2J
∣∣sHt R−11 sm

∣∣2
sHt R

−1
1 st

=
∣∣βm

∣∣2σ2J
∣∣sHmst

∣∣2
(
N/σ2n

)(
σ2n +N

∣∣βm
∣∣2σ2J

)2 =
∣∣βm

∣∣2∣∣sHmst
∣∣2 Jnr

N
(
1 +N

∣∣βm
∣∣2 Jnr)2

≈
∣∣sHmst

∣∣2/N2

(
N
∣∣βm

∣∣2 Jnr) ≈ 0 for N
∣∣βm

∣∣2 Jnr� 1,

∣∣βm
∣∣2σ2J

∣∣sHt R−11 sm
∣∣2

sHt R
−1
1 st

=
∣∣βm

∣∣2∣∣sHmst
∣∣2 Jnr

N
(
1 +N

∣∣βm
∣∣2 Jnr)2 ≈

∣∣βm
∣∣2∣∣sHmst

∣∣2 Jnr
N

= (N∣∣βm
∣∣2 Jnr )

∣∣sHmst
∣∣2

N2
≈ 0 for N

∣∣βm
∣∣2 Jnr� 1.

(A.3)
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As a result we have

∣∣1 + βmwH
2 ss
∣∣2

≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1(
N
∣∣βm

∣∣2 Jnr)2 for N
∣∣βm

∣∣2 Jnr�1,

1− 2N
∣∣βm

∣∣2 Jnr for N
∣∣βm

∣∣2 Jnr�1.

(A.4)

The final term of the power output at the processor, that
is, σ2n(w

H
1 w1 +wH

2 w2) = σ2n‖w‖2 can be approximated as fol-
lows.

Using (17) and (27), we have

wH
1 w1 =

(
R−11 st

sHt R
−1
1 st

)H(
R−11 st

sHt R
−1
1 st

)

≈ σ4n
N2

(
R−11 st

)H(
R−11 st

)
.

(A.5)

Substituting (23) and sHt st = N in the above expres-
sion and noting that 1 + N|βm|2 Jnr ≈ N|βm|2 Jnr (i.e.,
N|βm|2 Jnr� 1), we get

wH
1 w1

≈ σ4n
N2

· 1
σ4n

{
N− 2σ2J

∣∣βm
∣∣2∣∣sHt sm

∣∣2
(
σ2n +N

∣∣βm
∣∣2σ2J

) +
σ4J
∣∣βm

∣∣4∣∣sHt sm
∣∣2N(

σ2n +N
∣∣βm

∣∣2σ2J
)2
}

=
{
1
N
− 2
∣∣βm

∣∣2 Jnr∣∣sHt sm
∣∣2/N2

(
1 +N

∣∣βm
∣∣2 Jnr ) +

∣∣βm
∣∣4 Jnr2 ∣∣sHt sm

∣∣2/N(
1 +N

∣∣βm
∣∣2 Jnr )2

}

≈ 1
N
−
∣∣sHt sm

∣∣2
N3

≈ 1
N

(
for N

∣∣βm
∣∣2 Jnr� 1

)
.

(A.6)

For 1 +N|βm|2 Jnr ≈ 1, we have

wH
1 w1

≈
{
1
N
− 2

∣∣βm
∣∣2 Jnr∣∣sHt sm

∣∣2
N2

+

∣∣βm
∣∣4 Jnr2 ∣∣sHt sm

∣∣2
N

}

=
{
1
N
− 2N

∣∣βm
∣∣2 Jnr∣∣sHt sm

∣∣2
N3

+

(
N
∣∣βm

∣∣2 Jnr )2∣∣sHt sm
∣∣2

N3

}

≈ 1
N
.

(A.7)

From (18), we have

wH
2 w2 =

∣∣βm
∣∣2σ4J

[
−R−11 sm +

(
sHt R

−1
1 sm

sHt R
−1
1 st

)
R−11 st

]H[
−R−11 sm +

(
sHt R

−1
1 sm

sHt R
−1
1 st

)
R−11 st

]
. (A.8)

The dominant term in the expression for wH
2 w2 is given

by the first term inside the bracket involving R−11 sm, which
can be simplified using (24) as

wH
2 w2 ≈

∣∣βm
∣∣2σ4J

(
R−11 sm

)H(
R−11 sm

)

=
∣∣βm

∣∣2σ4J N(
σ2n +N

∣∣βm
∣∣2σ2J

)2

=
∣∣βm

∣∣2N Jnr2(
1 +N

∣∣βm
∣∣2 Jnr )2

≈ 1

N
∣∣βm

∣∣2

(A.9)

for N|βm|2 Jnr� 1.
The final expression is

wH
2 w2 ≈

⎧⎪⎪⎨
⎪⎪⎩

1

N
∣∣βm

∣∣2 for N
∣∣βm

∣∣2 Jnr� 1,

N
∣∣βm

∣∣2 Jnr2 for N
∣∣βm

∣∣2 Jnr� 1.

(A.10)

We can show that the contributions arising from the
three other terms in (A.8) are negligible as follows. The

second term in the brackets of (A.8) contains the term
(sHt R

−1
1 sm/sHt R

−1
1 st)R−11 st, the square of which after substi-

tuting (26) and (27) takes the following form:

∣∣βm
∣∣2σ4J

∣∣∣∣ s
H
t R

−1
1 sm

sHt R
−1
1 st

∣∣∣∣
2∥∥R−11 st

∥∥2

=
∣∣βm

∣∣2σ4nσ4J
∣∣sHt sm

∣∣2/N2

(
σ2n +N

∣∣βm
∣∣2σ2J

)2
∥∥R−11 st

∥∥2,
(A.11)

where, from (23),

∥∥R−11 st
∥∥2

= 1
σ4n

(
st −

σ2J
∣∣βm

∣∣2smsHmst
σ2n +N

∣∣βm
∣∣2σ2J

)H(
st −

σ2J
∣∣βm

∣∣2smsHmst
σ2n +N

∣∣βm
∣∣2σ2J

)

= 1
σ4n

(
N − 2

∣∣βm
∣∣2 Jnr∣∣sHmst

∣∣2
1 +N

∣∣βm
∣∣2 Jnr +

∣∣βm
∣∣4N Jnr2

∣∣sHmst
∣∣2

(
1 +N

∣∣βm
∣∣2 Jnr )2

)
.

(A.12)
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Simplifying the above expression and finally substitut-
ing 1 + N|βm|2 Jnr ≈ N|βm|2 Jnr we have ‖R−11 st‖2 ≈
(N/σ4n)(1− |sHt sm|2/N2) ≈ N/σ4n . On the other hand, for
N|βm|2 Jnr� 1, we have
∥∥R−11 st

∥∥2

≈ N

σ4n

(
1− 2

∣∣βm
∣∣2∣∣sHt sm

∣∣2 Jnr
N

+
∣∣βm

∣∣4∣∣sHt sm
∣∣2 Jnr2

)

≈ N

σ4n

(
1− 2

(
N
∣∣βm

∣∣2 Jnr )
∣∣sHt sm

∣∣2
N2

+
(
N
∣∣βm

∣∣2 Jnr )2
∣∣sHt sm

∣∣2
N2

)

≈ N

σ4n
.

(A.13)

Back substitution of these expressions in (A.11) and the
use of 1 +N|βm|2 Jnr ≈ N|βm|2 Jnr leads to the expression
∣∣βm

∣∣2σ4J
∣∣sHt R−11 sm/sHt R

−1
1 st

∣∣2∥∥R−11 st
∥∥2

=
∣∣βm

∣∣2 Jnr2 ∣∣sHt sm
∣∣2

N
(
1 +N

∣∣βm
∣∣2 Jnr )2

≈
∣∣sHt sm

∣∣2/N2

N
∣∣βm

∣∣2 ≈ 0 for N
∣∣βm

∣∣2 Jnr� 1,

(A.14)

and for N|βm|2 Jnr� 1, we have
∣∣βm

∣∣2 Jnr2 ∣∣sHt sm
∣∣2

N
(
1 +N

∣∣βm
∣∣2 Jnr )2

≈
∣∣βm

∣∣2 Jnr2 ∣∣sHt sm
∣∣2

N
≈ (N∣∣βm

∣∣2 Jnr2)
∣∣sHt sm

∣∣2
N2

≈ 0.

(A.15)

The third contribution in (A.8) is given by (sum of two
terms):

− 2Re

{
σ4J
∣∣βm

∣∣2(sHmR−11 st
)(
sHt R

−1
1 R−11 sm

)
(
sHt R

−1
1 st

)
}

= 2
∣∣βm

∣∣2 Jnr2 ∣∣sHmst
∣∣2

N
(
1 +N

∣∣βm
∣∣2 Jnr )3 .

(A.16)

(Note that replacing (sHt R
−1
1 st) by the approximation N/σ2n

and with the use of (23), (24), and (26) in (A.16), we arrive
at the expression on the right-hand side of (A.16).)

In fact after applying the approximation 1+N|βm|2 Jnr ≈
N|βm|2 Jnr or 1 + N|βm|2 Jnr ≈ 1, we can conclude that
the right-hand side of (A.16) is approximately equal to zero.
From (A.6) and (A.10), the final expression for σ2n‖w‖2 is
given by (combining (A.6) and (A.10))

σ2n‖w‖2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ2n

(
1
N

+
1

N
∣∣βm

∣∣2
)

for N
∣∣βm

∣∣2 Jnr� 1,

σ2n

(
1
N

+N
∣∣βm

∣∣2 Jnr2
)

for N
∣∣βm

∣∣2 Jnr� 1.

(A.17)
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