
Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 52561, Pages 1–11
DOI 10.1155/ASP/2006/52561

Texture Classification Using Sparse Frame-Based
Representations

Karl Skretting and John Håkon Husøy
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A new method for supervised texture classification, denoted by frame texture classification method (FTCM), is proposed. The
method is based on a deterministic texture model in which a small image block, taken from a texture region, is modeled as a sparse
linear combination of frame elements. FTCM has two phases. In the design phase a frame is trained for each texture class based on
given texture example images. The design method is an iterative procedure in which the representation error, given a sparseness
constraint, is minimized. In the classification phase each pixel in a test image is labeled by analyzing its spatial neighborhood.
This block is represented by each of the frames designed for the texture classes under consideration, and the frame giving the
best representation gives the class. The FTCM is applied to nine test images of natural textures commonly used in other texture
classification work, yielding excellent overall performance.
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1. INTRODUCTION

Most surfaces exhibit texture. For human beings it is quite
easy to recognize different textures, but it is more difficult to
precisely define a texture. Under all circumstances, a texture
may be regarded as a region where some elements or prim-
itives are repeated and arranged according to a placement
rule. Tuceryan and Jain [1] list more possible definitions and
give a comprehensive overview of texture classification. Pos-
sible applications can be grouped into (1) texture analysis,
that is, finding some appropriate properties for a texture, (2)
texture classification, that is, identifying the texture class in a
homogeneous region, and (3) texture segmentation, that is,
finding a boundary map between different texture regions of
an image. The boundary map may be used for object recog-
nition and scene interpretation in areas such as medical di-
agnostics, geophysical interpretation, industrial automation,
and image indexing. Finally, (4) texture synthesis, that is,
generating artificial textures to be used for example in com-
puter graphics or image compression. Some examples of ap-
plications are presented in [2–6].

Typically, texture classification algorithms have two main
parts: a local feature vector is found, which is subsequently
used for texture classification or segmentation. The methods
for feature extraction may be loosely grouped as statistical,
geometrical, model-based, and signal processing (filtering)
methods [1]. For the filtering methods the feature vectors are
often built as variance estimates, local energy measures, for

each of the subbands of a filter bank. Also, there are numer-
ous classification or pattern recognition methods available.
The Bayes classifier is probably the most common one [7, 8].
The min- or max-selector is a simple one that can be used
if each entry in the feature vector measures the similarity to,
or corresponds to, a texture class. Nearest-neighbor classi-
fication, vector quantization (codebook vectors representing
each class) [9] and learning vector quantization (LVQ) (code-
book vectors defining the decision borders) [10–12], neural
networks, watershed-based algorithm [13], and support vec-
tor machines (SVM) [14] are other methods.

One approach to texture classification may be to focus
on the feature extraction part and make it easy to decide
the texture class from the feature vector [15]. The oppo-
site approach is to make the feature extraction as simple
as possible, for example by feeding the gray-level values for
the pixels in image blocks directly to the classifier [16]. The
FTCM belongs to the first approach, as the overall classifica-
tion scheme is quite similar to the scheme used in [11], the
main distinction being that we have replaced the filter part
by a sparse representation part. On the other hand we also
recognize relationships to the opposite approach. The SVM
scheme, as used in [16], finds a set of support vectors for
each texture and this set identifies a hyperplane which sep-
arates the given texture from the rest of the textures, while
FTCM finds a set of frame vectors for each texture and this
set is trained to efficiently represent the given texture by a
sparse linear combination, thus identifying the texture. Also,
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FTCMhasmuch in commonwith texture classification using
vector quantization [9]. Actually, FTCM may be regarded as
a generalization of the vector quantization approach.

This paper is organized as follows. Sparse frame-based
representations are briefly explained in Section 2. Section 3
presents the texture model and gives a motivation for the
frame texture classification method. FTCM is a supervised
texture classification method and it has two main parts.
Firstly, training is done to build the frames based on some ex-
ample images for each texture class, see Section 4. Secondly,
in Section 5, we describe the classification or segmentation
using these frames to label the pixels of a test image. Finally,
in Section 6, the experimental results are presented both for
synthetic textures based on the texture model and for natural
textures.

2. SPARSE FRAME-BASED REPRESENTATIONS

A set of N-dimensional vectors, spanning the space RN ,
{fk}Kk=1, where K ≥ N , is a frame. In this paper frames are
represented as follows. A frame is given by a matrix F of size
N × K , K ≥ N , where the columns are the frame vectors,
fk. A column vector of N signal samples is formed from a
2-dimensional image block (size N1 × N2) that is simply re-
arranged into a column vector (length N = N1N2). The col-
umn vector is denoted by xl to indicate that it is one out of
L available signal blocks, such signal (image) blocks can be
represented by a weighted sum of frame vectors

x̃l =
K
∑

k=1
wl(k)fk = Fwl . (1)

This is a signal expansion that, depending on the selection of
weights, wl(k), may be an exact or an approximate represen-
tation of the signal block. The weights, wl(k), can be repre-
sented by a column vector, wl, of length K . It is convenient
to collect the L signal vectors and the corresponding weight
vectors into matrices,

X = [x1 x2 · · · xL
]

,

W = [w1 w2 · · · wL
]

.
(2)

The synthesis equation (1) may now be written as

˜X = FW. (3)

In a sparse representation many of the weights in the sig-
nal expansion (1) are zero. To quantify the degree of sparse-
ness we use the number s, which is the number of nonzero
weights allowed in the sparse representation of each signal
block, xl. s is the same for all signal blocks.

A frame can be designed or trained to give a good sparse
representation of a set of L training vectors. A linear combi-
nation of basis vectors from an arbitrary basis of RN can be
used to represent each vector in the training set. Such rep-
resentations will in general be dense, that is, they have N
nonzero coefficients. A large frame, using all the L training
vectors as frame vectors, can be used to give the ultimate

sparse representation, each of the training vectors can be rep-
resented by only one frame vector. In this work we use rather
small frames where N < K � L, typically 2N ≤ K ≤ 4N .
Each of the training vectors can now be well approximated
by a sparse linear combination of the frame vectors, allowing
only s nonzero weights to be used in the expansion. The K
frame vectors can be designed to minimize the sum of repre-
sentation errors for a given sparseness.

The problem of finding the sparse weight vector, for
a given sparseness, such that the 2-norm1 of the residual
is minimized, is an NP-hard problem [17]. Many prac-
tical solutions employ greedy vector selection algorithms,
such as matching pursuit (MP), orthogonal matching pur-
suit (OMP), and order recursive matching pursuit (ORMP).
When reading this paper, it is not necessary to know (the de-
tails of) these methods. They are thoroughly described else-
where, [18–24]. All we need to know is that the vector selec-
tion algorithm used here, which by the way is ORMP, finds
the weights in a sparse representation.

3. THE TEXTUREMODEL

Textures are often described by random models and statisti-
cal properties, [25–27]. Random models often seem to cap-
ture the essential properties of the textures quite well, as can
be seen from the textures synthesized by these models [28],
and obviously most natural textures have a random element.
We will here present a deterministic texture model which will
fit many periodic textures quite well. Based on this model
the frame texture classification method (FTCM) emerges as
a natural method for texture classification. The main result
of this section is that it is reasonable to model a small tex-
ture image block as a sparse linear combination of frame
elements. The results-oriented reader may wish to jump to
Section 4.

The idea behind the proposed texture model is quite sim-
ple. A texture is modeled as a tiled floor, where all tiles are
identical. The color, or gray-level, at a given position on the
floor is given by an underlying continuous periodic two-
dimensional function which we denote by c(x, y), an image
is a regular sampling of this function. In this section we will
show that all image blocks can be represented as a linear com-
bination of only four elements, where the four elements are
taken from a set, that is, a frame, with a finite number of el-
ements. The FTCM directly uses this model. In the training
phase it finds a frame for each texture and in the classification
phase representations, or approximations, of blocks from a
test image are found as linear combinations of four elements.
Because of this close connection we may say that the model
explains the good performance of FTCM, or alternatively, the
good performance of FTCM validates the model.

One period of the periodic function c(x, y) defines a
quadratic tile where each side has unit length, that is,
c(x, y) = c(x − �x�, y − �y�). In this model the function is

1 In this paper we use the 2-norm, ‖x‖2 = ∑N
n=1 x(n)2, for vectors and the

trace or Frobenius norm, ‖A‖2 =∑i
∑

j A(i, j)2, for matrices.
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defined by a finite number of control points placed on the
tile. This is illustrated in Figure 1 where two complete tiles
and parts of their neighboring tiles are shown. The 16 con-
trol points on each tile are regularly distributed on a 4 × 4
grid, the control points can be labeled ci j where only the
indexes are shown in the figure. Generally, in this model,
the M = M1M2 control points are placed on a rectangu-
lar M1 × M2 grid. The color of any point on a tile (on the
floor) is given as a bilinear interpolation of the closest con-
trol points, that is, c(x, y) = a1ci1 j1 + a2ci2 j2 + a3ci3 j3 + a4ci4 j4 .
The bilinear interpolation is actually a convex combination,
with a1 + a2 + a3 + a4 = 1 and 0 ≤ ak ≤ 1. For exam-
ple, the color value for the center of a tile in Figure 1 is
c(x, y) = (1/4)c22+(1/4)c23+(1/4)c32+(1/4)c33. We also note
that some parts of c(x, y) within a tile need control points
from neighboring tiles in forming the interpolation. We let
the coordinate system be aligned to match a tile, such that
the center of the first tile is given by (x, y) = (1/2, 1/2), and
the corners are (0, 0), (1, 0), (0, 1), and (1, 1).

Samples of c(x, y) on a rectangular sampling grid, not
necessarily aligned with the coordinate system implied by the
first tile, constitute the digital texture image. By choosing

(i) the number and positions of control points in a tile,
(ii) the gray-level value (color) of each of the control

points,
(iii) the orientation of the sampling grid relative to the co-

ordinate system aligned with the tiles, denoted by an-
gle α, and finally,

(iv) the distance between neighboring sampling points, de-
noted by δ, in the sampling grid,

we obtain a digital texture image. Figure 2 illustrates sam-
pling. In this example we have δ = 0.187 and α = 15 degrees.

The texture model described above has the capability of
generating a wide variety of textured images, some examples
are shown in Figure 6. We will now look closer on a small
block of pixels from the texture image. In Figure 2 a 3 × 3
block (N = 9 pixels) is marked. This block forms a size-N
vector, x = [x(1), x(2), . . . , x(9)]T . How the numbering is
done is not important, but we may assume that x(1) is the
upper left pixel and the rest are numbered columnwise. We
note that the location of pixel x(1) may be anywhere on the
floor, but since translations by unit lengths up and down will
give exactly the same value for x(1), and also the vector x will
be unchanged by such translations, the location of x(1) can
be restricted to be on the first tile.

Having the texture image specified as above, that is, by
control points and by a sampling grid, we realize that all pos-
sible vectors x can be formed by translating the position of
x(1) within a tile. An infinite number of different vectors x
can be formed. For gray-level images this set of vectors is a
subset of the space RN . We may say that this set defines the
texture. The challenge now is to make an efficient descrip-
tion of this set in a way that makes it easy to decide whether
a test vector belongs to this set or not. In the following we
argue that all vectors from this infinite set, corresponding
to a specific texture, can be represented as a linear (convex)
combination of four frame vectors taken from a finite subset

32 42 12 22 32 42 12 22 32 42 12 22

31 41 11 21 31 41 11 21 31 41 11 21

34 44 14 24 34 44 14 24 34 44 14 24

33 43 13 23 33 43 13 23 33 43 13 23

32 42 12 22 32 42 12 22 32 42 12 22

31 41 11 21 31 41 11 21 31 41 11 21

34 44 14 24 34 44 14 24 34 44 14 24

33 43 13 23 33 43 13 23 33 43 13 23

Figure 1: Two complete tiles of a tiled floor. The control points are
marked and labeled.

x = 0 x = 1 x = 2

y = 1

y = 0

Figure 2: A part of a tiled floor with sample points. The control
points are marked as dots, and the sample points (center of the im-
age pixels) as small circles.

of vectors containing at most MN2 vectors, where again M
denotes the number of control points in each tile. This finite
set is a frame and its elements are frame vectors. Note that
the frame vectors span the space RN , but adding a sparseness
constraint during representation makes them “span” only a
subspace, which contains all the x vectors. This subspace is
the union of a finite number of s-dimensional spaces, where
s is the number of frame vectors allowed in the sparse repre-
sentation, here s = 4.

In Figure 2 the marked upper left pixel, x(1), is above and
to the right of control point c13. Its value is a linear combi-
nation of the values in the four neighboring control points
c13, c23, c14, and c24. If x(1) is translated anywhere within the
small box with these control points as corners, it is still a lin-
ear combination of the same control points. At a corner x(1)
will take the value of the control point. This observation can
also be stated as follows: Within a small rectangular box of
the tile, the value x(1) will be a linear combination of its val-
ues at the corner points. This is true as long as no horizontal
or vertical line through any control point passes through the
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Figure 3: The left part shows a smaller part of a tiled floor, six control points and some nearby sample points are plotted. The right part
shows the tile divided into small boxes such that when x(1) is within one box the vector x = [x(1), x(2)]T is a convex combination of its
value at the corner points.

small box. The same statement is obviously also valid for an-
other pixel, for example x(2) below x(1).

The left part of Figure 3 illustrates the situation when
we consider two points simultaneously. The points are en-
tries in the vector x = [x(1), x(2)]T , in this example N = 2.
Translating this vector means that we translate both its en-
tries the same distance vertically and horizontally. The posi-
tion of x(2) is given by the position of x(1) and their relative
distance is given by the sampling grid. This implies that the
positions of all entries in x, and thus the value of x, are given
by the position of x(1) within the tile. In the figure a box
is plotted around x(1), such that when x(1) moves within
this box x(2) moves within the box plotted around x(2). The
neighboring control points will not change for either of the
pixels. This can also be stated as follows: placing x(1) within
a small rectangular box of the tile, the value of vector xwill be
a linear combination of its values at the corner points. This is
true as long as the box around x(1) is so small that all of the
entries of the vector do not involve new control points. The
dotted lines in the right part of Figure 3 divide the tile into
such boxes. Placing x(1) on an intersection between the dot-
ted lines, the corresponding vector x can be stored as a frame
vector fk. Collecting all these frame vectors into a frame, we
observe that any x generated by this texture model can be
represented as a linear combination of four frame vectors.

This reasoning can easily be extended to a larger vector x
of length N . We will now find how many small boxes the tile
should be divided into for this case. First we move x(1), and
the sampling grid to which x(1) is attached, vertically within
the tile. Everywhere when the position of an entry of vector x
crosses one of the horizontal lines that can be drawn through
a control point, we draw a horizontal line through x(1). This
will give at most M2N horizontal lines. Then we move x(1)
horizontally within the tile. Everywhere when the position of
an element of vector x crosses one of the vertical lines that
can be drawn through a control point, we draw a vertical
line through x(1). This will give at most M1N vertical lines.
Placing x(1) at one of the M1NM2N = MN2 intersections
between a horizontal and vertical line, we will have a corre-
sponding vector x. These vectors constitute the elements of

a finite frame. All vectors x, with x(1) anywhere on the tile,
and which are the elements of the set that defines this specific
texture image, can be represented as a linear (convex) combi-
nation of four frame vectors taken from the frame containing
at mostMN2 vectors.

To take advantage of this model in a practical way some
shortcuts are taken. First, we note that finding the correct
frame for an example texture is not possible unless we have
available the model parameters and even then the number of
frame vectors will often be quite large. By using fewer frame
vectors, K �MN2, we accept that the test vector will only be
approximated by the sparse representation. Secondly, only a
limited number of combinations of the frame vectors should
be used in the sparse representation. In this model the frame
vectors are the x vectors taken when x(1) is placed on the
corners of the many small boxes that a tile can be divided
into. The four frame vectors used in a sparse representation
should belong together; they should be the four corners of
one of these small boxes. By allowing any combination of the
frame vectors to be used, we do not have to consider a rela-
tive position of the frame vectors. Thirdly, the representation
(approximation) according to the model should strictly be a
bilinear interpolation between four points. It would be just as
reasonable to define the periodic function c(x, y) by a linear
interpolation between three control points (in a triangular
grid).

Taking these three shortcuts, we can use the frame design
method, first presented in [29] and used for texture images
in [30], to design a frame that represents a texture class. The
method is briefly described in the next section.

4. FRAME DESIGN

The task of designing, or training, a frame is to find its frame
vectors such that they can be used to efficiently represent
the texture class. The frames are designed based on available
sets of texture example images corresponding to the texture
classes under consideration, not on the usually unknown pa-
rameters in the texture model.
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Frame parameters
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texture
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vectors, X

One frame is trained
for each texture class

Figure 4: The setup for training of frames in FTCM is very similar
to the general frame design setup, [30].

If the number of different texture classes isC, we designC
frames, which are denoted F(i) for texture class i = 1, 2, . . . ,C.
A frame is designed to achieve the best possible sparse repre-
sentation of the training vectors for a particular texture, that
is, the example image(s) of the texture. Training is a compu-
tationally demanding process, but it is done before classifi-
cation and only once for each texture class. The process has
three main steps as shown in Figure 4.

The very first step in the FTCM training phase is to decide
the frame parameters. These parameters can be chosen quite
freely.

(i) The shape, usually rectangular, and the size of the
block around each pixel. The pixels within this block
are organized as a column vector of length N .

(ii) The number of vectors in the frame, K . As a rule of
thumb, found from the comprehensive experiments
done, we may use N ≤ K ≤ 5N .

(iii) The sparseness to use, represented by the number of
frame vectors used in the sparse representation, s. The
main objective is to choose a value of s that provides a
good discrimination of the different textures. The ex-
periment part of this paper confirms that the model
suggested values s = 3 and s = 4 are suitable values.

Having set the frame parameters, the next step is to build
the training vectors from the texture example images. As sug-
gested before, this can be as simple as rearranging the pix-
els from small image blocks, which may partly overlap each
other, into column vectors, or it can be more involved. The
sets of training vectors are arranged into N × L matrices, as
in (2), and denoted by X(i) for texture class i = 1, 2, . . . ,C.
Later, during classification, the test vectors should of course
be formed by the same procedure as for the training vectors.

In the training the parameter set, N , K , and s, is fixed.
For each frame to design, F(i), we use the corresponding set
of training vectors, X(i), generated from the example images.

For notational convenience we skip the superscript indexes
below. As explained in Section 2 the synthesis equation can
be written as ˜X = FW. We want to find the frame, F, of size
N × K , and the sparse coefficient vectors, wl, that minimize
the sum of the squared errors. The objective function to be
minimized is

J = J(F,W) = ‖X− ˜X‖2 = ‖X− FW‖2. (4)

Finding the optimal solution to this problem is difficult if not
impossible. We split the problem into two parts to make it
more tractable, similar to what is done in the GLA design al-
gorithm for VQ codebooks [31]. The iterative solution strat-
egy presented below results in good, but in general subopti-
mal, solutions to the problem.

The algorithm starts with a user-supplied initial frame
F0, usually K arbitrary vectors from the set of training vec-
tors, and then improves it by iteratively repeating two main
steps.

(1) Wt is found by vector selection using frame Ft . The ob-
jective function is J(W) = ‖X − FtW‖2, and a sparse-
ness constraint is imposed onW.

(2) Ft+1 is found fromX andWt, where the objective func-
tion is J(F) = ‖X− FWt‖2. This gives

Ft+1 = XWT
t

(

WtWT
t

)−1
. (5)

Then we increment t and go to Step 1.

t is the iteration number. The first step is suboptimal due
to the use of practical vector selection algorithms, while the
second step finds the F that minimizes the objective function.

In a texture classification context the frame concept has
been used together with the discrete wavelet transform, see
[7, 14, 32, 33]. We must point out that the frame in FTCM
has a different role. In the discrete wavelet frame transform
context the frame is used as the analysis filter bank, the frame
arises when the wavelet subbands are not down sampled.
If a perfect reconstruction synthesis filter bank exists, many
can exist [34], the outputs of the analysis filter bank can be
regarded as an alternative representation of the image. In
FTCM the analysis filter bank is replaced by a matching pur-
suit algorithm, and the frame is used to synthesize the signal
as in (1). Also, the FTCMuses several frames, each giving one
element of the feature vector, as opposed to the filter bank ap-
proach where each subband gives one element of the feature
vector.

5. CLASSIFICATION

Texture classification of a test image, containing regions of
different textures, is the task of classifying each pixel of the
test image to belong to a certain texture. This is done by gen-
erating test vectors from the test image. The classifying pro-
cess for the FTCM is illustrated in Figure 5.

A test vector is represented in a sparse way using each of
the different frames that were trained for the textures under
consideration, the set of C frames {F(i)}. Each sparse repre-
sentation of each test vector xl gives a representation error,
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Sparse representation
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Frames
Test image

Test vectors

Sparse representation
errors for each pixel
represented in an
appropriate way

Smoothed errors
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Figure 5: The setup for the classification approach in FTCM. This
setup is similar to a common setup in texture classification used in
[11].

r(i)l = xl − F(i)w(i)
l . Each test vector xl corresponds to a pixel

of the test image. Classification consists of selecting the in-
dex i for which the norm squared of the representation error,
‖r(i)l ‖2 = r(i)Tl r(i)l , is minimized.

Direct classification based on the norm squared of the
representation error for each test vector (pixel) gives quite
large classification errors, but the results can be substantially
improved by smoothing the error images. Smoothing is rea-
sonable since it is likely that neighboring pixels belong to the
same texture. For smoothing Randen and Husøy [11] con-
cluded that the separable Gaussian lowpass filter is the better
choice, and this is also the filter used here. The unit pulse
response for the 1D kernel of this filter is

hG(n) = 1√
2πσ

e−(1/2)(n
2/σ2). (6)

The parameter σ gives the bandwidth of the smoothing filter.
The effect of smoothing is mainly that more smoothing gives
lower resolution and better classification within the texture
regions. The cost is often more classification errors along the
borders between different texture regions.

To improve texture segmentation a nonlinearity may be
included before the smoothing filter is applied, [35]. The

nonlinearity is applied on ‖r(i)l ‖2, that is, a scalar property is
calculated by a nonlinear function f (‖r(i)l ‖2). The function
may be the square root to get the magnitude of the error, or
the inverse sine of the magnitude which gives the angle be-
tween signal vector and its sparse approximation, or a loga-
rithmic operation. Experiments we have done [30] indicate
that usually the logarithmic nonlinearity is the better choice.

6. EXPERIMENTS

6.1. Synthesized textures

The experiments presented here demonstrate the close con-
nection between the texture model and the FTCM. Let us de-
fine two tiles that both give braided textures, tileA defined by
a 4× 4 (M = 16) grid of control points and tile B defined by
a 6× 6 (M = 36) grid of control points. The intensity values
for the control points are

A =

⎡

⎢

⎢

⎢

⎣

0.5 0 0.5 0
1 0 1 1
0.5 0 0.5 0
1 1 1 0

⎤

⎥

⎥

⎥

⎦

,

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.5 0.5 0 0.5 0.5 0
0.5 0.5 0 0.5 0.5 0
1 1 0 1 1 1
0.5 0.5 0 0.5 0.5 0
0.5 0.5 0 0.5 0.5 0
1 1 1 1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(7)

From Figure 6 we see that the black and white bands are
wider on tile A than on tile B, tile B will have more of the
gray background. Based on these tiles we define six textures
using different values for the sample distance δ and the ro-
tation angle α. We generate example images of each texture,
which are used for training of the frames. We also make a test
image, Figure 6, consisting of segments from all the six tex-
ture classes. Visually the textures seem quite similar and are
quite difficult to distinguish from each other just by looking
at them.

Many frames were designed, using different sets of frame
parameters, for each of the six textures. We always used im-
age blocks of size 5× 5 to form the training vectors of length
N = 25, while the number of frame vectors K and sparse-
ness s varied. We used these frames to classify the test image;
the results are shown in Figure 7. Here we have used a quite
narrow lowpass filter, σ = 2, and the classification results
are almost perfect. For most cases the number of wrongly
classified pixels is less than 1%, often less than 0.5%, which
means that only some few pixels along the texture borders are
wrongly classified. Even the vector quantization case, s = 1,
does quite well when the number of frame (codebook) vec-
tors, K , is large. We observe that the smaller frames, K ≤ 50,
do quite well for sparseness choices s = 3 and s = 4, which
is the sparseness suggested by the model of Section 3. Also
without filtering (results not shown here) more than 90% of
the pixels were correctly classified for s > 1 and K ≥ 150,
while for s = 1 and K = 200, 70% of the pixels were correctly
classified. Without filtering we clearly saw that as the number
of frame vectors increased the results improved, as we would
expect from the model.

The conclusion so far is not surprising: when the textures
are generated in accordance with the model, texture classifi-
cation using FTCM, motivated by the model, achieves excel-
lent results.
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Tile A
α = 20

δ = 0.083

Tile B
α = 20

δ = 0.083

Tile A
α = 15

δ = 0.083

Tile B
α = 15

δ = 0.083

Tile A
α = 15

δ = 0.083

Tile A
α = 15

δ = 0.052

Tile B
α = 15

δ = 0.052

Figure 6: The synthesized test image on the top and its reference below. The reference tells how the different regions of synthesized test
image are built.

6.2. Natural textures

We also test the FTCM on some real data, and we choose to
use the nine test images of Randen and Husøy [11]. These
consist of 77 different natural textures, taken from three dif-
ferent and commonly used texture sources: the Brodatz al-
bum, the MIT Vision Texture Database, and the MeasTex
Image Texture Database. The test images are denoted by (a)
to (i) and are shown in [11, Figure 11], where also a more
detailed description of the test images can be found.2 Due
to space considerations only test image (c) is shown in this
paper, Figure 10(a). The same test images were also used in
other papers [8, 13, 16, 36, 37].

The procedures of Sections 4 and 5 were used. The first
step is to design the C = 77 class-specific frames from the ex-
ample images of all the texture classes under consideration.
Many different frame parameter sets were used in our exper-
iments. This was done to find which parameter sets perform
best on natural textures. We used 5 × 5 and 7 × 7 pixel
blocks, giving training and test vectors of lengths N = 25
and N = 49. The number of frame vectors in each frame
were K = {25, 50, 100, 200} for N = 25 and K = {50, 100}
for N = 49. This gives six different sizes for the frames. The
numbers of frame vectors in the sparse representation were
from s = 1 to s = 6. For each parameter set a frame was
designed for all the texture classes of interest, the number of
training vectors was L = 10000. The design of all the frames
needed several days of computer time, one to five minutes for
each frame, but this task must be done only once.

The texture classification capabilities of the FTCM were
tested using the procedure from Section 5. The nonlinearity
was logarithmic and Gaussian smoothing filters were used.
The bandwidths used were in the range from σ = 2 to
σ = 16. To find the best parameter sets we performed ex-
periments whose results are summarized in Figure 8, where

2 The training images and the test images are available at http://www.ux.
his.no/∼tranden/.
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Figure 7: Error rate, that is, number of mislabeled pixels divided by
total number of pixels, in classification of the test image in Figure 6.
Here we have lowpass filtering with a quite narrow filter, σ = 2.

the mean classification error rate of the nine test images are
shown for all the 36 different frame parameter sets, and in
Figure 9 where 6 parameter sets are used with varying de-
grees of smoothing. We see that having s = 3 or s = 4 gives
the smallest classification error rate for all the frame sizes in-
vestigated. This is in line with the results on synthetic textures
and the model presented in Section 3. For the tests with the
FTCM and s = 3 or s = 4 the number of wrongly classified
pixels is almost halved compared to the cases when s = 1 and
compared to the results of [11]. We also note that the frame
size in FTCM is important, especially for the cases where
s > 1. The model suggests that the number of frame vectors
to use should be quite large, and these results show that the

http://www.ux.his.no/~tranden/
http://www.ux.his.no/~tranden/
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Figure 8: Average error rate, that is, number of mislabeled pixels
divided by total number of pixels, in classification of the natural
texture test images (a) to (i). Each point represents a unique frame
parameter set, (N ,K , s). The number of vectors to use in the sparse
approximation, s, is along the x-axis. Here, the width of the lowpass
filter is given by σ = 8.

classification result gets better as the number of frame vec-
tors, K , increases. Practical reasons stop us from using larger
values of K .

Another interesting observation is that the number of
vectors used in the representation, s, should be increased
when the parameter N is increased. For N = 25 the frames
where s = 3 perform best, while forN = 49 the frames where
s = 4 perform best. This observation can be explained by
the fact that when N is larger the number of vectors to select
must be larger to have the same sparseness ratio, s/N , or to
have a reasonably good representation of the test vectors.

The effect of the smoothing filter is illustrated in
Figure 10. Little smoothing, σ = 4, gives many error regions
scattered in the test image, while more smoothing, σ = 12
gives better classification within the texture regions, but the
cost is often more classification errors along the borders be-
tween texture regions. Figure 10 also shows that the fine tex-
ture in the lower region is easier to identify than the coarser
textures in the rest of the test image.

As a last step we compare the results of FTCM with those
of other methods. Table 1 shows the classification errors,
given as percentage of wrongly classified pixels, for different
methods (rows) and the nine test images (a) to (i). Some of
the best classification results from [11] are shown in the up-
per part of Table 1. The same test images were also used in
other papers [8, 13, 16, 36, 37], and results from these are
shown in the next part of the table. It should be noted, how-
ever, that these latter results are not necessarily directly com-
parable since we do not know the exact experiment setup
used. The lower part of Table 1 shows the results for some
of the parameter sets used in the FTCM.

16141210864
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Figure 9: Average error rate in classification of the natural texture
test images (a) to (i). Each line represents a unique frame parameter
set, (N ,K , s). Note the small range for the y-axis. The bandwidth of
the smoothing filter, σ , is along the x-axis.

The methods from [11] listed in Table 1 are now briefly
explained: “f8a” and “f16b” use subband energies of textures
filtered through a tree-structured bank of quadrature mirror
filters (QMF). The filters are finite impulse response (FIR)
filters of lengths 8 and 16, respectively. The method denoted
“Daub-4” uses the Daubechies filters of length 4, and the
same structure as that used for the QMF filters. The referred
results use the nondyadic subband decomposition illustrated
in [11, Figure 6d]. The methods denoted by “JMS” and “JU”
are FIR filters optimized formaximal energy separation, [15].
The last two methods use co-occurrence and autoregressive
features. For more details of the classification methods re-
ferred and results of more methods we recommend [11]. For
the methods in the middle part of Table 1 please consult the
given references.

The results for the vector quantization case, FTCM with
s = 1, give an average error rate of approximately 30 per-
cent, Figure 8, which is comparable to the best results of [11].
The mean for the method “f16b” was 25.9 percent wrongly
classified pixels, while the parameter set 49 × 50 for N × K
and σ = 12 gave 25.4 percent wrongly classified pixels, see
Table 1. Even though the means are comparable, the results
for the individual test images vary significantly. For the test
image (h) the result is 39.8 for the “f16b” filtering method,
and 29.6 for FTCMwith frame size 49×50 and σ = 12, while
for the test image (i) the results are 28.5 and 37.1, respec-
tively. Generally, we note that the different filtering methods
and the autoregressive method perform better on test im-
age (i) than on test image (h), and that the co-occurrence
method and the FTCM (two exceptions in Table 1) perform
better on test image (h) than on test image (i).
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(a) (b) (c)

Figure 10: (a) Test image “(c)” and the wrongly classified pixels for little ((b) σ = 4, 25.8% errors) and much ((c) σ = 12, 9.4% errors)
smoothing. The frame parameters are N = 25, K = 50, and s = 3.

Table 1: Classification errors, given as the percentage of wrongly classified pixels, for different methods and natural test images. The results
in the middle part are not necessarily directly comparable to the rest.

Method (parameters: N × K , s, σ) a b c d e f g h i Mean

f8a [11] 7.2 21.1 23.7 18.6 18.6 37.5 43.2 40.1 29.7 26.6

f16b 8.7 18.9 23.3 18.4 17.2 36.4 41.7 39.8 28.5 25.9

Daub-4 8.7 22.8 25.0 23.5 21.8 38.2 45.2 40.9 30.1 28.5

JMS 16.9 36.3 32.7 41.1 43.0 47.3 51.1 59.7 49.9 42.0

JU 12.7 33.0 26.5 34.3 43.4 45.6 46.5 35.9 30.5 34.3

Co-occurrence 9.9 27.0 26.1 51.1 35.7 49.6 55.4 35.3 49.1 37.7

Autoregressive 19.6 19.4 23.0 23.9 24.0 58.0 46.4 56.7 28.7 33.3

M-band wavelet [36] 2.1 15.1 — — — 21.0 — 20.5 — —

SMLFM [8] 5.8 5.4 8.8 8.3 4.9 8.3 10.0 6.5 5.6 7.1

UMLFM [8] 5.7 5.5 9.1 5.7 5.4 — — — — —

ICM [8] 9.4 9.3 10.6 13.7 6.5 — — — — —

Method in [13, Table 2] 7.1 10.7 12.4 11.6 14.9 20.0 18.6 12.0 15.3 13.6

Method in [16, Figure 4b.] — — — 18.5 — — — — — —

Local binary pattern (LBP) in [37] 6.0 18.0 12.1 9.7 11.4 17.0 20.7 22.7 19.4 15.2

Gray-level difference (p8) in [37] 7.4 12.8 15.9 18.4 16.6 27.7 33.3 17.6 18.2 18.7

FTCM (25× 50, 3, 4) 2.1 18.1 25.8 27.0 20.0 29.9 38.2 35.2 43.9 26.7

FTCM (25× 50, 3, 8) 3.5 11.4 10.6 12.5 8.7 21.8 23.1 24.3 26.8 15.9

FTCM (25× 50, 3, 12) 5.4 10.3 9.4 10.4 6.6 20.2 20.8 22.6 21.4 14.1

FTCM (25× 100, 3, 12) 5.5 9.1 14.6 7.9 6.1 19.3 18.0 18.6 22.4 13.5

FTCM (25× 100, 4, 12) 5.5 6.9 16.5 7.4 7.0 21.6 17.9 26.0 15.8 13.9

FTCM (25× 200, 3, 10) 4.3 9.8 11.6 7.6 6.4 20.8 15.9 18.2 22.3 13.0

FTCM (25× 200, 3, 12) 5.2 9.8 12.1 7.6 6.9 20.5 16.3 17.2 21.7 13.1

FTCM (25× 200, 4, 12) 5.5 7.3 13.2 5.6 10.5 17.1 17.2 18.9 21.4 13.0

FTCM (49× 50, 1, 12) 8.9 17.5 14.6 30.8 24.6 25.2 39.9 29.6 37.1 25.4

FTCM (49× 100, 4, 12) 5.7 10.7 9.0 6.5 9.6 17.5 19.7 19.4 24.1 13.6

The conclusion of the experiments can be summarized
as follows. For the nine test images used, the FTCM performs
very well. There is little improvement achieved when increas-
ing the block size from 5 × 5 to 7 × 7 pixels. It is better to
increase the number of frame vectors; K = 200 is marginally
better thanK = 100 as can be seen fromTable 1. The number

of frame vectors to use in the sparse representation should be
s = 3 or s = 4 according to the model, and this is confirmed
by the experiments both on synthetic and natural textures.
The optimal width of the lowpass filter, given by σ , is more
dependent on the texture characteristics and boundaries be-
tween texture patches in the test image than on the frame
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parameters; for example, the fine textures in test image (a)
are best classified using a small value of σ . The average result
for these test images is the best for 10 ≤ σ ≤ 12. The experi-
ments here indicate that a frame size of 25 × 200, s = 3, and
σ = 10 is a good choice.

7. CONCLUSION

In this paper we have presented the frame texture classifi-
cation method for supervised texture segmentation of im-
ages. Both methods for training based on texture example
images and for classification of test images were described,
together with a theoretical model motivating the method.
The method is conceptually simple and straightforward, but
it is computationally demanding, especially the training part.
The classification results are excellent. The FTCM provides
superior classification performance, for many test images the
number of wrongly classified pixels is more than halved,
compared to the many methods presented in the large com-
parative study of Randen and Husøy [11]. The results pre-
sented also compare favorably with those presented in several
other recent contributions.
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