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Geometric Properties of Grassmannian Frames forR2 andR3
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Grassmannian frames are frames satisfying a min-max correlation criterion. We translate a geometrically intuitive approach for
two- and three-dimensional Euclidean space (R2 andR3) into a new analytic method which is used to classify many Grassmannian
frames in this setting. The method and associated algorithm decrease the maximum frame correlation, and hence give rise to the
construction of specific examples of Grassmannian frames. Many of the results are known by other techniques, and even more
generally, so that this paper can be viewed as tutorial. However, our analytic method is presented with the goal of developing
it to address unresovled problems in d-dimensional Hilbert spaces which serve as a setting for spherical codes, erasure channel
modeling, and other aspects of communications theory.
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1. INTRODUCTION

A finite frame {xk}Nk=1 ⊆ Rd, Rd is d-dimensional Euclidean
space, is characterized by the property that its span is Rd, see
[1]. The norm ‖x‖ of x ∈ Rd is the usual Euclidean distance.
Given a finite frame forRd withN elements, we would like to
measure the correlation between frame elements and in par-
ticular to decide when the correlation is small. We consider
the following metric which is similar to an �∞ norm [2].

Definition 1. Let N ≥ d and let XN
d = {xk}Nk=1 be a subset

of Rd with each ‖xk‖ = 1. The maximum correlation of XN
d ,

M∞(XN
d ), is defined as

M∞
(
XN
d

)
= max

k �=l

∣∣〈xk, xl
〉∣∣. (1)

Note that because we consider the absolute value of the
inner product rather than just the inner product, if the an-
gle between a pair of vectors is closer to 90◦, then the pair
is less correlated, while if the angle is closer to 0◦ or 180◦,
then the pair is more correlated. Thus, we are measuring the
smaller angle between the lines (one-dimensional subspaces)
spanned by these vectors. We could instead consider an �1-,
�2-, or �p-type norm to measure correlation, that is,

Mp

(
XN
d

)
=
(∑

k �=l

∣∣〈xk, xl
〉∣∣p

)1/p

, (2)

or even weighted versions of (2). (See [3] for a discussion of
the case p = 1, 2.)

Fix d and N with N ≥ d. Our goal is to construct
N-element unit-norm frames, XN

d , with smallest maximum

correlation, M∞(XN
d ), that is, unit-norm frames that are

maximally spread apart. To this end, we make the following
definition.

Definition 2. Let N ≥ d. A sequence UN
d = {uk}Nk=1 ⊆ Rd of

unit-norm vectors is an (N ,d)-Grassmannian frame if it is a
frame and if

M∞
(
UN

d

)
= inf

{
M∞

(
XN
d

)}
, (3)

where the infimum is taken over all unit-norm, N-element
frames for Rd.

A compactness argument shows that Grassmannian
frames exist (see Appendix A), but constructing Grassman-
nian frames is challenging [4–6]. As is described in [2], the
concept of Grassmannian frames is related to several other
areas of mathematics and engineering, for example, packings
in Grassmannian spaces, spherical codes and designs, the
construction of equiangular lines, strongly regular graphs,
and reduction of losses associated with packet-based com-
munications systems such as the Internet, [7–9].

In this paper, we give an analytic construction of Grass-
mannian frames in Rd, when d = 2, 3. The first treatment of
this construction problem in the case d = 3 is found in [10].
There are extensive computational and theoretical results in
[4] which approach this construction problem from a sphere
packing point of view. The relevance of such constructions
was brought to the attention of the frame community in [2].

After stating some technical preliminaries in Section 2,
we characterize all (N , 2)-Grassmannian frames in Section 3.
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In Section 4, we state and prove a modest generalization of
a theorem, given in [2], which provides a lower bound for
M∞(XN

d ). Section 5 is devoted to the construction of (4, 3)-
Grassmannian frames from first principles rather than us-
ing the theorem in Section 4. Convexity arguments are used
in Section 6 to construct examples of (5, 3)-Grassmannian
frames. In Section 7, we construct a (6, 3)-Grassmannian
frame using the theorem in Section 4. The techniques used
in the constructions of Sections 5, 6, and 7 were developed in
part to fathom the geometrical ideas of Fejes Tóth [10].

Our presentation is technical and, we believe, necessar-
ily so. Some of the technicalities are routine, but they are
included since going from one step to the next without ex-
hibiting them sometimes seemed mysterious. On the other
hand, some of our techniques may very well be useful in de-
veloping more general methods of finding frames with small
correlations in applicable complex and higher-dimensional
settings. For example, see the new techniques used in prov-
ing Propositions 2 and 3 and Lemmas 4 and 5. Our notation
is standard, but we do mention that “ =⇒ ” means “implies”
and “⇐⇒ ” means “if and only if”.

2. PRELIMINARIES

In this section, we collect some definitions and theorems
used in the sequel.

The transpose of a vector or matrix A is denoted by AT ;
and the Hermitian transpose of a vector or matrix B with
complex entries is denoted by B∗, the conjugate transpose

of B, that is, B∗ = B
T
. A d × d matrix U with real entries

is orthogonal if the columns of U are orthonormal, that is,
UTU = Id, whereUT is the transpose ofU and Id is the d×d
identity matrix. IfU is orthogonal, that is,U ∈ SOd, then for
any x, y ∈ Rd, ‖Ux‖ = ‖x‖ and 〈Ux,Uy〉 = 〈x, y〉.

The torus is T2π = R/(2πZ). We take any fixed half-open
interval of length 2π to be a representative of T2π .

The unit sphere in Rd is Sd−1 = {x ∈ Rd : ‖x‖ = 1}. A set
{x1, . . . , xN} of unit-norm vectors is equiangular if there is an
α ∈ [0, 1] such that |〈xk, xl〉| = α when k �= l.

A d×dmatrix A with real entries is symmetric if AT = A.
The spectral theorem for symmetric matrices is the fol-

lowing, see [11]. We use it in Theorem 3.

Theorem 1 (spectral theorem). A d × d symmetric matrix A
over R has the following properties.

(i) A has d real eigenvalues counting multiplicities.
(ii) The dimension of the eigenspace for each eigenvalue λ
equals the multiplicity of λ as a root of the characteristic
equation det(A− λI) = 0.
(iii) The eigenspaces are mutually orthogonal in the sense
that eigenvectors corresponding to different eigenvalues
are orthogonal.
(iv) A is orthogonally diagonalizable, that is, there is an
orthonormal basis of eigenvectors for A.

Wenow state some basic definitions of frame theory [1, 3,
12–14]. LetH be a separable Hilbert space, and let X = {xn :
n ∈ I} ⊂ H , where I is a countable indexing set. Consider

the following map associated with the set X :

L :H −→ �2(I),

y �−→ {〈
y, xn

〉}
n∈I.

(4)

If L is a well-defined linear map, that is, if
∑

n∈I |〈y, xn〉|2 <
∞ for any y ∈ H , then L is a Bessel map and X is a Bessel
sequence. The adjoint of L is the map

L∗ : �2(I) −→H ,

{c[n]}n∈I �−→
∑

n∈I
c[n]xn.

(5)

If L is a Bessel map, the corresponding frame operator is the
map S :H →H defined as L∗L. Thus, for any y ∈H ,

S(y) = L∗
(
L(y)

) =
∑

n∈I

〈
y, xn

〉
xn. (6)

As such y = ∑
n∈I〈y, xn〉S−1xn. The Grammian operator is

the map G : �2(I) → �2(I) defined as G = LL∗. Both S and
G are positive and hence selfadjoint operators.

A Bessel sequence X is a frame for H if there exist con-
stants A, B with 0 < A ≤ B <∞ such that, for any y ∈H ,

A‖y‖2 ≤
∑

n∈I

∣∣〈y, xn
〉∣∣2 ≤ B‖y‖2. (7)

Thus, given any frame, we have four natural maps: L, L∗, S,
and G. If the indexing set I is finite, then X is called a finite
frame. Also, if A = B, then X is called a tight frame or, if we
wish to emphasize the bound, an A-tight frame.

Throughout this paper, we will use that fact that any fi-
nite set of vectors forms a frame for its span with the frame
bounds being the largest and smallest eigenvalues of the
frame operator. Since any finite set of vectors automatically
has an upper frame bound by Cauchy-Schwarz, the fact that
any finite set is a frame for its span is a consequence of the
following result.

Proposition 1. The following three statements are equivalent:

(i) {xn}Nn=1 is a frame for Rd;
(ii) span{xn}Nn=1 = Rd;
(iii) there exists A > 0 such that for all y ∈ Rd,

A‖y‖2 ≤
N∑

n=1

∣∣〈y, xn
〉∣∣2. (8)

3. TWO-DIMENSIONAL GRASSMANNIAN FRAMES

We classify all (N , 2)-Grassmannian frames. The idea for the
following proof is illustrated in Figure 1. In fact, in order to
maximize the minimum angle between pairs of vectors, the
vectors must be equally spaced.

Theorem 2 ((N , 2)-Grassmannian). Let X = XN
2 = {xk}Nk=1

be a collection ofN unit vectors inR2. Then the following lower
bound holds:

cos
(
π

N

)
≤M∞(X). (9)
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Figure 1: An example of the reordering induced by the inequalities
on the inner products in (11) for N = 6.

Furthermore, X is an (N , 2)-Grassmannian frame if and only if
there are P ∈ SO2 and a sequence {εk}Nk=1 ⊂ {±1}N such that

P(εX) := {
P
(
εkxk

)
: xk ∈ XN

2

}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎝
cos

(
πk

N

)

sin
(
πk

N

)

⎞
⎟⎟⎠ : k = 1, . . . ,N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

(10)

Proof. Let δ1 = (1, 0)T and let δ2 = (0, 1)T . Since |〈x, y〉| =
|〈x,−y〉|, we note that changing the sign of any xk ∈ X does
not effect the value ofM∞(X). Thus, by changing the sign on
xk when necessary, we may assume xk ∈ {v ∈ S1 : 〈v, δ2〉 ≥
0}. Also, since rotations preserve inner products, applying a
rotation to all the vectors in X does not effectM∞(X). Thus,
rotating by −φ, where φ = mink=1,...,N cos−1(〈xk, δ1〉), and
reordering if necessary, we may assume x1 = δ1 = (1, 0)T ,
and

1 ≥ 〈
x2, x1

〉 ≥ 〈
x3, x1

〉 ≥ · · · ≥ 〈
xN , x1

〉 ≥ −1. (11)

For k = 1, . . . ,N − 1, let θk be the angle between
xk and xk+1, and let θN be the angle between xN and the
negative x-axis, that is, θk = cos−1(〈xk+1, xk〉) and θN =
cos−1(〈−δ1, xN〉), see Figure 1 for an example when N = 6.
Then, because of the above reordering, θk ≥ 0 for k =
1, . . . ,N , and

∑N
k=1 θk = π. Thus, for 1 ≤ l < k ≤ N ,

∣∣〈xk, xl
〉∣∣ =

∣∣∣∣∣ cos
( k−1∑

j=l
θ j

)∣∣∣∣∣, (12)

where

min
k=1,...,N−1

θk ≤
k−1∑

j=l
θ j ≤ π − θN . (13)

Furthermore, | cos(θ)| has amaximum on [0,π] at θ = 0 and
θ = π, and | cos(θ)| is monotone decreasing on [0,π/2] and

monotone increasing on [π/2,π]. Hence,

M∞(X)

= max
k �=l

∣∣∣∣∣ cos
( k−1∑

j=l
θ j

)∣∣∣∣∣

= max
{∣∣ cos (π − θN

)∣∣,
∣∣∣∣ cos

(
min

k=1,...,N−1
θk

)∣∣∣∣
}

=
∣∣∣∣ cos

(
min

k=1,...,N
θk

)∣∣∣∣.

(14)

Therefore, in order to minimizeM∞(X), we must choose
N positive numbers α1, . . . ,αN which sum to π and which
minimize | cos(mink=1,...,N αk)|, and hence which maximize
the expression

min
k=1,...,N

αk. (15)

Now we claim that if α1, . . . ,αN maximize (15), then α1 =
· · · = αN . We prove this implication by contraposition, that
is, assume it is not the case that α1 = · · · = αN . Then there is
an m ∈ {1, 2, . . . ,N − 1} so that if we list α1 ≤ · · · ≤ αN by
size, then only the firstm is equal, and the (m+1)th is strictly
larger than themth, that is,

αk1 = αk2 = · · · = αkm < αkm+1 ≤ · · · ≤ αkN . (16)

Let ν = αkm+1 −αkm and, for j = 1, . . . ,N , define the sequence
βkj as

βkj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αkj +
ν

2m
for j = 1, . . . ,m,

αkj −
ν

2
for j = m + 1,

αkj for j = m + 2, . . . ,N.

(17)

Now the new set,

βk1 = βk2 = · · · = βkm ≤ βkm+1 ≤ · · · ≤ βkN , (18)

has a strictly larger minimum angle than the original since
for j = 1, . . . ,N ,

min
k=1,...,N

αk = αk1 < αk1 +
ν

2m
= βk1 ≤ βj . (19)

We see that the original αs do not maximize (15). So by
contraposition we have that if the αs maximize (15), then
they must all be equal. Finally, if α is the common value,
then

∑N
k=1 αk = Nα = π, and therefore α = π/N . Thus,

π/N ≥ mink=1,...,N θK , and therefore

cos
(
π

N

)
≤ cos

(
min

k=1,...,N
θK

)
=M∞(X). (20)

Next we prove that any (N , 2)-Grassmannian frame is, up
to a sign change, the firstN adjacent vertices of a regular 2N-
gon. If X is an (N , 2)-Grassmannian frame, then, using the
above argument, we see that we can choose {εk} ⊂ {±1}N
and P ∈ SO2 so that the frame

P(εX) = {
P
(
εkxk

)
: xk ∈ X

}
(21)
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is in the closed upper half-plane with one of the vectors being
(1, 0)T ; and

M∞(X) =M∞
(
P(εX)

) = cos
(

min
k=1,...,N

θk

)
, (22)

where θk is the angle between the kth and (k + 1)th adja-
cent vectors in P(εX) (reindexing may be necessary). Since
an (N , 2)-Grassmannian frame minimizes the∞-correlation
M∞(X), the above argument also shows that θ1 = · · · =
θN = π/N . Therefore, the angle between adjacent vectors in
P(εX) is π/N , and we have proved the forward direction of
the equivalence.

To show the reverse implication, we note that if

P(εX) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎝
cos

(
πk

N

)

sin
(
πk

N

)

⎞
⎟⎟⎠ : k = 1, . . . ,N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (23)

then

M∞(X) =M∞
(
P(εX)

)

= cos
(

min
k=1,...,N

θk

)
= cos

(
π

N

)
.

(24)

Hence, X is (N , 2)-Grassmannian since it achieves the lower
bound.

Notice that for N odd, if we change the sign on the Nth
roots of unity below the real axis, then we obtain the frame
described in the above claim with εk = 1, that is, with all
vectors in the upper half-plane, and a common angle of π/N
between adjacent vectors. Hence, for N odd, the Nth roots
of unity are (N , 2)-Grassmannian. Furthermore, for N even,
the Nth roots of unity do not form an (N , 2)-Grassmannian
frame because ζ and −ζ are both Nth roots. If we identify ζ
and −ζ , then we obtain an (N/2, 2)-Grassmannian frame.

4. A LOWER BOUND FORM∞

It is more difficult to construct a Grassmannian frame in R3

for N > 3 than in R2. Thus, we first derive a lower bound
for the maximum correlation between frame elements of an
N-element frame for Rd, see [2, 15] for superb treatments,
although we have felt compelled to spell out all details. Such
lower bounds are useful in coding theory [16], and we first
learned of them in [2].

The proofs of the following lemma and theorem are
found in Appendix B.

Lemma 1. Let Hn be the n × n matrix with 1 on the main
diagonal and β elsewhere, and letCn be the n×nmatrix defined
by

[
Cn
]
i, j =

⎧⎨
⎩
β, if (i, j) = (1, 1),[
Hn
]
i, j , otherwise,

(25)

where [Hn]i, j is the (i, j)th entry of the matrix Hn. Then

det
(
Hn
) = (

1 + (n− 1)β
)
(1− β)n−1,

det
(
Cn
) = β(1− β)n−1.

(26)
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Figure 2: The function f (x) = cos2(π/x) − (x − 2)/(2(x − 1)) on
[2, 70].

Theorem3. LetN ≥ d, letXN
d be anN-element subset of Sd−1,

and let d0 = dim(span(XN
d )). Then

M∞
(
XN
d

) ≥
√

N − d0
d0(N − 1)

, (27)

where equality holds in (27) if and only if

(a) XN
d is equiangular,

(b) XN
d is a tight frame for its span with frame bounds

A = B = N/d0.

Furthermore, if N > (d(d + 1))/2, then XN
d is not equiangular,

hence equality cannot hold in (27).

Remark. Theorem 2 shows thatM∞(XN
2 ) ≥ cos(π/N), while

Theorem 3 shows M∞(XN
2 ) ≥

√
(N − 2)/(2(N − 1)). Using

standard calculus techniques, we can show that the equal-
ity in Theorem 2 is an improvement over the bound in
Theorem 3 for all N > 3. Let

f (x) = cos2
(
π

x

)
− x − 2

2(x − 1)
(28)

(see Figure 2), so that

f ′(x) = π

x2
sin

(
2π
x

)
− 1

2(x − 1)2
,

f ′′(x) = −2π
x3

(
π

x
cos

(
2π
x

)
+ sin

(
2π
x

))
+

1
(x − 1)3

.

(29)

Hence,

f ′(x) > 0 ⇐⇒ sin
(
2π
x

)
>

1
2π

(
x

x − 1

)2
. (30)

For x ∈ [3, 6],

sin
(
2π
x

)
≥
√
3
2
≥ 9

8π
≥ 1

2π

(
x

x − 1

)2
, (31)

and so f (x) is increasing for x ∈ [3, 6], and since f (3) =
0, we have that f (x) ≥ 0 for x ∈ [3, 6]. Furthermore, for
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Table 1: Improvement of the optimal bound derived in Theorem 3
for the case of (N , 2)-Grassmannian frames.

N
Optimal bound Bound from Theorem 2

=
√

N − 2
2(N − 1)

cos
(
π

N

)

3 0.5000 0.5000
4 0.5774 0.7071
5 0.6124 0.8090
6 0.6325 0.8660
7 0.6455 0.9010
8 0.6547 0.9239
9 0.6614 0.9397
10 0.6667 0.9511

x ∈ [6,∞), 36/50π ≥ (1/2π)(x/(x − 1))2. Also, sin(2π/x) ≥
36/50π if and only if

x ≤ 2π

sin−1(36/50π)
< 27.172. (32)

Thus, f (x) is increasing for x ∈ [3, 27] and hence it is greater
than zero on that same interval. We also note that for x > 1,

1
2π

<
1
2π

(
x

x − 1

)2
. (33)

Further, sin(2π/x) ≤ 1/2π when

x ≥ 2π

sin−1(1/2π)
> 39.310. (34)

Hence, f is decreasing on the interval [40,∞), and since
limx→∞ f (x) = 1/2, we have that f (x) > 1/2 for x ∈ [40,∞).
Finally, we check that f ′′ < 0 on the interval [27, 40] and
f (27), f (40) > 1/2; thus, f (x) > 1/2 on [27, 40]. In summary
we have shown that f (x) > 0 on (3,∞) and that f (x) > 1/2
on [27,∞). Therefore,

cos
(
π

N

)
>

√
N − 2

2(N − 1)
for N > 3, (35)

and we see that Theorem 2 is an improvement over Theorem
3 in the case d = 2, see Table 1.

In light of Theorem 3, we make the following definition.

Definition 3. Let N ,d ∈ N with d ≤ N ≤ d(d + 1)/2. Let
XN
d = {xk}Nk=1 be a frame for Rd with ‖xk‖ = 1. We call

XN
d an optimal Grassmannian frame if XN

d satisfies (27) with
equality, that is,

M∞
(
XN
d

) =
√

N − d

d(N − 1)
. (36)

In R2, since d = 2 and d(d + 1)/2 = 3, only frames with
N = 2 and N = 3 elements can be optimal Grassmannian.

Table 2: Bounds forN-element frames inR3 with potential of being
optimal Grassmannian.

N
Optimal bound Grassmannian bound

=
√

N − 3
3(N − 1)

= minM∞(XN
3 )

3 0 0
4 0.3333 0.3333
5 0.4082 0.4472
6 0.4472 0.4472

Since cos(π/2) = 0 = √
(2− 2)/2(2− 1), and cos(π/3) =

1/2 = √
(3− 2)/2(3− 1), both (2, 2)- and (3, 2)-Grass-

mannian frames are optimal. The same phenomenon does
not happen in three dimensions. Table 2 lists the Grassman-
nian bound which will be proven below and the optimal
bound for N = 3, 4, 5, 6, (the only Ns with the possibility of
being optimal). By inspecting Table 2, we notice that (5, 3)-
Grassmannian frames are not optimal, while (3, 3)-, (4, 3)-
and (6, 3)-Grassmannians are optimal.

5. (4, 3)-GRASSMANNIAN FRAMES

In this section and the next two, we will derive the bounds for
three-dimensional Grassmannian frames with N = 3, 4, 5,
and 6. First note that if N = 3, and if X is any orthonormal
basis for R3, then 0 ≤ M∞(X) = 0. Hence, any orthonor-
mal basis is Grassmannian and, in fact, X is trivially optimal
Grassmannian.

Next consider N = 4. We need the following two lemmas
which are necessary to rigorize Fejes Tóth’s ideas in [10]. In
particular, Lemma 2 is intuitively elementary when we con-
sider the fact that the �2-norm is convex, Q is convex, and C
is the set of extreme points of Q.

Lemma 2. Let a ∈ Rd and let {v1, v2, . . . , vd} ⊂ Rd. Set

Q =
{
a +

d∑

j=1
s jv j : s j ∈ [0, 1]

}
,

C =
{
a +

d∑

j=1
εjv j : εj ∈ {0, 1}

}
,

(37)

and choose c ∈ C such that ‖c‖ = max{‖cl‖ : cl ∈ C}, where
l = 1, . . . , 2d. Then, for any v ∈ Q \ C, ‖v‖ < ‖c‖.

Lemma 2 is used in the proof of Lemma 3.

Lemma 3. Let {b, y1, y2, y3} ⊂ S2. If |〈b, y1〉|, |〈b, y2〉|, and
|〈b, y3〉| are not all equal, then there is a constructible c ∈ R3

such that

max
{∣∣〈b, yk

〉∣∣ : k = 1, 2, 3
}

> max
{∣∣∣∣
〈

c

‖c‖ , yk
)∣∣∣∣ : k = 1, 2, 3

}
.

(38)

Furthermore, |〈c/‖c‖, y1〉| = |〈c/‖c‖, y2〉| = |〈c/‖c‖, y3〉|.
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Proof
Case 1. {y1, y2, y3} ⊂ S2 is linearly dependent.

Then there are a1, a2, a3 ∈ R3 with at least one (actually
two) ak �= 0 such that

a1y1 + a2y2 + a3y3 = 0. (39)

Therefore, dim(kerY) ≥ 1, where Y is a 3 × 3 matrix with
columns yj . Hence, dim(spanY) = rankY ≤ 2. We can
choose c ∈ (spanY)⊥, so that

∀k = 1, 2, 3, |〈b, yk〉| > 0 =
∣∣∣∣
〈

c

‖c‖ , yk
)∣∣∣∣, (40)

since by assumption we know that the |〈b, yk〉| cannot all be
equal, and hence cannot all equal zero.

Case 2. {y1, y2, y3} ⊂ S2 is linearly independent.
Let Y be the 3×3 matrix whose columns are yj . Then YT

is invertible. Let c1, . . . , c4 be the columns of the following
3× 4 matrix product:

[
|
c1
|

|
c2
|

|
c3
|

|
c4
|

]
= (

YT
)−1

⎡
⎢⎣
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎤
⎥⎦ , (41)

see Figure 3. Notice that

c1 =
(
YT

)−1
⎡
⎢⎣
1
1
1

⎤
⎥⎦

= (
YT

)−1
⎛
⎜⎝

⎡
⎢⎣
−1
1
1

⎤
⎥⎦ +

⎡
⎢⎣

1
−1
1

⎤
⎥⎦ +

⎡
⎢⎣

1
1
−1

⎤
⎥⎦

⎞
⎟⎠

= c2 + c3 + c4.

(42)

Let c ∈ {c1, . . . , c4} have the property that ‖c‖ =
max{‖c1‖, . . . ,‖c4‖}. We now show that this procedure of
matrix multiplication followed by taking the maximum gives
rise to a vector c ∈ R3 which satisfies the conclusion of
Lemma 3.

For j = 1, 2, 3, define vj = cj+1 − c1, and set

Q =
{
c1 +

3∑

j=1
s jv j : s j ∈ [0, 1]

}
,

C =
{
c1 +

3∑

j=1
εjv j : εj ∈ {0, 1}

}
.

(43)

Identify a point in C with a vector (ε1, ε2, ε3). For example, if
(ε1, ε2, ε3) = (1, 0, 1), then v = c1 +v1 +v3. Observe that since

2

1.5

1

0.5

0

−0.5
−1

−1.5
−2

2 1 0 −1 −2x
2

1
0
−1−2

y

−c1 −c3

−c4

c2

c1

c3

y1

c4

−c2
y2

y3

Figure 3: An example showing the points ±ck , k = 1, . . . , 4, and
their relationship to the vectors y1, y2, y3. Note, y2 lies on the plane
with vertices {c1, c2,−c3, c4}.

c1 = c2 + c3 + c4, we have the following bijection between C
and {±c1,±c2,±c3,±c4}:

(0, 0, 0)←→ c1,

(1, 0, 0)←→ c2,

(0, 1, 0)←→ c3,

(0, 0, 1)←→ c4,

(1, 1, 0)←→ −c4,
(1, 0, 1)←→ −c3,
(0, 1, 1)←→ −c2,
(1, 1, 1)←→ −c1.

(44)

In particular, ‖c‖ = max{‖c′‖ : c′ ∈ C}.
Now, if

H = {
v ∈ R3 : |〈v, yk〉| ≤ 1 for k = 1, 2, 3

}
, (45)

then Q = H . To see this, we check both containments, but
first note that (41) with j = 2 implies

YTc2 =
⎡
⎢⎣
−1
1
1

⎤
⎥⎦ =⇒

⎡
⎢⎢⎣
yT1 c2

yT2 c2

yT3 c2

⎤
⎥⎥⎦ =

⎡
⎢⎣
−1
1
1

⎤
⎥⎦ , (46)

that is, 〈y1, c2〉 = −1, 〈y2, c2〉 = 1, and 〈y3, c2〉 = 1, and
similarly for the other cj .

Q ⊂ H . Let v ∈ Q. Then

∣∣〈v, yk
〉∣∣ =

∣∣∣∣∣
〈
c1, yk

〉
+

3∑

j=1
s j
〈
vj , yk

〉
∣∣∣∣∣

=
∣∣∣∣∣1 +

3∑

j=1
s j
〈
vj , yk

〉
∣∣∣∣∣,

(47)
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whereas

〈
vj , yk

〉 = 〈
cj+1 − c1, yk

〉 =
⎧⎨
⎩
1− 1, if k = j,

−1− 1, if k �= j.
(48)

Thus, |〈vj , yk〉| = |1 − 2sk|, and so sk ∈ [0, 1] implies that
1− 2sk ∈ [−1, 0], and hence |〈vj , yk〉| ≤ 1.

H ⊂ Q. Equivalently, we prove the inclusion Qc ⊂ Hc

of complements. Let v /∈ Q. First, v1, v2, v3 are the images
of (−2, 0, 0)T , (0,−2, 0)T , (0, 0,−2)T , respectively, under the
transformation (YT)−1. Hence, {v1, v2, v3} is a basis for R3.
Thus, there are unique elements s1, s2, s3 ∈ R3 such that v −
c1 = s1v1 + s2v2 + s3v3, that is,

v = c1 + s1v1 + s2v2 + s3v3. (49)

Because of the uniqueness of the s j s, v /∈ Q implies there
is a j0 ∈ {1, 2, 3} such that s j0 /∈ [0, 1]. Now, |〈v, yj0〉| =
|1− 2s j0 |, and so s j0 /∈ [0, 1] implies

1− 2s j0 ∈ (−∞,−1)∪ (1,∞). (50)

Thus, |〈v, yj0〉| > 1, and so v /∈ H . Therefore, we have proven
H ⊂ Q.

We complete the proof of Lemma 3 as follows. For the set
{b, y1, y2, y3} ⊂ S2, let

∣∣〈b, ykb
〉∣∣ = max

{∣∣〈b, y1
〉∣∣,

∣∣〈b, y2
〉∣∣,

∣∣〈b, y3
〉∣∣}, (51)

and set λb = 〈b, ykb〉. Then, for any k = 1, 2, 3,

∣∣∣∣
〈

b

λb
, yk

)∣∣∣∣ =
∣∣〈b, yk

〉∣∣
∣∣〈b, ykb

〉∣∣ ≤
∣∣〈b, ykb

〉∣∣
∣∣〈b, ykb

〉∣∣ = 1, (52)

and so b/λb ∈ Q. Now v ∈ C implies that the elements of
{|〈v, yk〉| : k = 1, 2, 3} are all equal. By the contrapositive
of this implication, we see that the assumption that the el-
ements of {|〈b, yk〉| : k = 1, 2, 3} are not all equal implies
b/λb /∈ C. Thus, we have shown b/λb ∈ Q \ C. Therefore, by
Lemma 2, we have ‖b/λb‖ < ‖c‖; and hence b ∈ S2 implies

1∣∣λb
∣∣ =

1∣∣λb
∣∣‖b‖ =

∥∥∥∥
b

λb

∥∥∥∥ < ‖c‖. (53)

We conclude that

max
{∣∣〈b, yk

〉∣∣ : k = 1, 2, 3
} = |λb|

>
1
‖c‖ = max

{∣∣∣∣
〈

c

‖c‖ , yk
)∣∣∣∣ : k = 1, 2, 3

}
,

(54)

and so Lemma 3 is proved.

We can now prove the following theorem.

Theorem 4 ((4, 3)-Grassmannian). Let U={u1,u2,u3,u4}⊂
S2 ⊂ R3. If U is (4, 3)-Grassmannian, then U is equiangular,
that is, |〈uk,ul〉| = β ∈ [0, 1] whenever k �= l.

Proof. We show the contrapositive of the above implication,
namely, we prove that if U is not equiangular, then there is a

4-element set X ⊂ S2 such that

M∞(X) <M∞(U). (55)

Hence, U does not have minimal maximum correlation, and
therefore it is not (4, 3)-Grassmannian.

Suppose U = {u1,u2,u3,u4} is not equiangular. Then
there is an m1 ∈ {1, 2, 3, 4} such that, if k1, k2, k3 are the
remaining indices, we have

max
{∣∣〈um1 ,uk1

〉∣∣,
∣∣〈um1 ,uk2

〉∣∣,
∣∣〈um1 ,uk3

〉∣∣}

=M∞(U)
(56)

and

∣∣〈um1 ,uk1
〉∣∣,

∣∣〈um1 ,uk2
〉∣∣,

∣∣〈um1 ,uk3
〉∣∣ (57)

are not all equal. Applying Lemma 3 with b = um1 and
{y1, y2, y3} = {uk1 ,uk2 ,uk3}, there is c ∈ R3 such that

max
{∣∣〈um1 ,uki

〉∣∣ : i = 1, 2, 3,
}

> max
{∣∣∣∣
〈

c

‖c‖ ,uki
)∣∣∣∣ : i = 1, 2, 3,

}
.

(58)

Let xm1 = c/‖c‖, see Step 2 in Figure 4. Since we have only
moved the point um1 to xm1 , the remaining correlations are
unaffected since they do not involve um1 . Thus

M∞(U) = max
{∣∣〈um1 ,uki

〉∣∣ : i = 1, 2, 3,
}

> max
{∣∣〈xm1 ,uki

〉∣∣ : i = 1, 2, 3,
} =: α.

(59)

Now either M∞({xm1 ,uk1 ,uk2 ,uk3}) = α, or there is an
m2 ∈ {1, 2, 3, 4} \ {m1} such that ifm1, j1, j2 are the remain-
ing indices, then

M∞(U) = max
{∣∣〈um2 ,uj1

〉∣∣,
∣∣〈um2 ,uj2

〉∣∣} (60)

and

∣∣〈um2 , xm1

〉∣∣,
∣∣〈um2 ,uj1

〉∣∣,
∣∣〈um2 ,uj2

〉∣∣ (61)

are not all equal, where (61) follows from (59). In this
case, we apply Lemma 3 to b = um2 and {y1, y2, y3} =
{uj1 ,uj2 , xm1}. Thus, there is a c′ ∈ R3 such that

max
{∣∣〈um2 , xm1

〉∣∣,
∣∣〈um2 ,uj1

〉∣∣,
∣∣〈um2 ,uj2

〉∣∣}

= max
{∣∣〈um2 ,uj1

〉∣∣,
∣∣〈um2 ,uj2

〉∣∣}

> max
{∣∣∣∣
〈

c′

‖c′‖ , xm1

)∣∣∣∣,
∣∣∣∣
〈

c′

‖c′‖ ,uj1

)∣∣∣∣,
∣∣∣∣
〈

c′

‖c′‖ ,uj2

)∣∣∣∣
}
.

(62)

Let xm2 = c′/‖c′‖, see Step 3 in Figure 4. Thus

M∞(U)
= max

{∣∣〈um2 ,uj1

〉∣∣,
∣∣〈um2 ,uj2

〉∣∣}

> max
{∣∣〈xm2 , xm1

〉∣∣,
∣∣〈xm2 ,uj1

〉∣∣,
∣∣〈xm2 ,uj2

〉∣∣}

=: α′.
(63)
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Therefore, (59) and (63) imply

M∞(U) > max

⎧⎪⎨
⎪⎩

∣∣〈xm1 ,uj1

〉∣∣,
∣∣〈xm1 ,uj2

〉∣∣,∣∣〈xm2 , xm1

〉∣∣,
∣∣〈xm2 ,uj1

〉∣∣,∣∣〈xm2 ,uj2

〉∣∣

⎫⎪⎬
⎪⎭

= max{α,α′},
(64)

because j1, j2 ∈ {k1, k2, k3}.
So either M∞({xm1 , xm2 ,uj1 ,uj2}) = max{α,α′} or else

M∞(U) = |〈uj1 ,uj2〉|.
In the latter case, (63) implies that |〈uj1 ,uj2〉|, |〈uj1 ,

xm1〉|, |〈uj1 , xm2〉| are not all equal, and so we apply Lemma
3 to b = uj1 , and {y1, y2, y3} = {uj2 , xm1 , xm2}. Thus, there is
c′′ ∈ R3 such that

max
{∣∣〈uj1 , xm1

〉∣∣,
∣∣〈uj1 , xm2

〉∣∣,
∣∣〈uj1 ,uj2

〉∣∣}

= ∣∣〈uj2 ,uj1

〉∣∣

> max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣∣
〈

c′′

‖c′′‖ , xm1

)∣∣∣∣,
∣∣∣∣
〈

c′′

‖c′′‖ , xm2

)∣∣∣∣,

∣∣∣∣
〈

c′′

‖c′′‖ ,uj2

)∣∣∣∣

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

(65)

Let xm3 = c′′/‖c′′‖ and letX = {xm1 , xm2 , xm3 ,uj2}. Then (64)
and (65) imply

M∞(U)

> max

{∣∣〈xm3 , xm1

〉∣∣,
∣∣〈xm3 , xm2

〉∣∣,
∣∣〈xm3 ,uj2

〉∣∣,
∣∣〈xm2 , xm1

〉∣∣,
∣∣〈xm2 ,uj2

〉∣∣,
∣∣〈xm1 ,uj2

〉∣∣

}

=M∞(X). (66)

Next we show that if a four-element set is equiangular,
then the vectors are parallel to the diagonals of a cube or to
four of the diagonals of an icosahedron.

Theorem 5. If u1,u2,u3,u4 ∈ S2 and |〈uk,ul〉| = α for k, l ∈
{1, . . . , 4} with k �= l, then

α = 1
3

or α = 1√
5

(67)

Proof. Since sign changes and rotations do not effect inner
products, let P be an element of SO3 which rotates u1 to δ3 =
(1, 0, 0)T . For k = 1, 2, 3, 4, let

εk = sign
〈
Pxk, δ3

〉
, (68)

and let Q ∈ SO3 so that Q fixes δ3 and Q rotates εkPx2
to the positive xz-plane, that is, 〈QεkPx2, δ1〉 ≥ 0 and
〈QεkPx2, δ2〉 = 0. Then, for k �= l,

α = ∣∣〈uk,ul
〉∣∣ = ∣∣〈εkQPuk, εlQPul

〉∣∣ = ∣∣〈wk,wl
〉∣∣, (69)

where wk = εkQPuk. By the choice of εk, for k = 2, 3, 4, we
have

α = ∣∣〈w1,wk
〉∣∣ = 〈

δ3,wk
〉
, (70)

so that the third component of wk is α. Also, 0 = 〈δ2,w2〉,
and w2 ∈ S2, so that the first component of w2 is

√
1− α2.

Therefore, we have

w1 = (0, 0, 1)T ,

w2 =
(√

1− α2, 0,α
)T

,

w3 =
(
x3, y3,α

)T
,

w4 =
(
x4, y4,α

)T
.

(71)

We now have four cases (see Table 3) where both Cases 2 and
3 have three subcases which, by relabeling, can be reduced to
the considered case.

Case 1. For k = 3, 4, 〈w2,wk〉 = α implies

xk = α− α2√
1− α2

= α

√
1− α

1 + α
. (72)

Then (72) and ‖wk‖2 = 1 imply

yk = ±
√

1 + α− 2α2

1 + α
. (73)

In addition, (72) and 〈w3,w4〉 = α imply

y3 · y4 = α(1− α)
1 + α

. (74)

Combining (73) and (74), we have

−1 + α− 2α2

1 + α
= α(1− α)

1 + α
=⇒ 2α2 + 1 = 0

=⇒ α ∈ C \R,
(75)

hence Case 1 is impossible.
Case 2. Now 〈w2,w3〉 = α implies

x3 = α− α2√
1− α2

, (76)

and 〈w2,w4〉 = −α implies

x4 = −α− α2√
1− α2

, (77)

and (76) and (77) imply

y3 · y4 = α. (78)

Then, (76) and ‖w3‖2 = 1 imply

y23 = −
2α2 − α− 1

α + 1
= (2α + 1)(α− 1)

α + 1
, (79)

and (77) and ‖w4‖2 = 1 imply

y24 =
2α2 + α− 1

α− 1
= (2α− 1)(α + 1)

α− 1
. (80)

Finally, (78), (79), and (80) imply

−α2 = (2α + 1)(2α− 1) =⇒ α = ± 1√
5
. (81)
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Figure 4: An example of the four steps in proving Theorem 4. A number next to an edge represents the inner product of the two boundary
points of the edge. (a) Step 1, (b) Step 2, (c) Step 3, and (d) Step 4.

Table 3: Four main cases in the proof of Theorem 5.
〈
w2,w3

〉 〈
w2,w4

〉 〈
w3,w4

〉

Case 1 α α α Impossible
Case 2 −α α α α = 1/

√
5

Case 3 −α −α α α = 1/
√
5

Case 4 −α −α −α α = 1/3

Since α is assumed to be positive, we have proven Case 2.
Case 3. For k = 3, 4, 〈w2,wk〉 = −α implies

xk = −α− α2√
1− α2

= −α
√

1 + α

1− α
. (82)

Then (82) and ‖wk‖2 = 1 imply

y2k =
2α2 + α− 1

α− 1
= (2α− 1)(α + 1)

α− 1
. (83)

Hence, (82) and 〈w3,w4〉 = α imply

y3 · y4 = α− 3α2

1− α
. (84)

Combining (83) and (84), we have

− (2α− 1)(α + 1)
α− 1

= −y2k = y3 · y4 = α− 3α2

1− α

=⇒ α = ± 1√
5
,

(85)

and since α is positive, we have proven Case 3.
Case 4. This is the same as Case 3 except that 〈w3,w4〉 = α

and (82) imply

y3 · y4 = α(α + 1)
α− 1

. (86)
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Combining (83) and (86), we have

− (2α− 1)(α + 1)
α− 1

= −y2k = y3 · y4 = α(α + 1)
α− 1

=⇒ α = 1
3
,

(87)

and we have proven Case 4.
Therefore, the theorem is proved.

By Theorem 5, and since 1/
√
5 > 1/3, we see that the

(4, 3)-Grassmannian bound is 1/3, which is also seen to be
optimal by inspection.

6. (5, 3)-GRASSMANNIAN FRAMES

We first introduce some ideas from convex analysis [17–19].

Definition 4. A set A ⊂ Rn is convex if for any x1, x2 ∈ A, and
for any λ ∈ [0, 1],

λx1 + (1− λ)x2 ∈ A. (88)

A point x ∈ A is an extreme point of A if whenever x = λx1 +
(1− λ)x2, where 0 < λ < 1 and x1, x2 ∈ A, then x = x1 = x2.
Given a set A ⊂ Rn, the convex hull of A is

Hull(A)

=
⎧⎨
⎩

m∑

j=1
λjxj :

m∑

j=1
λj = 1, λj > 0, xj ∈ A, m ∈ N

⎫⎬
⎭ .

(89)

There is the following relationship between extreme
points, convex hulls, and convex sets, [20].

Theorem 6. A nonempty bounded convex set in Rd is the con-
vex hull of its set of extreme points.

We need the following two convexity propositions to
prove Lemma 4, which in turn is used to prove Lemma 5, the
key lemma for computing the (5, 3)-Grassmannian bound in
Theorem 7.

Proposition 2. LetN ≥ d, letY = {y1, . . . , yN} ⊂ Sd−1 ⊂ Rd,
and assume span(Y) = Rd. Let

Q = {
v ∈ Rd :

∣∣〈v, yk
〉∣∣ ≤ 1, for k = 1, . . . ,N

}
(90)

and let C be the set of extreme points of Q. Then

(a) Q is a bounded convex set,
(b) if v0 ∈ C, then there are at least d distinct integers
k1, . . . , kd ∈ {1, . . . ,N} such that |〈v0, yki〉| = 1 for i =
1, . . . ,d,
(c) card (C) ≤

(
N
d

)
2d <∞.

Under the same hypotheses of Proposition 2, we have the
following result, whose proof is in Appendix C.

Proposition 3. Let N , d, Y , Q, and C be as in Proposition 2,
and let c ∈ C have the property that ‖c‖ = max{‖c′‖ : c′ ∈
C}. Then, for any v ∈ Q \ C,

‖v‖ < ‖c‖. (91)

Following the basic geometric idea in [10], we can reduce
the correlation of a given frame. The following lemma re-
quires the previous propositions as well as Theorem 3.

Lemma 4. Let U = {b, y1, y2, y3, y4} ⊂ S2 ⊂ R3, and let α =
M∞(U). Assume |〈b, y1〉| < α and |〈b, y2〉| < α. Then there
exists c ∈ R3 such that

∣∣∣∣
〈

c

‖c‖ , yk
)∣∣∣∣ < α for k = 1, 2, 3, 4. (92)

Lemma 5. Let U = {u1, . . . ,u5} be a (5, 3)-Grassmannian
frame, and let α = M∞(U). Then for any j, there are distinct
j1, j2, j3 ∈ {1, . . . , 5} \ { j} such that

∣∣〈uj ,ujk

〉∣∣ = α for k = 1, 2, 3. (93)

Proof. We prove the contrapositive. By relabeling if neces-
sary, without loss of generality, assume |〈u1,u2〉| < α and
|〈u1,u3〉| < α. We use Lemma 4 to construct a new set
W for which M∞(W) < α. This shows U is not (5, 3)-
Grassmannian.

First, let b = u1 and {y1, . . . , y4} = {u2, . . . ,u5} and apply
Lemma 4. Then there is a c1 ∈ R3 such that

∣∣∣∣
〈

c1∥∥c1
∥∥ ,uk

)∣∣∣∣ < α for k = 2, 3, 4, 5. (94)

Second, consider the set Ũ := {u2, . . . ,u5}. We have two
cases,

Case 1. There exist j0, k0 ∈ {2, 3, 4, 5} with j0 �= k0, for
which |〈uj0 ,uk0〉| < α.

For ease in notation, by relabeling if necessary, we assume
j0 = 2 and k0 = 3. In this case, we can apply Lemma 4 with
b = u2 and {y1, . . . , y4} = {c1/‖c1‖,u3,u4,u5}, and construct
c2 ∈ R3 such that

∣∣∣∣
〈

c1∥∥c1
∥∥ ,

c2∥∥c2
∥∥
)∣∣∣∣ < α,

max
{∣∣∣∣
〈

c2∥∥c2
∥∥ ,uk

)∣∣∣∣ : k = 3, 4, 5
}
< α.

(95)

Nowwe can apply Lemma 4 to the remaining points and pro-
duce a frame with a strictly smaller value of M∞. In fact,
since |〈ci/‖ci‖,u3〉| < α for i = 1, 2, we let b = u3 and
{y1, . . . , y4} = {c1/‖c1‖, c2/‖c2‖,u4,u5}. Then, by Lemma 4,
there is a c3 ∈ Rd such that

∣∣∣∣
〈

c3∥∥c3
∥∥ ,

ci∥∥ci
∥∥
)∣∣∣∣ < α for i = 1, 2,

max
{∣∣∣∣
〈

c3∥∥c3
∥∥ ,uk

)∣∣∣∣ : k = 4, 5
}
< α.

(96)

Finally, apply Lemma 4 one last time to b = u4 and

{
y1, . . . , y4

} =
{

c1∥∥c1
∥∥ ,

c2∥∥c2
∥∥ ,

c3∥∥c3
∥∥ ,u5

}
, (97)

and obtain c4 ∈ Rd for which
∣∣∣∣
〈

c4∥∥c4
∥∥ ,

ci∥∥ci
∥∥
)∣∣∣∣ < α for i = 1, 2, 3,

∣∣∣∣
〈

c4∥∥c4
∥∥ ,u5

)∣∣∣∣ < α.
(98)
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Thus, if we let W = {c1/‖c1‖, c2/‖c2‖, c3/‖c3‖, c4/‖c4‖,u5},
then, by construction, for any i, j ∈ {1, . . . , 4}, i �= j, we have
|〈ci/‖ci‖, c1/‖c1‖〉| < α and |〈ci/‖ci‖,u5〉| < α. Hence,

M∞(W) < α =M∞(U), (99)

and so U is not (5, 3)-Grassmannian. This finishes Case 1.
Case 2. Ũ is equiangular.
Since Ũ has four elements, Theorem 5 implies α = 1/3 or

α = 1/
√
5. If α = 1/3, then set

β = max
{∣∣∣∣
〈

c1∥∥c1
∥∥ ,uk

)∣∣∣∣ : k = 2, 3, 4, 5
}
. (100)

Thus, by construction of c1, we have β < 1/3 and

M∞
({

c1∥∥c1
∥∥
}
∪ Ũ

)
= max

{
1
3
,β
}
= 1

3
, (101)

whereas Theorem 3 with N = 5 and d = 3 implies

1√
6
≤M∞

({
c1∥∥c1
∥∥
}
∪ Ũ

)
= 1

3
, (102)

a contradiction.
Thus, α = 1/

√
5; and |〈u1,uk〉| < α for k = 2, 3, 4, 5, and

|〈uk,uj〉| = α for k �= j and k, j ∈ {2, 3, 4, 5}.
We seek to find a contradiction. Without loss of general-

ity, the setting can reduce to the following general position
by using rotations and sign changes as in Theorem 5:

u2 = (0, 0, 1)T ,

u3 =
(√

1− α2, 0,α
)T

,

u4,u5 ∈
{
p1, p2, p3, p4

}
,

(103)

where

p1 =
(
α

√
1− α

1 + α
,

√
(1 + 2α)(1− α)

1 + α
,α

)T

=
(√

1− α2 cos
(
2π
5

)
,
√
1− α2 sin

(
2π
5

)
,α
)T

,

p2 =
(
− α

√
1 + α

1− α
,

√
(1− 2α)(1 + α)

1− α
,α

)T

=
(√

1− α2 cos
(
4π
5

)
,
√
1− α2 sin

(
4π
5

)
,α
)T

,

p3 =
(
− α

√
1 + α

1− α
,−
√

(1− 2α)(1 + α)
1− α

,α

)T

=
(√

1− α2 cos
(
− 4π

5

)
,

√
1− α2 sin

(
− 4π

5

)
,α
)T

,

p4 =
(
α

√
1− α

1 + α
,−
√

(1 + 2α)(1− α)
1 + α

,α

)T

=
(√

1− α2 cos
(
− 2π

5

)
,

√
1− α2 sin

(
− 2π

5

)
,α
)T

.

(104)

Therefore, if

A =

⎛
⎜⎜⎜⎜⎝

cos
(
2π
5

)
− sin

(
2π
5

)
0

sin
(
2π
5

)
cos

(
2π
5

)
0

0 0 1

⎞
⎟⎟⎟⎟⎠

(105)

and p0 = u3, then

Ak
(
p0, p1, p2, p3, p4

)

= (
pσ(0), pσ(1), pσ(2), pσ(3), pσ(4)

)
,

(106)

where σ(n) = (n + k)(mod 5).
If we set β = |〈u1,u2〉| < α, then, by changing the sign of

u1 if necessary and since ‖u1‖ = 1, we may assume

u1 =
(√

1− β2 cos t0,
√
1− β2 sin t0,β

)T
, (107)

for some fixed t0 ∈ [−π,π). Hence,
∣∣〈u1,u3

〉∣∣ < α (108)

⇐⇒
∣∣∣
√
1− α2

√
1− β2 cos t0 + αβ

∣∣∣ < α (109)

⇐⇒ −α√
1− α2

1 + β√
1− β2

< cos t0 <
α√

1− α2
1− β√
1− β2

(110)

⇐⇒ cos−1
(
1
2

√√√1− β

1 + β

)

︸ ︷︷ ︸
γ1(β)

< |t0| < cos−1
(
− 1

2

√√√ 1 + β

1− β

)

︸ ︷︷ ︸
γ2(β)

.

(111)

We observe that

γ1(β) =

⎧⎪⎪⎨
⎪⎪⎩

6π
15
= 2π

5
, if β = α,

5π
15
= π

3
, if β = 0,

γ2(β) =

⎧⎪⎪⎨
⎪⎪⎩

12π
15

= 4π
5
, if β = α,

10π
15

= 2π
3
, if β = 0,

(112)

and that (d/dβ)(γ2 − γ1)(β) > 0 for β ∈ (0,α), see Figure 5.
Thus 5π/15 ≤ γ2(β)− γ1(β) < 6π/15, when β ∈ [0,α).

Hence, for a fixed β ∈ [0,α),

γ2(β) < γ1(β) +
6π
15

, (113)

and, for k = 1, 2, 3, 4, we have

α >
∣∣〈u1, pk

〉∣∣ = ∣∣〈A−ku1,A−k pk
〉∣∣

= ∣∣〈A−ku1, p0
〉∣∣ = ∣∣〈A−ku1,u3

〉∣∣,
(114)

where

A−ku1 =
(√

1− β2 cos
(
t0 − 2πk

5

)
,

√
1− β2 sin

(
t0 − 2πk

5

)
,β
)T

.
(115)
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Figure 5: (a) The function γ2−γ1. (b) The function (d/dβ)(γ2−γ1).
We can see that the original function is strictly increasing.

Therefore, by (111),

α >
∣∣〈u1, pk

〉∣∣ ⇐⇒ γ1(β) ≤
∣∣∣∣t0 −

2πk
5

∣∣∣∣ ≤ γ2(β), (116)

for k = 0, 1, 2, 3, 4. These inequalities define ten intervals on
the torus T2π . If we plot these ten intervals on T2π , we note
that no set of three of them overlaps, see Figure 6. This asser-
tion can also be seen since

γ1(β) ≤
∣∣∣∣t0 −

2πk
5

∣∣∣∣ ≤ γ2(β)

=⇒ γ1(β) ≤
∣∣∣∣t0 −

2πk
5

∣∣∣∣ < γ1(β) +
2π
5

=⇒ t0 ∈
[
γ + εk, γ + ε(k + 1)

)
︸ ︷︷ ︸

Pk

∪ [− γ + ε(k − 1),−γ + εk
)

︸ ︷︷ ︸
Nk

,

(117)

where γ = γ1(β), ε = 2π/5, and k = 0, 1, 2, 3, 4. Thus,⋃4
k=0 Pk is a disjoint cover of T2π \ [γ − ε, γ), and

⋃4
k=0Nk

is a disjoint cover of T2π \ [−γ+ ε,−γ). Hence, t0 can be in at
most two of the ten sets Pk, Nk.

Now, by assumption, |〈u1,u3〉| = |〈u1, p0〉| < α.
Also |〈u1,u4〉| < α and |〈u1,u5〉| < α, where u4,u5 ∈
{p1, p2, p3, p4}. Thus, (116) implies t0 lies in three of the
ten intervals represented in Figure 6, a contradiction. Con-
sequently, Ũ cannot be equiangular.

Finally, using Lemma 5, we have the following result.

Theorem 7. If U ⊂ S2 ⊂ R3 is (5, 3)-Grassmannian, then
M∞(U) = 1/

√
5.

Proof. Let α = M∞(U), and consider the graph whose ver-
tices are u1, . . . ,u5, and whose edges are defined as follows:

0.8

0.6

0.4

0.2

0

−0.2
−0.4
−0.6
−0.8

−1 −0.5 0 0.5 1

p1

p2

p0

p1

p2

p0

p3

p4

p3

p4

γ1(β)

Figure 6: Ten intervals on T2π corresponding to the points p0 = u3,
and p1, . . . , p4.

for any pair of points uk,uj ∈ U with k �= j, an edge connects
uk and uj if and only if |〈uk,uj〉| = α. We call the number of
edges emanating from a vertex uk, the degree of uk, denoted
by deg(uk). Then Lemma 5 implies that

5∑

k=1
deg

(
uk
) ≥

5∑

k=1
3 = 15. (118)

Since each edge connects two vertices, the sum of the de-
grees must be an even number. Thus, at least one vertex uj

must have degree 4, that is, there is a j ∈ {1, . . . , 5}, such
that |〈uj ,uji〉| = α for i = 1, . . . , 4, where { j1, j2, j3, j4} =
{1, 2, 3, 4, 5} \ { j}. By relabeling if necessary, we may assume

∣∣〈u1,uk
〉∣∣ = α for k = 2, 3, 4, 5,

∣∣〈u2,uk
〉∣∣ = α for k = 3, 4.

(119)

Furthermore, we can reduce to the general position used in
Theorem 5, that is, assume

u1 = (0, 0, 1)T ,

u2 =
(√

1− α2, 0,α
)T

,

u3 =
(
x3, y3,α

)T
,

u4 =
(
x4, y4,α

)T
,

u5 =
(
x5, y5,α

)T
.

(120)

We have two cases.
Case 1. |〈u3,u4〉| = α.
Then the subset Ũ = {u1,u2,u3,u4} is equiangular, hence

Theorem 5 implies α = 1/3 or 1/
√
5. However, just as in

Lemma 5, α = 1/3 implies that

1
3
=M∞(U) ≤ 1√

6
, (121)

and so α = 1/
√
5.

Case 2. |〈u3,u4〉| < α.
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Then, since each vertex must be of degree 3, we have that
|〈u3,u5〉| and |〈u4,u5〉| each equals α. Thus, if we remove the
absolute values, we have the following equations:

〈
u2,u3

〉 = ±α, 〈u2,u4
〉 = ±α,

〈
u3,u5

〉 = ±α, 〈u4,u5
〉 = ±α. (122)

This gives 24 = 16 possible cases. Of these 16 cases, 7 lead to
contradictions and the remaining 9 fall into 5 types; but each
implies that u3, u4, u5 are three of the four points

(
α

√
1− α

1 + α
,±
√

(1 + 2α)(1− α)
1 + α

,α

)T

,

(
− α

√
1 + α

1− α
,±
√

(1− 2α)(1 + α)
1− α

,α

)T

,

(123)

which are the positive endpoints on the remaining 4 diago-
nals of an icosahedron. Hence, in each case, α = 1/

√
5.

The (5, 3)-Grassmannian frame is the first example of a
nonoptimal Grassmannian frame since 1/

√
5 > 1/

√
6. Hence,

by Theorem 3, the (5, 3)-Grassmannian frame is the first
three-dimensional example of a Grassmannian frame which
is not tight.

7. (6, 3)-GRASSMANNIAN FRAMES

The (6, 3)-Grassmannian bound can be calculated as a con-
sequence of Theorem 3.

Theorem 8. IfU = {u1, . . . ,u6} ⊂ S2 is (6, 3)-Grassmannian,
then

M∞(U) = 1√
5
. (124)

Proof. Set α = 1/
√
5, and consider the setW with vertices

w1 = (0, 0, 1)T ,

w2 =
(√

1− α2, 0,α

)T

,

w3 =
(
α

√
1− α

1 + α
,

√
(1 + 2α)(1− α)

1 + α
,α

)T

,

w4 =
(
α

√
1− α

1 + α
,−
√

(1 + 2α)(1− α)
1 + α

,α

)T

,

w5 =
(
− α

√
1 + α

1− α
,

√
(1− 2α)(1 + α)

1− α
,α

)T

,

w6 =
(
− α

√
1 + α

1− α
,−
√

(1− 2α)(1 + α)
1− α

,α

)T

.

(125)

Note that ±W are the twelve vertices of an icosahedron. For
k �= l, we compute |〈wk,wl〉| = 1/

√
5. Furthermore, by

Theorem 3, if U is a 6-element subset of S2, then

M∞(U) ≥
√

6− 3
3(6− 1)

= 1√
5
=M∞(W). (126)

ThusW is a (6, 3)-Grassmannian frame.

Notice the (6, 3) Grassmannian arrangement is so good
that when one removes a vector from it, it remains Grass-
mannian, and when one removes two vectors from it, it is
still a local minimum of M∞. In [4] Conway, Hardin, and
Sloane have found that there are other instances of this in
higher dimensions, particularly when the symmetry group
of the frame has a large number of elements.

APPENDICES

A. EXISTENCE OF GRASSMANNIAN FRAMES

We show that Grassmannian frames exist. First, we define the
function

f : Sd−1 × · · · × Sd−1︸ ︷︷ ︸
N times

−→ [0, 1],

f (x1, . . . , xN ) =M∞
({
xk
}N
k=1

)
.

(A.1)

Next we check that f is continuous on X := Rd × · · · × Rd

(N times). Consider the norm on X defined by

∥∥∥{xk
}N
k=1

∥∥∥
X
=

N∑

k=1

∥∥xk
∥∥, (A.2)

let {xk}Nk=1 ∈ X be fixed, set R − 1 = maxk{‖xk‖}, and
let ε > 0 be given. Clearly R ≥ 1. Choose δ such that
0 < δ < (

√
1 + ε − 1)/R, that is, R2δ2 + 2Rδ < ε. Then,

whenever ‖{yk}Nk=1 − {xk}Nk=1‖X < δ, we have that, for ev-
ery j ∈ {1, . . . ,N},

∥∥yj − xj
∥∥ ≤

N∑

k=1

∥∥yk − xk
∥∥

=
∥∥∥{yk

}N
k=1 −

{
xk
}N
k=1

∥∥∥
X
< δ.

(A.3)

Therefore, for each j, there is an αj ∈ Rd with ‖αj‖ < δ such
that yj = xj + αj . Thus,

∣∣ f (y1, . . . , yN
)− f

(
x1, . . . , xN

)∣∣
= max

k �=l
{∣∣〈xk, xl

〉∣∣ +
∣∣〈xk,αl

〉∣∣ +
∣∣〈αk, xl

〉∣∣

+
∣∣〈αk,αl

〉∣∣}−max
k �=l

{∣∣〈xk, xl
〉∣∣}

≤ max
k �=l

{∣∣〈xk, xl
〉∣∣ +

∥∥xk
∥∥∥∥αl

∥∥ +
∥∥αk

∥∥∥∥xl
∥∥

+
∥∥αk

∥∥∥∥αl
∥∥}−max

k �=l
{∣∣〈xk, xl

〉∣∣}

< max
k �=l

{∣∣〈xk, xl
〉∣∣} + 2Rδ + Rδ2

−max
k �=l

{∣∣〈xk, xl
〉∣∣}

= 2Rδ + Rδ2 < ε.

(A.4)

Hence, f is continuous on the compact set Sd−1×· · ·× Sd−1

(N times), and so f achieves its absolute maximum and ab-
solute minimum on this set. Thus, we know that (N ,d)-
Grassmannian frames exist for any N ≥ d. Next we must
check that ifUN

d solves (3), thenUN
d is a unit-norm frame for

Rd, but this a tautology since, by compactness, UN
d is one of

the frames over which we are taking the infimum.
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B. PROOFS OF LEMMA 1 AND THEOREM 1

Proof of Lemma 1. We proceed by induction. Let P(n) be the
statement

det
(
Hn
) = (

1 + (n− 1)β
)
(1− β)n−1,

det
(
Cn
) = β(1− β)n−1.

(B.1)

For n = 1, H1 = 1 and C1 = β, and so det(H1) = 1 and
det(C1) = β; this is P(1).

Next assume P(n). Using the cofactor expansion of the
determinant, we first note that the (1, 1)-cofactor ofHn+1 and
Cn+1 is det(Hn). Also note that for j = 2, . . . ,n+ 1, the (1, j)-
cofactor of both Hn+1 and Cn+1 is

(−1)1+ j det (B( j)
n
)
, (B.2)

where B
( j)
n can be defined recursively as

B(1)
n = Cn,

B
( j)
n = B̃

( j−1)
n for j = 2, . . . ,n + 1,

(B.3)

and where B̃
( j−1)
n is B

( j−1)
n with the jth and ( j − 1)th rows

interchanged. Since det is multilinear, interchanging a row
changes the sign of the determinant. Hence,

(−1)1+ j det (B( j)
n
)

= −det(Cn) for j = 2, . . . ,n + 1.
(B.4)

Using the induction hypothesis and the cofactor expansion,
we compute

det
(
Hn+1

)

= 1 · det (Hn
)
+

n+1∑

j=2

(
β · (−1)1+ j det (B( j)

n
))

= det
(
Hn)− nβ det

(
Cn
)

= (
1 + (n− 1)β

)
(1− β)n−1 − nβ2(1− β)n−1

= (1 + nβ)(1− β)(1− β)n−1,

det
(
Cn+1

)

= β det
(
Hn
)− nβ det

(
Cn
)

= β
(
1 + (n− 1)β

)
(1− β)n−1 − nβ2(1− β)n−1

= (
β − β2

)
(1− β)n−1;

(B.5)

this is P(n + 1), and so the result follows by induction.

Proof of Theorem 3. (a) First, we prove the inequality (27).
Since the N ×N Grammian matrix G is symmetric, the spec-
tral theorem applies, and so G has N eigenvalues λj counted
with multiplicity and ordered by size, that is, λ1 ≥ λ2 ≥
· · · ≥ λN . Furthermore, since rank(G) = d0, only the first
d0 of these eigenvalues is nonzero. Hence,

d0∑

k=1
λk = TraceG =

N∑

k=1

∣∣〈xk, xk
〉∣∣ =

N∑

k=1
1 = N. (B.6)

Now set ek = λk − (N/d0). Then

d0∑

k=1
ek =

d0∑

k=1

(
λk − N

d0

)
= N − d0

N

d0
= 0, (B.7)

and so

d0∑

k=1
λ2k =

d0∑

k=1

(
N

d0
+ ek

)2

=
d0∑

k=1

N2

d20
+
2N
d0

d0∑

k=1
ek +

d0∑

k=1
e2k

= N2

d0
+

d0∑

k=1
e2k ≥

N2

d0
,

(B.8)

with equality if and only if ek = 0 for k = 1, . . . ,d0, that is, if
and only if λk = N/d0 for k = 1, . . . ,d0. Next, the eigenvalues
of G2 are λ21 ≥ λ22 ≥ · · · ≥ λ2N , so that if gk is the kth column
of G, then by matrix multiplication we have

N2

d0
≤

d0∑

k=1
λ2k = Trace(G2) =

N∑

k=1
gTk gk

=
N∑

k=1

N∑

l=1

∣∣〈xk, xl
〉∣∣2.

(B.9)

Since G is symmetric, |〈xk, xl〉| = |〈xl, xk〉|, so that by (B.9)
we compute

N2

d0
≤

N∑

k=1

N∑

l=1

∣∣〈xk, xl
〉∣∣2

=
∑

k=l

∣∣〈xk, xl
〉∣∣2 +

∑

k<l

∣∣〈xk, xl
〉∣∣2

+
∑

k>l

∣∣〈xk, xl
〉∣∣2

= N + 2
∑

k<l

∣∣〈xk, xl
〉∣∣2

≤ N + 2
N(N − 1)

2
max
k �=l

{∣∣〈xk, xl
〉∣∣2}.

(B.10)

Therefore, solving for the max in (B.10), we have

N − d0
d0(N − 1)

≤M∞
(
XN
d

)2
. (B.11)

For future reference, we note that d ≥ d0 implies (N −
d)/(d(N − 1)) ≤ (N − d0)/(d0(N − 1)). Hence, (27) remains
true when we replace d with d0 ≤ d.

(b) Next we prove that equality holds in (27) if and only
if XN

d is equiangular and is a tight frame for its span.
(=⇒). Suppose M∞(XN

d ) = √
(N − d0)/(d0(N − 1)).

Then (B.10) becomes

N∑

k=1

N∑

l=1

∣∣〈xk, xl
〉∣∣2 = N2

d0
, (B.12)
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which implies from (B.9) that

d0∑

k=1
λ2k =

N2

d0
, (B.13)

and, as we saw above, equality in this sum implies that
λk = N/d0 for k = 1, . . . ,d0. The frame bounds for XN

d
are the largest and smallest nonzero eigenvalues, and hence
A = N/d0 = B and so XN

d is a tight frame for its span.
To see that XN

d is also equiangular, we notice that (B.10)
gives

N + 2
∑

k<l

∣∣〈xk, xl
〉∣∣2 = N2

d0
, (B.14)

and hence

∑

k<l

∣∣〈xk, xl
〉∣∣2 = N(N − d0)

2d0
. (B.15)

Our assumption maxk �=l |〈xk, xl〉|2 = N − d0/d0(N − 1) im-
plies that, for any k �= l,

∣∣〈xk, xl
〉∣∣2 = N − d0

d0(N − 1)
− εk,l, (B.16)

where εk,l ≥ 0. Thus (B.15) is

N
(
N − d0

)

2d0
=
∑

k<l

(
N − d0

d0(N − 1)
− εk,l

)

=
(
N(N − 1)

2

)(
N − d0

d0(N − 1)

)
−
∑

k<l

εk,l

= N
(
N − d0

)

2d0
−
∑

k<l

εk,l .

(B.17)

Therefore,
∑

k<l εk,l = 0, and since the εk,l are nonnegative,
we can assert that εk,l = 0 for k < l. Also, since G is symmet-
ric, εk,l = 0 for all k �= l, and hence XN

d is equiangular with
|〈xk, xl〉|2 = (N − d0)/(d0(N − 1)).

(⇐=). Now assumeXN
d is equiangular and is a tight frame

for its span with frame bound A = B = N/d0. Then there is
an α ∈ [0, 1], such that |〈xk, xl〉|2 = α for k �= l. Now since
XN
d is tight, λk = N/d0 for k = 1, . . . ,d0, and zero otherwise.

Hence, (B.9) and (B.10) imply

N2

d0
=

d0∑

k=1
λ2k =

N∑

k=1

N∑

l=1

∣∣〈xk, xl
〉∣∣2 = N +N(N − 1)α. (B.18)

Thus, solving for α, we see that equality holds in (27).
(c) Finally, to prove N > d(d + 1)/2 implies XN

d is not
equiangular, we prove the contrapositive using Lemma 1 and
the following argument (cf. [21]). Assume XN

d is equiangu-
lar. Let Pk : Rd → Rd be the projection of x onto the line
spanned by xk, that is, Pkx = 〈x, xk〉xk. Let V be the vec-
tor space of symmetric linear mappings Rd → Rd. Then
dim(V) = d(d + 1)/2, and the map 〈·, ·〉 : V ×V → R given

by 〈C,D〉 = Trace(CD) is an inner product onV . Since XN
d is

equiangular, there is an α ∈ [0, 1] such that 〈xk, xl〉 = ±α for
k �= l. Furthermore, α = 1 implies N = 2, since the elements
of XN

d are assumed to be distinct and of unit norm. Thus, for
d ≥ 2, we have N = 2 < 3 ≤ d(d + 1)/2. Therefore, we may
assume α ∈ [0, 1). Now,

〈
Pk,Pl

〉 = 〈
xk, xl

〉2 =
⎧⎨
⎩
1, if k = l,

α2, if k �= l.
(B.19)

Hence, the Grammian of the set {P1, . . . ,PN} ⊂ V is

[G]k,l =
[〈
Pk,Pl

〉]
k,l =

⎧⎨
⎩
1, if k = l,

α2, if k �= l,
(B.20)

where [G]k,l is the (k, l)th entry of the matrix G. Thus,
Lemma 1 applies with G = HN and β = α2. Consequently,
if α ∈ [0, 1), then

detG = (
1 + (N − 1)α2

)(
1− α2

)N−1 �= 0. (B.21)

Therefore, G is invertible and has full rank. Finally, since
rank(G) = rank(S) = N , we have that

N = rank(G) = dim
(
span

{
P1, . . . ,PN

})

≤ dim(V) = d(d + 1)
2

.
(B.22)

We have proved that if XN
d is equiangular, then N ≤ d(d +

1)/2; and so, by contraposition, we have proven the result.

C. PROOF OF PROPOSITION 3

Proof of Proposition 3. Let v ∈ Q \ C. Then there is a λ ∈
(0, 1), and there are x1, x2 ∈ Q with x1 �= x2 such that v =
λx1 + (1− λ)x2. Consider the function f : R→ R defined by

f (λ) = ∥∥λx1 + (1− λ)x2
∥∥. (C.1)

We first verify that f is uniformily continuous onR. Let ε > 0
be given, and choose δ < ε/‖x1 − x2‖. Then, for all λ0 for
which |λ− λ0| < δ, we have

∣∣ f (λ)− f
(
λ0
)∣∣

= ∣∣∥∥λx1 + (1− λ)x2
∥∥− ∥∥λ0x1 +

(
1− λ0

)
x2
∥∥∣∣

≤ ∥∥λx1 + (1− λ)x2 − λ0x1 −
(
1− λ0

)
x2
∥∥

= ∥∥(λ− λ0
)(
x1 − x2

)∥∥
= ∣∣λ− λ0

∣∣∥∥x1 − x2
∥∥

< δ
∥∥x1 − x2

∥∥ < ε.

(C.2)

Now set g(λ) = f (λ)2. Then g(λ) is also continuous onR and
it is the parabola,

g(λ) = ∥∥λx1 + (1− λ)x2
∥∥2

= λ2
∥∥x1

∥∥2 + 2
(
λ− λ2

)〈
x1, x2

〉− 2(1− λ)
∥∥x2

∥∥2.
(C.3)
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We compute

g′(λ) = 2λ
∥∥x1 − x2‖2 + 2

〈
x1 − x2, x2

〉
, (C.4)

so that g′(λ) = 0 at

λ∗ = −
〈
x1 − x2, x2

〉
∥∥x1 − x2

∥∥2 . (C.5)

Furthermore, for all λ ∈ R,

g′′(λ) = 2
∥∥x1 − x2

∥∥2 > 0. (C.6)

Hence, g attains aminimum at λ∗, and for all λ �= λ∗, we have
g(λ) > g(λ∗). Now if we restrict g to [0, 1], then g achieves its
maximum and minimum on [0, 1]. Thus, if λ∗ ∈ [0, 1], then
by (C.6) and the fact that g describes a parabola, we have

min
λ∈[0,1]

g(λ) = g(λ∗),

max
λ∈[0,1]

g(λ) = max
{
g(0), g(1)

}
,

(C.7)

and if λ∗ /∈ [0, 1], then

min
λ∈[0,1]

g(λ) = min
{
g(0), g(1)

}
,

max
λ∈[0,1]

g(λ) = max
{
g(0), g(1)

}
.

(C.8)

In either case, the maximum of g occurs at one of the end
points. Furthermore, at interior points, g is strictly less than
the maximum value.

Now since ‖v‖2 = g(λ0) for some λ0 ∈ (0, 1), (C.6) im-
plies

‖v‖2 = g
(
λ0
)

< max
λ∈[0,1]

g(λ) = max
{
g(0), g(1)

}

= max
{∥∥x1

∥∥2,
∥∥x2

∥∥2}.
(C.9)

Thus, we have shown that

v ∈ Q \ C =⇒ ∃x ∈ Q such that ‖v‖ < ‖x‖, (C.10)

and hence

v ∈ Q \ C =⇒ ‖v‖ < sup
{‖x‖ : x ∈ Q

}
. (C.11)

Q is a bounded closed set so that, by continuity of ‖ · ‖,
the supremum in (C.11) is achieved on Q, whereas (C.11)
also shows that this supremum is not achieved onQ\C. Thus,

sup
{‖x‖ : x ∈ Q

} = sup
{‖x‖ : x ∈ C

} = ‖c‖. (C.12)

Therefore, for any v ∈ Q \ C, we have ‖v‖ < sup{‖x‖ : x ∈
Q} = ‖c‖.
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