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Quantization noise shaping is commonly used in oversampled A/D and D/A converters with uniform sampling. This paper consid-
ers quantization noise shaping for arbitrary finite frame expansions based on generalizing the view of first-order classical oversam-
pled noise shaping as a compensation of the quantization error through projections. Two levels of generalization are developed, one
a special case of the other, and two different cost models are proposed to evaluate the quantizer structures. Within our framework,
the synthesis frame vectors are assumed given, and the computational complexity is in the initial determination of frame vector
ordering, carried out off-line as part of the quantizer design. We consider the extension of the results to infinite shift-invariant
frames and consider in particular filtering and oversampled filter banks.
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1. INTRODUCTION

Quantization methods for frame expansions have received
considerable attention in the last few years. Simple scalar
quantization applied independently on each frame expan-
sion coefficient, followed by linear reconstruction is well
known to be suboptimal [1, 2]. Several algorithms have been
proposed that improve performance although with signifi-
cant complexity either at the quantizer [3] or in the recon-
struction method [3, 4]. More recently, frame quantization
methods inspired by uniform oversampled noise shaping (re-
ferred to generically as Sigma-Delta noise shaping) have been
proposed for finite uniform frames [5, 6] and for frames
generated by oversampled filterbanks [7]. In [5, 6] the error
due to the quantization of each expansion coefficient is sub-
tracted from the next coefficient. The method is algorithmi-
cally similar to classical first-order noise shaping and uses a
quantity called frame variation to determine the optimal or-
dering of frame vectors such that the quantization error is re-
duced. In [7] higher-order noise shaping is extended to over-
sampled filterbanks using a predictive approach. That solu-
tion performs higher-order noise shaping, where the error
is filtered and subtracted from the subsequent frame coeffi-
cients.

In this paper we view noise shaping as compensation of
the error resulting from quantizing each frame expansion

coefficient through a projection onto the space defined by
another synthesis frame vector. This requires only knowl-
edge of the synthesis frame set and a prespecified order-
ing and pairing for the frame vectors. Instead of attempt-
ing a purely algorithmic generalization, we incorporate the
use of projections and explore the issue of frame vector or-
dering. Our method improves the average quantization error
even if the frame vector ordering is not optimal. However,
we also demonstrate the benefits from determining the op-
timal ordering. The theoretical framework we present pro-
vides a designmethod for noise shaping quantizers under the
cost functions presented. The generalization we propose im-
proves the error in reconstruction due to quantization even
for nonredundant frame expansions (i.e., a basis set) when
the frame vectors are nonorthogonal. This paper elaborates
and expands on [8].

In Section 2 we present a brief summary of frame rep-
resentations to establish notation and we describe classi-
cal first-order Sigma-Delta quantizers in the terminology of
frames. In Section 3 we propose two generalizations, which
we refer to as the sequential quantizer and the tree quan-
tizer, both assuming a known ordering of the frame vectors.
Section 4 explores two different cost models for evaluating
the quantizer structures and determining the frame vector
ordering. The first is based on a stochastic representation of
the error and the second on deterministic upper bounds. In
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Section 5 we determine the optimal ordering of coefficients
assuming the cost measures in Section 4 and show that for
Sigma-Delta noise shaping, the natural (time-sequential) or-
dering is optimal. We also show that for finite frames the de-
termination of frame vector ordering can be formulated in
terms of known problems in graph theory.

In Section 6 we consider cases where the projection is re-
stricted and the connection to the work in [5, 6]. Further-
more, we examine the natural extension to the case of higher-
order quantization. Section 7 presents experimental results
on finite frames that verify and validate the theoretical ones.
In Section 8 we discuss infinite frame expansions. We apply
the results to infinite shift invariant frames, and view filtering
and classical noise shaping as an example. We also consider
the case of reconstruction filterbanks, and how our work re-
lates to [7].

2. CONCEPTS AND BACKGROUND

In this section we present a brief summary of frame expan-
sions to establish notation, and we describe oversampling in
the context of frames.

2.1. Frame representation and quantization

A vector x in a spaceW of finite dimension N is represented
with the finite frame expansion:

x =
M∑

k=1
akfk, ak =

〈
x, fk

〉
. (1)

The space W is spanned by both sets: the synthesis frame
vectors {fk, k = 1, . . . ,M}, and the analysis frame vectors
{fk, k = 1, . . . ,M}. This condition ensures thatM ≥ N . De-
tails on the relationships of the analysis and synthesis vectors
can be found in a variety of texts such as [1, 9]. The ratio
r = M/N is referred to as the redundancy of the frame. The
equations above hold for infinite-dimensional frames, with
an additional constraint that ensures the sum converges for
all x with finite length. An analysis frame is referred to as uni-
form if all the frame vectors have the samemagnitude, that is,
‖fk‖ = ‖f l‖ for all k and l. Similarly, a synthesis frame is uni-
form if ‖fk‖ = ‖fl‖ for all k and l.

The coefficients ak above are scalar, continuous quanti-
ties. In order to digitally process, store, or transmit them,
they need to be quantized. The simplest quantization strat-
egy, which we call direct scalar quantization, is to quantize
each one individually to âk = Q(ak) = ak + ek, where Q(·)
denotes the quantization function and ek the quantization er-
ror for each coefficient. The total additive error vector from
this strategy is equal to

E =
M∑

k=1
ekfk. (2)

It is easy to show that if the frame forms an orthonormal
basis, then direct scalar quantization is optimal in terms of
minimizing the error magnitude. However, this is not the

al a′l Q(·) âl
+
−

− +
+

cel−1 c·z−1 el

Figure 1: Traditional first-order noise shaping quantizer.

case for all other frame expansions [1–7, 10]. Noise shaping is
one of the possible strategies to reduce the error magnitude.
In order to generalize noise shaping to arbitrary frame ex-
pansions, we first present traditional oversampling and noise
shaping formulated in frame terms.

2.2. Sigma-Delta noise shaping

Oversampling in time of bandlimited signals is a well-studied
class of frame expansions. A signal x[n] or x(t) is upsam-
pled or oversampled to produce a sequence ak. In the termi-
nology of frames, the upsampling operation is a frame ex-
pansion in which fk[n] = rfk[n] = sinc(π(n − k)/r), with
sinc(x) = sin(x)/x. The sequence ak is the corresponding or-
dered sequence of frame coefficients:

ak =
〈
x[n], fk[n]

〉 =
∑

n

x[n] sinc
(
π(n− k)

r

)
,

x[n] =
∑

k

akfk[n] =
∑

k

ak
1
r
sinc

(
π(n− k)

r

)
.

(3)

Similarly for oversampled continuous time signals,

ak =
〈
x(t), fk(t)

〉 =
∫ +∞

−∞
x(t)

r

T
sinc

(
πt

T
− πk

r

)
,

x(t) =
∑

k

akfk(t) =
∑

k

ak sinc
(
πt

T
− πk

r

)
,

(4)

where T is the Nyquist sampling period for x(t).
Sigma-Delta quantizers can be represented in a num-

ber of equivalent forms [10]. The representation shown in
Figure 1 most directly represents the view that we extend
to general frame expansions. Performance of Sigma-Delta
quantizers is sometimes analyzed using an additive white
noise model for the quantization error [10]. Based on this
model it is straightforward to show that the in-band quanti-
zation noise power is minimized when the scaling coefficient
c is chosen to be c = sinc(π/r).1

We view the process in Figure 1 as an iterative process
of coefficient quantization followed by error projection. The
quantizer in the figure quantizes a′l to âl = a′l + el. Consider

1 With typical oversampling ratios, this coefficient is close to unity and is
often chosen as unity for computational convenience.
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xl[n], such that the coefficients up to al−1 have been quan-
tized and el−1 has already been scaled by c and subtracted
from al to produce a′l :

xl[n] =
l−1∑

k=−∞
âkfk[n] + a′l fl[n] +

+∞∑

k=l+1
akfk[n]

= xl+1[n] + el
(
fl[n]− c · fl+1[n]

)
.

(5)

The incremental error el(fl[n]−c · fl+1[n]) at the lth iteration
of (5) is minimized if we pick c such that c · fl+1[n] is the
projection of fl[n] onto fl+1[n]:

c =
〈
fl[n], fl+1[n]

〉
∥∥fl+1[n]

∥∥2 = sinc
(
π

r

)
. (6)

This choice of c projects to fl+1[n] the error due to quantiz-
ing al and compensates for this error by modifying al+1. Note
that the optimal choice of c in (6) is the same as the optimal
choice of c under the additive white noise model for quanti-
zation.

Minimizing the incremental error is not necessarily opti-
mal in terms of minimizing the overall quantization error. It
is, however, optimal in terms of the two cost functions which
we describe in Section 4. Before we examine these cost func-
tions we generalize first-order noise shaping to general frame
expansions.

3. NOISE SHAPING ON FRAMES

In this section we propose two generalizations of the dis-
cussion of Section 2.2 to arbitrary finite-frame representa-
tions of length M. Throughout the discussion in this sec-
tion we assume the ordering of the synthesis frame vectors
(f1, . . . , fM), and correspondingly the ordering of the synthe-
sis coefficients (a1, . . . , aM) has already been determined.

We examine the ordering of the frame vectors in
Section 5. However, we should emphasize that the execu-
tion of the algorithm and the ordering of the frame vectors
are distinct issues. The optimal ordering can be determined
once, off-line, in the design phase. The ordering only de-
pends on the properties of the synthesis frame, not the data
or the analysis frame.

3.1. Single-coefficient quantization

To illustrate our approach, we consider quantizing the first
coefficient a1 to â1 = a1 + e1, with e1 denoting the additive
quantization error. Equation (1) then becomes

x = â1f1 +
M∑

k=2
akfk − e1f1

= â1f1 + a2f2 +
M∑

k=3
akfk − e1c1,2f2 − e1

(
f1 − c1,2f2

)
.

(7)

As in (5), the norm of e1(f1 − c1,2f2) is minimized if c1,2f2 is
the projection of f1 onto f2:

c1,2f2 =
〈
f1,u2

〉
u2 =

〈
f1,

f2∥∥f2
∥∥

〉
f2∥∥f2
∥∥

=⇒ c1,2 =
〈
f1,u2

〉
∥∥f2
∥∥ =

〈
f1, f2

〉
∥∥f2
∥∥2 ,

(8)

where uk = fk/‖fk‖ are unit vectors in the direction of the
synthesis vectors. Next, we incorporate the term −e1c1,2f2 in
the expansion by updating a2:

a′2 = a2 − e1c1,2. (9)

After the projection, the residual error is equal to e1(f1 −
c1,2f2). To simplify this expression, we define r1,2 to be the
direction of the residual error, and e1c̃1,2 to be the error am-
plitude:

r1,2 = f1 − c1,2f2∥∥f1 − c1,2f2
∥∥ ,

c̃1,2 =
∥∥f1 − c1,2f2

∥∥ = 〈f1, r1,2
〉
.

(10)

Thus, the residual error is e1〈f1, r1,2〉r1,2 = e1c̃1,2r1,2. We refer
to c̃1,2 as the error coefficient for this pair of vectors.

Substituting the above, (7) becomes

x = â1f1 + a′2f2 +
M∑

k=3
akfk − e1c̃1,2r1,2. (11)

Equation (11) can be viewed as decomposing e1f1 into the
direct sum (e1c1,2f2)⊕ (e1c̃1,2r1,2) and compensating only for
the first term of this sum. The component e1c̃1,2r1,2 is the final
quantization error after one step is completed.

Note that for any pair of frame vectors the corresponding
error coefficient c̃k,l is always positive. Also, if we assume a
uniform synthesis frame, there is a symmetry in the terms
we defined, that is, ck,l = cl,k and c̃k,l = c̃l,k, for any pair k 
= l.

3.2. Sequential noise shaping quantizer

The process in Section 3.1 is iterated by quantizing the next
(updated) coefficient until all the coefficients have been
quantized. Specifically, the procedure continues as shown in
Algorithm 1.We refer to this procedure as the sequential first-
order noise shaping quantizer.

Every iteration of the sequential quantization contributes
ekc̃k,k+1rk,k+1 to the total quantization error, where

rk,l = fk − ck,lfl∥∥fk − ck,lfl
∥∥ , (12)

c̃k,l =
∥∥fk − ck,lfl

∥∥. (13)

Since the frame expansion is finite, we cannot compensate for
the quantization error of the last step eMfM . Thus, the total
error vector is

E =
M−1∑

k=1
ekc̃k,k+1rk,k+1 + eMfM. (14)
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(1) Quantize coefficient k by setting âk = Q(a′k).
(2) Compute the error ek = âk − a′k .
(3) Update the next coefficient ak+1 to a′k+1 = ak+1 − ekck,k+1,
where

ck,l =
〈
fk , fl

〉
∥∥fl
∥∥2 . (15)

(4) Increase k and iterate from step (1) until all the
coefficients have been quantized.

Algorithm 1

Note that c̃k,lrk,l is the residual from the projection of fk
onto fl, and therefore it has magnitude less than or equal to
fk. Specifically, for all k and l,

c̃k,l ≤
∥∥fk
∥∥, (16)

with equality holding if and only if fk is orthogonal to fl. Fur-
thermore note that since c̃k,l is the magnitude of a vector, it is
always nonnegative.

3.3. The tree noise shaping quantizer

The sequential quantizer can be generalized by relaxing the
sequence of error assignments: again, we assume that the co-
efficients have been preordered and that the ordering defines
the sequence in which coefficients are quantized. In this gen-
eralization, we associate with each ordered frame vector fk
another, not necessarily adjacent, frame vector flk further in
the sequence (and, therefore, for which the corresponding
coefficient has not yet been quantized) to which the error is
projected using (9). With this more general approach some
frame vectors can be used to compensate for more than one
quantized coefficient.

In terms of the Algorithm 1, step (3) changes to

(3) update alk to a
′
lk
=alk−ekck,lk , where ck,l = 〈fk, fl〉/‖fl‖2,

and lk > k.

The constraint lk > k ensures that alk is further in the se-
quence than ak. For finite frames, this defines a tree, in which
every node is a frame vector or associated coefficient. If a co-
efficient ak uses coefficient alk to compensate for the error,
then ak is a direct child of alk in that tree. The root of the tree
is the last coefficient to be quantized, aM .

We refer to this as the tree noise shaping quantizer. The
sequential quantizer is, of course, a special case of the tree
quantizer where lk = k + 1.

The resulting expression for x is given by

x =
M∑

k=1
âkfk −

M−1∑

k=1
ekc̃k,lkrk,lk − eMfM

= x̂ −
M−1∑

k=1
ekc̃k,lkrk,lk − eM

∥∥fM
∥∥uM ,

(17)

where x̂ is the quantized version of x after noise shaping, and
the ek are the quantization errors in the coefficients after the
corrections from the previous iterations have been applied to
ak . Thus, the total error of the process is

E =
M−1∑

k=1
ekc̃k,lkrk,lk + eMfM. (18)

4. ERRORMODELS AND ANALYSIS

In order to compare and design quantizers, we need to be
able to compare the magnitude of the error in each. How-
ever, the error terms ek in (2), (14), and (18) are data de-
pendent in a very nonlinear way. Furthermore, due to the er-
ror projection and propagation performed in noise shaping,
the coefficients being quantized at every step are different for
the different quantization strategy. Therefore, for each k, ek is
different among (2), (14), and (18), making the precise anal-
ysis and comparison even harder. In order to compare quan-
tizer designs we need to evaluate them using cost functions
that are independent of the data.

To simplify the problem further, we focus on cost mea-
sures for which the incremental cost at each step is indepen-
dent of the whole path and the data. We refer to these as
incremental cost functions. In this section we examine two
such models, one stochastic and one deterministic. The first
cost function is based on the white noise model for quanti-
zation, while the second provides a guaranteed upper bound
for the error. Note that for the rest of this development we as-
sume linear quantization, with Δ denoting the interval spac-
ing of the linear quantizer. We also assume that the quantizer
is properly scaled to avoid overflow.

4.1. Additive noisemodel

The first cost function assumes the additive uniform white
noise model for quantization error to determine the expected
energy of the error E{‖E‖2}. An additive noise model has
previously been applied to other frame expansions [3, 7].
Its assumptions are often inaccurate, and it only attempts
to describe average behavior, with no guarantees on perfor-
mance comparisons or improvements for individual realiza-
tions. However it can often lead to important insights on the
behavior of the quantizer.

In this model all the error coefficients ek are assumed
white and identically distributed, with variance Δ2/12, where
Δ is the interval spacing of the quantizer. They are also as-
sumed to be uncorrelated with the quantized coefficients.
Thus, all error components contribute additively to the er-
ror power, resulting in

E
{‖E‖2} = Δ2

12

( M∑

k=1

∥∥fk
∥∥2
)
, (19)

E
{‖E‖2} = Δ2

12

(M−1∑

k=1
c̃2k,k+1 +

∥∥fM
∥∥2
)
, (20)

E
{‖E‖2} = Δ2

12

(M−1∑

k=1
c̃2k,lk +

∥∥fM
∥∥2
)
, (21)
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for the direct, the sequential, and the tree quantizer, respec-
tively.

4.2. Errormagnitude upper bound

As an alternative to the cost function in Section 4.1, we also
consider an upper bound for the error magnitude. For any
set of vectors ui, ‖

∑
k uk‖ ≤

∑
k ‖uk‖, with equality only if

all vectors are collinear, in the same direction. This leads to
the following upper bound on the error

‖E‖ ≤ Δ

2

( M∑

k=1

∥∥fk
∥∥
)
, (22)

‖E‖ ≤ Δ

2

(M−1∑

k=1
c̃k,k+1 +

∥∥fM
∥∥
)
, (23)

‖E‖ ≤ Δ

2

(M−1∑

k=1
c̃k,lk +

∥∥fM
∥∥
)
, (24)

for direct, sequential, and tree quantization, respectively.
The vector rM−1,lM−1 is by construction orthogonal to fM

and the rk,lk are never collinear, making the bound very loose.
Thus, a noise shaping quantizer can be expected in general
to perform better than what the bound suggests. Still, for the
purposes of this discussion we treat this upper bound as a
cost function and we design the quantizer such that this cost
function is minimized.

4.3. Analysis of the errormodels

To compare the average performance of direct coefficient
quantization to the proposed noise shaping we only need to
compare the magnitude of the right-hand side of (19) thru
(21), and (22) thru (24) above. The cost of direct coeffi-
cient quantization computed using (19) and (22) does not
change, even if the order in which the coefficients are quan-
tized changes. Therefore, we can assume that the ordering of
the synthesis frame vectors and the associated coefficients is
given, and compare the three strategies. In this section we
show that for any frame vector ordering, the proposed noise
shaping strategies reduce both the average error power, and
the worst-case error magnitude, as described using the pro-
posed functions, compared to direct scalar quantization.

When comparing the cost functions using inequalities,
the multiplicative terms Δ2/12 and Δ/2, common in all equa-
tions, are eliminated, because they do not affect the mono-
tonicity. Similarly, the latter holds for the final additive term
‖fM‖2 and ‖fM‖, which also exists in all equations and does
not affect the monotonicity of the comparison. To summa-
rize, we need to compare the following quantities:

M−1∑

k=1

∥∥fk
∥∥2,

M−1∑

k=1
c̃2k,k+1,

M−1∑

k=1
c̃2k,lk , (25)

in terms of the average error power, and

M−1∑

k=1

∥∥fk
∥∥,

M−1∑

k=1
c̃k,k+1,

M−1∑

k=1
c̃k,lk , (26)

in terms of the guaranteed worst-case performance. These
correspond to direct coefficient quantization, sequential
noise shaping, and tree noise shaping, respectively.

Using (16) it is easy to show that both noise shaping
methods have lower cost than direct coefficient quantization
for any frame vector ordering. Furthermore, we can always
pick lk = k + 1, and, therefore, the tree noise shaping quan-
tizer can always achieve the cost of the sequential quantizer.
Therefore, we can always find lk such that the comparison
above becomes

M−1∑

k=1

∥∥fk
∥∥2 ≥

M−1∑

k=1
c̃2k,k+1 ≥

M−1∑

k=1
c̃2k,lk ,

M−1∑

k=1

∥∥fk
∥∥ ≥

M−1∑

k=1
c̃k,k+1 ≥

M−1∑

k=1
c̃k,lk .

(27)

The relationships above hold with equality if and only if
all the pairs (fk, fk+1) and (fk, flk ) are orthogonal. Otherwise
the comparison with direct coefficient quantization results in
a strict inequality. In other words, noise shaping improves the
quantization cost compared to direct coefficient quantization
even if the frame is not redundant, as long as the frame is not
an orthogonal basis.2 Note that the coefficients ck,l are 0 if the
frame is an orthogonal basis. Therefore, the feedback terms
ekck,lk in step (3) of the algorithms described in Section 3 are
equal to 0. In this case, the strategies in Section 3 reduce to
direct coefficient quantization, which can be shown to be the
optimal scalar quantization strategy for orthogonal basis ex-
pansions.

We can also determine a lower bound for the cost, in-
dependent of the frame vector ordering, by picking jk =
argminlk 
=k c̃k,lk . This does not necessarily satisfy the con-
strain jk > k of Section 3.3, therefore the lower bound cannot
always be met. However, if a quantizer can meet it, it is the
minimum cost first-order noise shaping quantizer, indepen-
dent of the frame vector ordering, for both cost functions.

The inequalities presented in this section are summarized
below.

For given frame ordering, jk = argminlk 
=k c̃k,lk and some
{lk > k},

M∑

k=1
c̃k, jk ≤

M−1∑

k=1
c̃k,lk +

∥∥fM
∥∥ ≤

M−1∑

k=1
c̃k,k+1 +

∥∥fM
∥∥ ≤

M∑

k=1

∥∥fk
∥∥,

M∑

k=1
c̃2k, jk ≤

M−1∑

k=1
c̃2k,lk +

∥∥fM
∥∥2 ≤

M−1∑

k=1
c̃2k,k+1 +

∥∥fM
∥∥2 ≤

M∑

k=1

∥∥fk
∥∥2,

(28)

where the lower and upper bounds are independent of the
frame vector ordering.

2 An oblique basis can reduce the quantization error compared to an or-
thogonal one if noise shaping is used, assuming the quantizer uses the
same Δ. However, more quantization levels might be necessary to ensure
that the quantizer does not overflow if an oblique basis is used.
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Figure 2: Examples of graph representations of first-order noise shaping quantizers on a frame with five frame vectors. Note that the weights
shown represent the upper bound of the quantization error. To represent the average error power, the weights should be squared.

In the discussion above we showed that the proposed
noise shaping reduces the average and the upper bound of
the quantization error for all frame expansions. The strate-
gies above degenerate to direct coefficient quantization if the
frame is an orthogonal basis. These results hold without any
assumptions on the frame, or the ordering of the frame vec-
tors and the corresponding coefficients. Finally, we derived a
lower bound for the cost of a first-order noise shaping quan-
tizer. In the next section we examine how to determine the
optimal ordering and pairing of the frame vectors.

5. FIRST-ORDER QUANTIZER DESIGN

As indicated earlier, an essential issue in first-order quantizer
design based on the strategies outlined in this paper is deter-
mining the ordering of the frame vectors. The optimal order-
ing depends on the specific set of synthesis frame vectors, but
not on the specific signal. Consequently, the quantizer design
(i.e., the frame vector ordering) is carried out off-line and the
quantizer implementation is a sequence of projections based
on the ordering chosen for either the sequential or tree quan-
tizer.

5.1. Simple design strategies

An obvious design strategy is to determine an ordering and
pairing of the coefficients such that the quantization of ev-
ery coefficient ak is compensated as much as possible by the
coefficient alk . This can be achieved by setting lk = jk, with
jk = argminlk 
=k c̃k,lk , as defined for the lower bounds of (28).
When this strategy is possible to implement, that is, jk > k, it
results in the optimal ordering and pairing under both cost
models we discussed, since it meets the lower bound for the
quantization cost.

This corresponds to how a traditional Sigma-Delta quan-
tizer works. When an expansion coefficient is quantized, the
coefficients that can compensate for most of the error are the
ones most adjacent. This implies that the time sequential or-
dering of the oversampling frame vectors is the optimal or-
dering for first-order noise shaping (another optimal order-
ing is the time-reversed, i.e., the anticausal version). We ex-
amine this further in Section 8.1.

Unfortunately, for certain frames, this optimal pairing
might not be feasible. Still, it suggests a heuristic for a good
coefficient pairing: at every step k, the error from quantizing
coefficient ak is compensated using the coefficient alk that can
compensate for most of the error, picking from all the frame
vectors whose corresponding coefficients have not yet been
quantized. This is achieved by setting lk = argminl>k c̃k,l.
This, in general is not an optimal strategy, but an imple-
mentable heuristic. Optimal designs are slightly more in-
volved and we discuss these next.

5.2. Quantization graphs and optimal quantizers

From Section 3.3 it is clear that a tree quantizer can be repre-
sented as a graph—specifically, a tree—in which all the nodes
of the graph are coefficients to be quantized. Similarly for a
sequential quantizer, which is a special case of the tree quan-
tizer, the graph is a linear path passing through all the nodes
ak in the correct sequence. In both cases, the graphs have
edges (k, lk), pairing coefficient ak to coefficient alk if and
only if the quantization of coefficient ak assigns the error to
the coefficient alk .

Figure 2 shows four examples of graph representations
of first-order noise shaping quantizers on a frame with five
frame vectors. Figures 2(a) and 2(b) demonstrate two se-
quential quantizers ordering the frame vectors in their nat-
ural and their reverse order, respectively. In addition, Figures
2(c) and 2(d) demonstrate two general tree quantizers for the
same frame.

In the figure a weight is assigned to each edge. The cost
of each quantizer is proportional to the total weight of the
graph with the addition of the cost of the final term. For a
uniform frame the magnitude of the final term is the same,
independent of which coefficient is quantized last. Therefore
it is eliminated when comparing the cost of quantizer designs
on the same frame. Thus, designing the optimal quantizer
corresponds to determining the graph with the minimum
weight.

We define a graph that has the frame vectors as nodes
V = {f1, . . . , fM} and the edges have weight w(k, l) = c̃2k,l or
w(k, l) = c̃k,l if we want tominimize the expected error power
or the upper bound of the error magnitude, respectively. We
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call this graph the quantization error assignment graph. On
this graph, any acyclic path that visits all the nodes—also
known as a Hamiltonian path—defines a first order sequen-
tial quantizer. Similarly, any tree that visits all the nodes—
also known as a spanning tree—defines a tree quantizer.

The minimum cost Hamiltonian path defines the opti-
mal sequential quantizer. This can be determined by solving
the traveling salesman problem (TSP). The TSP is of course
NP-complete in general, but has been extensively studied in
the literature [11]. Similarly, the optimal tree quantizer is de-
fined by the solution of theminimum spanning tree problem.
This is also a well-studied problem, solvable in polynomial
time [11]. Since any path is also a tree, if the minimum span-
ning tree is a Hamiltonian path, then it is also the solution
to the traveling salesman problem. The results are easy to ex-
tend to nonuniform frames.

We should note that, in general, the optimal ordering and
pairing depend on which of the two cost functions we choose
to optimize for. Furthermore, we should reemphasize that
this optimization is performed once, off-line, at the design
stage of the quantizer. Therefore, the computational cost of
solving these problems does not affect the complexity of the
resulting quantizer.

6. FURTHER GENERALIZATIONS

In this section we consider two further generalizations. In
Section 6.1 we examine the case for which the product term is
restricted. In Section 6.2 we consider the case of noise shap-
ing using more than one vector for compensation. Although
a combination of the two is possible, we do not consider it in
this paper.

6.1. Projection restrictions

The development in this paper uses the product ekck,lk to
compensate for the error in quantizing coefficient ak using
coefficient alk . Implementation restrictions often do not al-
low for this product to be computed to a satisfactory preci-
sion. For example, typical Sigma-Delta converters eliminate
this product altogether by setting c = 1. In such cases, the
analysis using projections breaks down. Still, the intuition
and approach remains applicable.

The restriction we consider is one on the product: the
coefficients ck,lk are restricted to be in a discrete set A =
{α1, . . . ,αK}. Requiring the coefficient to be an integer power
of 2 or to be only±1 are examples of such constraints. In this
case we use again the algorithms of Section 3, with ck,l now
chosen to be the coefficient in A closest to achieving a pro-
jection, that is, with ck,l specified as

ck,l = argminc∈A
∥∥fk − cfl

∥∥. (29)

As in the unrestricted case, the residual error is ek(fk−ck,lfl) =
ekc̃k,lrk,l with rk,l and c̃k,l defined as in (12) and (13), respec-
tively.

To apply either of the error models in Section 4, we use
the new c̃l,lk , as computed above. However, in this case, cer-
tain coefficient orderings and pairings might increase the

overall error. A pairing of fk with flk improves the cost if and
only if

∥∥fk − ck,lk flk
∥∥ ≤ ∥∥fk

∥∥⇐⇒ c̃k,lk ≤
∥∥fk
∥∥, (30)

which is no longer guaranteed to hold. Thus, the strategies
described in Section 5.1 need a minor modification: we only
allow the compensation to take place if (30) holds. Similarly,
in terms of the graphical model of Section 5.2, we only allow
an edge in the graph if (30) holds. Still, the optimal sequen-
tial quantizer is the solution to the TSP problem, and the op-
timal tree quantizer is the solution to theminimum spanning
tree problem on that graph—which might now have missing
edges.

The main implication of missing edges is that, depending
on the frame we operate on, the graph might have discon-
nected components. In this case we should solve the traveling
salesman problem or the minimum spanning tree on every
component. Also, it is possible that, although we are operat-
ing on an oversampled frame, noise shaping is not beneficial
due to the constraints. The simplest way to fix this is to always
allow the choice ck,lk = 0 in the setA. This ensures that (30)
is always met, and therefore the graph stays connected. Thus,
whenever noise shaping is not beneficial, the algorithms will
pick ck,lk = 0 as the compensation coefficient, which is equiv-
alent to no noise shaping. We should note that the choice of
the setAmatters. The denser the set is, the better the approx-
imation of the projection. Thus the resulting error is smaller.

An interesting special case corresponds to removing the
multiplication from the feedback loop by settingA = {1}. As
we mentioned before, this is a common design choice in tra-
ditional Sigma-Delta converters. Furthermore, it is the case
examined in [5, 6], in which the issue of the optimal permu-
tation is addressed in terms of the frame variation. The frame
variation is defined in [5] motivated by the triangle inequal-
ity, as is the upper boundmodel of Section 4.2. In that work it
is also shown that incorrect frame vector ordering might in-
crease the overall error, compared to direct coefficient quan-
tization.

In this case the compensation is improving the cost if and
only if ‖fk− flk‖ < ‖fk‖. The rest of the development remains
the same: we need to solve the traveling salesman problem
or the minimum spanning tree problem on a possibly dis-
connected graph. In the example we present in Section 7, the
natural frame ordering becomes optimal using our costmod-
els, yielding the same results as the frame variation criterion
suggested in [5, 6]. In Section 8.1 we show that when applied
to classical first-order noise shaping, this restriction does not
affect the optimal frame ordering and does not impact sig-
nificantly the error power.

6.2. Higher-order quantization

Classical Sigma-Delta noise shaping is commonly done in
multiple stages to achieve higher-order noise shaping. Simi-
larly noise shaping on arbitrary frame expansions can be gen-
eralized to higher order. Unfortunately, in this case determin-
ing the optimal ordering is not as straightforward, and we do
not attempt the full development in this paper. However, we
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develop the quantization strategy and the error modeling for
a given ordering of the coefficients.

The goal of higher-order noise shaping is to compensate
for quantization of each coefficient using more than one co-
efficient. There are several possible implementations of a tra-
ditional higher-order Sigma-Delta quantizer. All have a com-
mon property; the quantization error is in effect modified
by a pth-order filter, typically with a transfer function of the
form

He(z) =
(
1− z−1

)p
(31)

and equivalently an impulse response

he[n] = δ[n]−
p∑

i=1
ciδ[n− i]. (32)

Thus, every error coefficient ek additively contributes a term
of the form ek(fk −

∑p
i=1 cifk+i) to the output error. In order

to minimize the magnitude of this contribution we need to
choose the ci such that

∑p
i=1 cifk+i is the projection of fk to the

space spanned by {fk+1, . . . , fk+p}. Using (31) as the system
function is often preferred for implementation simplicity but
it is not the optimal choice. This design choice is similar to
eliminating the product in Figure 1. As with first-order noise
shaping, it is straightforward to generalize this to arbitrary
frames.

Given a frame vector ordering, we consider the quanti-
zation of coefficient ak to âk = ak + ek. This error is to be
compensated using coefficients al1 to alp , with all the li > k.
Thus, we project the vector −ekfk to the space Sk, defined by
the vectors fl1 , . . . , flp . The essential part of this development
is to determine a set of coefficients that multiply the error ek
in order to project it to the appropriate space.

To perform this projection we view the set {fl | l ∈ Sk}
as the reconstruction frame for Sk, where Sk = {l1, . . . , lp} is
the set of the indices of all the vectors that we use for com-
pensation of coefficient ak. Ensuring that for all j ≥ k, k /∈ Sj
guarantees that once a coefficient is quantized, it is not mod-
ified again.

Extending the first-order quantizer notation, we denote
the coefficients that perform the projection by ck,l,Sk . It is
straightforward to show that these coefficients perform a
projection if and only if they satisfy the following equation:

⎡
⎢⎢⎢⎢⎣

〈
fl1 , fl1

〉 〈
fl1 , fl2

〉 · · · 〈fl1 , flp
〉

〈
fl2 , fl1

〉 〈
fl2 , flp

〉 · · · 〈fl1 , flp
〉

...
. . .

...〈
flp , fl1

〉 〈
flp , fl2

〉 · · · 〈flp , flp
〉

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ck,l1,Sk
ck,l2,Sk
...

ck,lp ,Sk

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

〈
fl1 , fk

〉
〈
fl2 , fk

〉

...〈
flp , fk

〉

⎤
⎥⎥⎥⎥⎦
.

(33)

If the frame {fl | l ∈ Sk} is redundant, the coefficients are
not unique. One option for the solution above would be to
use the pseudoinverse of the matrix. This is equivalent to

computing the inner product of fk with the dual frame of
{fl | l ∈ Sk} in Sk, which we denote by {φSk

l | l ∈ Sk}:
ck,l,Sk = 〈fk,φSk

l 〉. The projection is equal to

PSk

(− ekfk
) = −ek

∑

l∈Sk
ck,l,Sk fl . (34)

Consistent with Section 3, we change step (3) of Algorithm 1
to

(3) update {al | l ∈ Sk} to a′l = al − ekck,l,Sk , where ck,l,Sk
satisfy (33).

Similarly, the residual is −ekc̃k,Skrk,Sk , where

c̃k,Sk =
∥∥∥∥∥fk −

∑

l∈Sk
ck,l,Sk fl

∥∥∥∥∥,

rk,Sk =
fk −

∑
l∈Sk ck,l,Sk fl∥∥fk −

∑
l∈Sk ck,l,Sk fl

∥∥ .

(35)

This corresponds to expressing ekfk as the direct sum of the
vectors ekc̃k,Skrk,Sk ⊕ ek

∑
l∈Sk ck,l,Sfl, and compensating only

for the second part of this sum. Note that c̃k,Sk and rk,Sk are
the same independent of whether we use the pseudoinverse
to solve (33) or any other left inverse.

The modification to the equations for the total error and
the corresponding cost functions are straightforward:

E =
M∑

k=1
ekc̃k,Skrk,Sk , (36)

E
{‖E‖2} = Δ2

12

M∑

k=1
c̃2k,Sk , (37)

‖E‖ ≤ Δ

2

M∑

k=1
c̃k,Sk . (38)

When Sk = {lk} for k < M, this collapses to a tree quantizer.
Similarly, when Sk = {k+1}, the structure becomes a sequen-
tial quantizer. Since the tree quantizer is a special case of the
higher-order quantizer, it is straightforward to show that for
a given frame vector ordering a higher-order quantizer can
always achieve the cost of a tree quantizer. Note that SM is al-
ways empty, and, therefore c̃M,SM = ‖fM‖, which is consistent
with the cost analysis for the first-order quantizers.

For appropriately ordered finite frames in N dimensions,
the first M − N error coefficients c̃k,Sk can be forced to zero
with an Nth or higher-order quantizer. In this case, the er-
ror coefficients determining the cost of the quantizer are the
remainingN ones—the error becomes

∑M
k=M−N+1 ekc̃k,Skrk,Sk ,

with the corresponding cost functions modified accordingly.
One way to achieve that function is to use all the unquantized
coefficients to compensate for the quantization of coefficient
ak by setting Sk = {(k + 1), . . . ,M} and ordering the vectors
such that the last N frame vectors span the space. Another
way to achieve this cost function is discussed as an example
in next section.

Unfortunately, the design space for higher-order quantiz-
ers is quite large. The optimal frame vector ordering and Sk
selection is still an open question and we do not attempt it in
this work.
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7. EXPERIMENTAL RESULTS

To validate the theoretical results we presented above, in this
section we consider the same example as was included in
[5, 6]. We use the tight frame consisting of the 7th roots of
unity to expand randomly selected vectors in R2, uniformly
distributed inside the unit circle. The frame expansion is
quantized using Δ = 1/4, and the vectors are reconstructed
using the corresponding synthesis frame. The frame vectors
and the coefficients relevant to quantization are given by

fn =
(
cos
(
2πn
7

)
, sin

(
2πn
7

))
,

fn =
(
2
7
cos
(
2πn
7

)
,
2
7
sin
(
2πn
7

))
,

ck,l = cos
(
2π(k − l)

7

)
,

c̃k,l = 2
7

∣∣∣∣ sin
(
2π(k − l)

7

)∣∣∣∣.

(39)

For this frame the natural ordering is suboptimal given
the criteria we propose. An optimal ordering of the frame
vectors is (f1, f4, f7, f3, f6, f2, f5), and we refer to it as such for
the remainder of this section, in contrast to the natural frame
vector ordering. A sequential quantizer with this optimal or-
dering meets the lower bound for the cost under both cost
functions we propose. Thus, it is an optimal first-order noise
shaping quantizer for both cost functions. We compare this
strategy to the one proposed in [5, 6] and also explored as
a special case of Section 6.1. Under that strategy, there is
no projection performed, just error propagation. Therefore,
based on the frame variation as described in [5, 6], the nat-
ural frame ordering is the best ordering to implement that
strategy.

In the simulations, we also examine the performance of
higher-order quantization, as described in Section 6.2. Since
we operate on a two-dimensional frame, a second-order
quantizer can perfectly compensate for the quantization of all
but the last two expansion coefficients. Therefore, all the er-
ror coefficients of (36) are 0, except for the last two. A third-
order or higher quantizer should not be able to improve the
quantization cost. However, the ordering of frame vectors is
still important, since the angle between the last two frame
vectors to be quantized affects the error, and should be as
small as possible.

To visualize the results we plot the distribution of the re-
construction error magnitude. In Figure 3(a) we consider the
case of direct coefficient quantization. Figures 3(b) and 3(c)
correspond to noise shaping using the natural and the opti-
mal frame ordering, respectively, and the method proposed
in [5, 6], that is, without projecting the error. Figures 3(d),
3(e), and 3(f) use the projection method we propose using
the natural frame ordering, and first-, second-, and third-
order projections, respectively. Finally, Figures 3(g) and 3(h)
demonstrate first- and second-order noise shaping results,
respectively, using projections on the optimal frame order-
ing. For clarity of the legend we do not plot the third-order
results; they are almost identical to the second-order case. On
all the plots we indicate with dotted and dash-dotted lines

the average and maximum reconstruction error, respectively,
and with dashed and solid lines the average and maximum
error, as determined using the cost functions of Section 4.3

The results show that the projection method results in
smaller error, even using the natural frame ordering. As ex-
pected, the results using the optimal frame vector ordering
are the best among the simulations we performed. The sim-
ulations also confirm that in R2, noise shaping provides no
benefit beyond second order and that the frame vector order-
ing affects the error even in higher-order noise shaping, as
predicted by the analysis. It is evident that the upper bound
model is loose, as expected. The error average, on the other
hand, is surprisingly close to the simulation mean, although
it usually overestimates it.

Our results were similar for a variety of frame expansions
on different dimensions, redundancy values, vector order-
ings, and noise shaping orders, including oblique bases (i.e.,
nonredundant frame expansions), validating the theory de-
veloped in the previous sections.

8. EXTENSIONS TO INFINITE FRAMES

When extending the results above to frames with a countably
infinite numbers of synthesis frame vectors, we let M → ∞
and modify (14), (20), and (23) to reflect an error rate cor-
responding to average error per frame vector, or equivalently
per expansion coefficient. As M → ∞, the effect of the last
term on the error rate tends to zero. Consequently in consid-
ering the error rate we replace (14), (20), and (23) by

E = lim
M→∞

1
M

M−1∑

k=0
ekc̃k,k+1rk,k+1, (40)

E
{‖E‖2} = lim

M→∞
1
M

Δ2

12

(M−1∑

k=0
c̃2k,k+1

)
, (41)

‖E‖ ≤ lim
M→∞

1
M

Δ

2

(M−1∑

k=0
c̃k,k+1

)
, (42)

respectively, where (·) denotes rate, and the frame vectors are
indexed in N. Similar modifications are straightforward for
the cases of tree4 and higher-order quantizers, and for any
countably infinite indexing of the frame vectors. At the de-
sign stage, the choice of frame should be such to ensure con-
vergence of the cost functions. In the remaining of this sec-
tion we expand further on shift invariant frames, where con-
vergence of the cost functions is straightforward to demon-
strate.

3 In some parts of the figure, the lines are out of the axis bounds. For com-
pleteness, we list the results here: (a) estimated max = 0.25, (b) estimated
max = 0.22, (c) estimated max = 0.45, simulation max = 0.27, (d) esti-
mated max = 0.20.

4 This is a slight abuse of the term, since the resulting infinite graph might
have no root.
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Figure 3: Histogram of the reconstruction error under (a) direct coefficient quantization, (b) natural ordering and error propagation with-
out projections, (c) optimal ordering and error propagation without projections. In the second row, natural ordering using projections, with
(d) first-, (e) second-, and (f) third-order error propagation. In the third row, optimal ordering using projections, with (g) first- and (h)
second-order error propagation (the third-order results are similar to the second-order ones but are not displayed for clarity of the legend).

8.1. Infinite shift invariant frames

We define infinite shift invariant reconstruction frames as in-
finite frames fk for which the inner product between frame
vectors 〈fk , fl〉 is a function only of the index difference
k − l. Consistent with traditional signal processing termi-
nology, we define this as the autocorrelation of the frame:
Rm = 〈fk , fk+m〉. Shift invariance implies that the reconstruc-
tion frame is uniform, with ‖fk‖2 = 〈fk, fk〉 = R0.

An example of such a frame is an LTI system: consider
a signal x[n] that is quantized to x̂[n] and filtered to pro-
duce ŷ[n] = ∑

k x̂[k]h[n − k]. We consider the coefficients

x[k] to be a frame expansion of y[n], where h[n− k] are the
reconstruction frame vectors fk. We rewrite the convolution
equation as

y[n] =
∑

k

x[k]h[n− k] =
∑

k

x[k]fk[n], (43)

where fk[n] = h[n − k]. Equivalently, we may consider x[n]
to be quantized, converted to continuous time impulses, and
then filtered to produce ŷ(t) = ∑k x̂[k]h(t − kT). We desire
tominimize the quantization cost after filtering, compared to
the signals y[n] = ∑k x[k]h[n− k] and y(t) = ∑k x[k]h(t −
kT), assuming the cost functions we described.
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For the remainder of this section we only discuss the
discrete-time version of the problem since the continuous
time development is identical. The corresponding frame au-
tocorrelation functions are Rm = Rhh[m] =∑m h[n]h[n−m]
in the discrete-time case and Rm = Rhh(mT) = ∫

h(t)h(t −
mT)dt in the continuous-time case. A special case of this
setup is the oversampling frame, in which h(t) or h[n] is the
ideal lowpass filter used for the reconstruction, and Rm =
sinc(πm/r), where r is the oversampling ratio.

8.2. First-order noise shaping

Given a shift invariant frame, it is straightforward to deter-
mine the coefficients ck,l and c̃k,l that are important for the
design of a first-order quantizer. These coefficients are also
shift invariant, so we denote them using cm = ck,k+m and
c̃m = c̃k,k+m. Combining (15) and (13) from Section 3 and
the definition of Rm above, we compute the relevant coeffi-
cients:

cm = c−m = Rm

R0
,

c̃m = c̃−m =
√
R0
(
1− c2m

)
.

(44)

For every coefficient ak of the frame expansion and cor-
responding frame vector fk, the vector that minimizes the
projection error is the vector fk±mo , where mo > 0 mini-
mizes c̃m, or, equivalently, maximizes |cm|, that is, |Rm|. By
symmetry, for any such mo, −mo is also a minimum. Due
to the shift invariance of the frame, mo is the same for all
frame vectors. Projecting to fk+mo or fk−mo generates a path
with no loops, and therefore the optimal tree quantizer path,
as long as the direction is consistent for all the coefficients.
When mo = 1, the optimal tree quantizer is also an optimal
sequential quantizer. The optimality holds under both the
additive noise model and the error upper bound model.

In the case of filtering, the noise shaping implementa-
tion is shown in Figure 4, with Hf (z) = cmoz

−mo . It is easy
to show that for the special case of the oversampling frame
mo = 1, confirming that the time sequential ordering of the
frame vectors is optimal for the given frame.

8.3. Higher-order noise shaping

As discussed in Section 6.2, determining the optimal or-
dering for higher-order quantization is not straightforward.
Therefore, in this section we consider higher-order noise
shaping for the natural frame ordering, assuming that when
ak is quantized, the next p coefficients, ak+1, . . . , ak+p, are
used for compensation by updating them to

a′k+l = ak+l − ekcl, l = 1, . . . , p. (45)

The coefficients cl project fk onto the space Sk defined
by {fk+1, . . . , fk+p}. Because of the shift invariance property,
these coefficients are independent of k. Shift invariance also

x[n] x′[n]
Q(·) x̂[n] ŷ[n]

h[n]−+
++−

Hf (z)
e[n]

Figure 4: Noise shaping quantizer, followed by filtering.

Table 1: Gain in dB in in-band noise power comparing pth-order
classical noise shaping with pth-order noise shaping using projec-
tions.

r = 2 r = 4 r = 8 r = 16 r = 32 r = 64

p = 1 0.9 0.2 0.1 0.0 0.0 0.0

p = 2 4.5 3.8 3.6 3.5 3.5 3.5

p = 3 9.1 8.2 8.0 8.0 8.0 8.0

p = 4 14.0 13.1 12.9 12.8 12.8 12.8

simplifies (33):

⎡
⎢⎢⎢⎢⎣

R0 R1 · · · Rp−1
R1 R0 · · · Rp−2
...

. . .
...

Rp−1 · · · R0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

c1
c2
...
cp

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

R1

R2
...
Rp

⎤
⎥⎥⎥⎥⎦
, (46)

with Rm being the frame autocorrelation function. There are
several options for solving this equation, including the Levin-
son recursion.

The implementation for higher-order noise shaping be-
fore filtering is shown in Figure 4, with Hf (z) =

∑p
l=1 clz

−l,
where the cl solve (46). The feedback filter implements the
projection and the coefficient update described in (45).

For the special case of the oversampling frame, Table 1
demonstrates the benefit of adjusting the feedback loop to
perform a projection. The table reports the approximate dB
gain in reconstruction error energy using the solution to (46)
compared to the classical feedback loop implied by (31). For
example, for oversampling ratios greater than 8 and third-
order noise shaping, there is an 8 dB gain in implementing
the projection method. The gain figures in the table are cal-
culated using the additive noise model of quantization.

The applications in this section can be extended for
frames generated by oversampled filterbanks, a case exten-
sively studied in [7]. In that work, the problem is posed in
terms of prediction with quantization of the prediction er-
ror. Motivated by that work, we determined the solution to
the filterbank problem using the projective approach. Setting
up and solving for the compensation coefficients using (33)
in Section 6.2 corresponds exactly to solving [7, (21)], the
solution to that setup under the white noise assumption.

It is reassuring that our approach, although different
from [7] generates the same solution. Conveniently, the ex-
perimental results from that work apply in our case as well.
Our theoretical results complement [7] by providing a pro-
jective viewpoint to the problem, developing a deterministic
cost function and showing that even in the case of critically
sampled biorthogonal filterbanks, noise shaping can provide
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improvements compared to scalar coefficient quantization.
On the other hand, it is not straightforward to use our ap-
proach to analyze and compensate for colored additive noise,
as described in [7].
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